#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ # Author: Riku Laine # Date: 26JUL2019 # Project name: Potential outcomes in model evaluation # Description: This script creates the figures and results used # in empirical data experiments. # # Parameters: # ----------- # (1) figure_path : file name for saving the created figures. # (2) group_amount : How many groups if Jung-inspired model is used. # (3) stan_code_file_name : Name of file containing the stan model code. # (4) sigma_tau : Values of prior variance for the Jung-inspired model. # (5) data_path : File of compas data. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.special as ssp from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import pystan plt.switch_backend('agg') import sys # figure storage name figure_path = sys.argv[1] # How many groups if jung model is used group_amount = int(sys.argv[2]) # Name of stan model code file stan_code_file_name = sys.argv[3] # Variance prior sigma_tau = float(sys.argv[4]) # figure storage name data_path = sys.argv[5] # Prefix for the figures and log files print("These results have been obtained with the following settings:") print("Number of groups:", group_amount) print("Prior for the variances:", sigma_tau) save_name = "sl_compas" def inv_logit(x): return 1.0 / (1.0 + np.exp(-1.0 * x)) def logit(x): return np.log(x) - np.log(1.0 - x) def inverse_cumulative(x, mu, sigma): '''Compute the inverse of the cumulative distribution of logit-normal distribution at x with parameters mu and sigma (mean and st.dev.).''' return inv_logit(ssp.erfinv(2 * x - 1) * np.sqrt(2 * sigma**2) - mu) def standardError(p, n): denominator = p * (1 - p) return np.sqrt(denominator / n) ########################## # ## Evaluator modules # ### Convenience functions def fitPredictiveModel(x_train, y_train, x_test, class_value, model_type=None): ''' Fit a predictive model (default logistic regression) with given training instances and return probabilities for test instances to obtain a given class label. Arguments: ---------- x_train -- x values of training instances y_train -- y values of training instances x_test -- x values of test instances class_value -- class label for which the probabilities are counted for. model_type -- type of model to be fitted. Returns: -------- (1) Trained predictive model (2) Probabilities for given test inputs for given class. ''' if model_type is None or model_type in ["logistic_regression", "lr"]: # Instantiate the model (using the default parameters) logreg = LogisticRegression(solver='lbfgs') # Check shape and fit the model. if x_train.ndim == 1: logreg = logreg.fit(x_train.values.reshape(-1, 1), y_train) else: logreg = logreg.fit(x_train, y_train) label_probs_logreg = getProbabilityForClass(x_test, logreg, class_value) return logreg, label_probs_logreg elif model_type in ["random_forest", "rf"]: # Instantiate the model forest = RandomForestClassifier(n_estimators=100, max_depth=3) # Check shape and fit the model. if x_train.ndim == 1: forest = forest.fit(x_train.values.reshape(-1, 1), y_train) else: forest = forest.fit(x_train, y_train) label_probs_forest = getProbabilityForClass(x_test, forest, class_value) return forest, label_probs_forest elif model_type == "fully_random": label_probs = np.ones_like(x_test) / 2 model_object = lambda x: 0.5 return model_object, label_probs else: raise ValueError("Invalid model_type!", model_type) def getProbabilityForClass(x, model, class_value): ''' Function (wrapper) for obtaining the probability of a class given x and a predictive model. Arguments: ----------- x -- individual features, an array of shape (observations, features) model -- a trained sklearn model. Predicts probabilities for given x. Should accept input of shape (observations, features) class_value -- the resulting class to predict (usually 0 or 1). Returns: -------- (1) The probabilities of given class label for each x. ''' if x.ndim == 1: # if x is vector, transform to column matrix. f_values = model.predict_proba(np.array(x).reshape(-1, 1)) else: f_values = model.predict_proba(x) # Get correct column of predicted class, remove extra dimensions and return. return f_values[:, model.classes_ == class_value].flatten() # ### Contraction algorithm # # Below is an implementation of Lakkaraju's team's algorithm presented in # [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant # parameters to be passed to the function are presented in the description. def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col, accRateR_col, r): ''' This is an implementation of the algorithm presented by Lakkaraju et al. in their paper "The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables" (2017). Arguments: ---------- df -- The (Pandas) data frame containing the data, judge decisions, judge IDs, results and probability scores. judgeIDJ_col -- String, the name of the column containing the judges' IDs in df. decisionT_col -- String, the name of the column containing the judges' decisions resultY_col -- String, the name of the column containing the realization modelProbS_col -- String, the name of the column containing the probability scores from the black-box model B. accRateR_col -- String, the name of the column containing the judges' acceptance rates r -- Float between 0 and 1, the given acceptance rate. Returns: -------- (1) The estimated failure rate at acceptance rate r. ''' # Get ID of the most lenient judge. most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()] # Subset. "D_q is the set of all observations judged by q." D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy() # All observations of R_q have observed outcome labels. # "R_q is the set of observations in D_q with observed outcome labels." R_q = D_q[D_q[decisionT_col] == 1].copy() # Sort observations in R_q in descending order of confidence scores S and # assign to R_sort_q. # "Observations deemed as high risk by B are at the top of this list" R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False) number_to_remove = int( round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0]))) # "R_B is the list of observations assigned to t = 1 by B" R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]] return np.sum(R_B[resultY_col] == 0) / D_q.shape[0], D_q.shape[0] # ### Evaluators def trueEvaluationEvaluator(df, resultY_col, r): df.sort_values(by='B_prob_0_model', inplace=True, ascending=True) to_release = int(round(df.shape[0] * r)) failed = df[resultY_col][0:to_release] == 0 return np.sum(failed) / df.shape[0], df.shape[0] def labeledOutcomesEvaluator(df, decisionT_col, resultY_col, r, adjusted=False): df_observed = df.loc[df[decisionT_col] == 1, :] df_observed = df_observed.sort_values(by='B_prob_0_model', inplace=False, ascending=True) to_release = int(round(df_observed.shape[0] * r)) failed = df_observed[resultY_col][0:to_release] == 0 if adjusted: return np.mean(failed), df.shape[0] return np.sum(failed) / df.shape[0], df.shape[0] def humanEvaluationEvaluator(df, judgeIDJ_col, decisionT_col, resultY_col, accRateR_col, r): # Get judges with correct leniency as list is_correct_leniency = df[accRateR_col].round(1) == r # No judges with correct leniency if np.sum(is_correct_leniency) == 0: return np.nan, np.nan correct_leniency_list = df.loc[is_correct_leniency, judgeIDJ_col] # Released are the people they judged and released, T = 1 released = df[df[judgeIDJ_col].isin(correct_leniency_list) & (df[decisionT_col] == 1)] failed = released[resultY_col] == 0 # Get their failure rate, aka ratio of reoffenders to number of people judged in total return np.sum(failed) / correct_leniency_list.shape[0], correct_leniency_list.shape[0] ################### # Read in the data compas_raw = pd.read_csv(data_path) # Select columns compas = compas_raw[[ 'age', 'c_charge_degree', 'race', 'age_cat', 'score_text', 'sex', 'priors_count', 'days_b_screening_arrest', 'decile_score', 'is_recid', 'two_year_recid', 'c_jail_in', 'c_jail_out' ]] # Subset values, see reasons in ProPublica methodology. compas = compas.query('days_b_screening_arrest <= 30 and \ days_b_screening_arrest >= -30 and \ is_recid != -1 and \ c_charge_degree != "O"') # Drop row if score_text is na compas = compas[compas.score_text.notnull()] # Recode recidivism values to fit earlier notation # So here result_Y = 1 - is_recid (inverted binary coding). compas['result_Y'] = np.where(compas['is_recid'] == 1, 0, 1) # Convert string values to dummies, drop first so full rank compas_dummy = pd.get_dummies( compas, columns=['c_charge_degree', 'race', 'age_cat', 'sex'], drop_first=True) compas_dummy.drop(columns=[ 'age', 'days_b_screening_arrest', 'c_jail_in', 'c_jail_out', 'two_year_recid', 'score_text', 'is_recid' ], inplace=True) # Shuffle rows for random judge assignment compas_shuffled = compas_dummy.sample(frac=1) nJudges_M = 9 # Assign judges as evenly as possible judge_ID = pd.qcut(np.arange(len(compas_shuffled)), nJudges_M, labels=False) # Assign fixed leniencies from 0.1 to 0.9 judge_leniency = np.arange(1, 10) / 10 judge_leniency = judge_leniency[judge_ID] compas_shuffled = compas_shuffled.assign(judge_ID=judge_ID, judge_leniency=judge_leniency) # Sort by judges then probabilities in decreasing order # Most dangerous for each judge are at the top. compas_shuffled.sort_values(by=["judge_ID", "decile_score"], ascending=False, inplace=True) # Iterate over the data. Subject will be given a negative decision # if they are in the top (1-r)*100% of the individuals the judge will judge. # I.e. if their within-judge-index is under 1 - acceptance threshold times # the number of subjects assigned to each judge they will receive a # negative decision. compas_shuffled.reset_index(drop=True, inplace=True) subjects_allocated = compas_shuffled.judge_ID.value_counts() compas_shuffled['judge_index'] = compas_shuffled.groupby('judge_ID').cumcount() compas_shuffled['decision_T'] = np.where( compas_shuffled['judge_index'] < (1 - compas_shuffled['judge_leniency']) * subjects_allocated[compas_shuffled['judge_ID']].values, 0, 1) compas_labeled = compas_shuffled.copy() compas_unlabeled = compas_shuffled.copy() # Hide unobserved compas_labeled.loc[compas_labeled.decision_T == 0, 'result_Y'] = np.nan # Choose feature_columns feature_cols = ~compas_labeled.columns.isin( ['result_Y', 'decile_score', 'judge_ID', 'judge_leniency', 'judge_index', 'decision_T']) feature_cols = compas_labeled.columns[feature_cols] ####### Draw figures ########### failure_rates = np.zeros((8, 6)) error_Ns = np.zeros((8, 6)) # Split data train, test_labeled = train_test_split(compas_labeled, test_size=0.5) # Assign same observations to unlabeled data test_unlabeled = compas_unlabeled.iloc[test_labeled.index.values] # Train a logistic regression model B_model, predictions = fitPredictiveModel( train.loc[train['decision_T'] == 1, feature_cols], train.loc[train['decision_T'] == 1, 'result_Y'], test_labeled[feature_cols], 0) test_labeled = test_labeled.assign(B_prob_0_model=predictions) test_unlabeled = test_unlabeled.assign(B_prob_0_model=predictions) test_labeled.sort_values(by='B_prob_0_model', inplace=True, ascending=True) kk_array = pd.qcut(test_labeled['B_prob_0_model'], group_amount, labels=False) # Find observed values observed = test_labeled['decision_T'] == 1 # Assign data to the model dat = dict(D=10, N_obs=np.sum(observed), N_cens=np.sum(~observed), K=group_amount, sigma_tau=sigma_tau, M=len(set(compas_labeled['judge_ID'])), jj_obs=test_labeled.loc[observed, 'judge_ID']+1, jj_cens=test_labeled.loc[~observed, 'judge_ID']+1, kk_obs=kk_array[observed]+1, kk_cens=kk_array[~observed]+1, dec_obs=test_labeled.loc[observed, 'decision_T'], dec_cens=test_labeled.loc[~observed, 'decision_T'], X_obs=test_labeled.loc[observed, feature_cols.values], X_cens=test_labeled.loc[~observed, feature_cols.values], y_obs=test_labeled.loc[observed, 'result_Y'].astype(int)) sm = pystan.StanModel(file=stan_code_file_name) fit = sm.sampling(data=dat, chains=5, iter=6000, control = dict(adapt_delta=0.9)) pars = fit.extract() print(fit, file=open(save_name + '_stan_fit_diagnostics.txt', 'w')) plt.figure(figsize=(15,30)) fit.plot(); plt.savefig(save_name + '_stan_diagnostic_plot') plt.show() plt.close('all') # Bayes # Alusta matriisi, rivillä yksi otos posteriorista # sarakkeet havaintoja y_imp = np.ones((pars['y_est'].shape[0], test_labeled.shape[0])) # Täydennetään havaitsemattomat estimoiduilla y_imp[:, ~observed] = 1-pars['y_est'] # Täydennetään havaitut havaituilla y_imp[:, observed] = 1-test_labeled.loc[observed, 'result_Y'] Rs = np.arange(.1, .9, .1) to_release_list = np.round(test_labeled.shape[0] * Rs).astype(int) f_rate_bayes = np.full((pars['y_est'].shape[0], 8), np.nan) for i in range(len(to_release_list)): failed = np.sum(y_imp[:, 0:to_release_list[i]], axis=1) est_failure_rates = failed / test_labeled.shape[0] failure_rates[i, 5] = np.mean(est_failure_rates) error_Ns[i, 5] = test_labeled.shape[0] for r in np.arange(1, 9): print(".", end="") # True evaluation FR, N = trueEvaluationEvaluator(test_unlabeled, 'result_Y', r / 10) failure_rates[r - 1, 0] = FR error_Ns[r - 1, 0] = N # Labeled outcomes only FR, N = labeledOutcomesEvaluator(test_labeled, 'decision_T', 'result_Y', r / 10) failure_rates[r - 1, 1] = FR error_Ns[r - 1, 1] = N # Adjusted labeled outcomes FR, N = labeledOutcomesEvaluator(test_labeled, 'decision_T', 'result_Y', r / 10, adjusted=True) failure_rates[r - 1, 2] = FR error_Ns[r - 1, 2] = N # Human evaluation FR, N = humanEvaluationEvaluator(test_labeled, 'judge_ID', 'decision_T', 'result_Y', 'judge_leniency', r / 10) failure_rates[r - 1, 3] = FR error_Ns[r - 1, 3] = N # Contraction FR, N = contraction(test_labeled, 'judge_ID', 'decision_T', 'result_Y', 'B_prob_0_model', 'judge_leniency', r / 10) failure_rates[r - 1, 4] = FR error_Ns[r - 1, 4] = N x_ax = np.arange(0.1, 0.9, 0.1) failure_SEs = standardError(failure_rates, error_Ns) labels = [ 'True Evaluation', 'Labeled outcomes', 'Labeled outcomes, adj.', 'Human evaluation', 'Contraction', 'Potential outcomes' ] colours = ['g', 'magenta', 'darkviolet', 'r', 'b', 'c'] for i in range(failure_rates.shape[1]): plt.errorbar(x_ax, failure_rates[:, i], label=labels[i], c=colours[i], yerr=failure_SEs[:, i]) plt.title('Failure rate vs. Acceptance rate') plt.xlabel('Acceptance rate') plt.ylabel('Failure rate') plt.legend() plt.grid() plt.savefig(save_name + '_all') plt.show() print("\nFailure rates:") print(np.array2string(failure_rates, formatter={'float_kind':lambda x: "%.5f" % x})) print("\nMean absolute errors:") for i in range(1, failure_rates.shape[1]): print( labels[i].ljust(len(max(labels, key=len))), np.round( np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])), 5))