From db16b424693d27e7c8f151195b812ffb91d17512 Mon Sep 17 00:00:00 2001 From: Riku-Laine <28960190+Riku-Laine@users.noreply.github.com> Date: Thu, 20 Jun 2019 11:04:32 +0300 Subject: [PATCH] New framework and other additions --- analysis_and_scripts/notes.tex | 153 ++++++++++++++++--- figures/sl_without_Z_15iter_random_model.png | Bin 0 -> 48731 bytes 2 files changed, 129 insertions(+), 24 deletions(-) create mode 100644 figures/sl_without_Z_15iter_random_model.png diff --git a/analysis_and_scripts/notes.tex b/analysis_and_scripts/notes.tex index 229ad99..6102a24 100644 --- a/analysis_and_scripts/notes.tex +++ b/analysis_and_scripts/notes.tex @@ -9,8 +9,11 @@ \usepackage[hidelinks, colorlinks=true]{hyperref} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} +\usepackage{wrapfig} % wrap figures + \usepackage{pgf} \usepackage{tikz} +\usepackage{tikz-cd} \usetikzlibrary{arrows,automata, positioning} \usepackage{algorithm}% http://ctan.org/pkg/algorithms @@ -71,7 +74,7 @@ \graphicspath{ {../figures/} } \title{Notes} -\author{RL, 17 June 2019} +\author{RL, 20 June 2019} %\date{} % Activate to display a given date or no date \begin{document} @@ -83,7 +86,7 @@ \tableofcontents \begin{abstract} -This document presents the implementations of RL in pseudocode level. First, I present the nomenclature used in these notes. Then I proceed to give my personal views and comments on the motivation behind Selective labels paper. In chapter 2, I define the framework for this problem and give the required definitions. In the following sections, I present the data generating algorithms and algorithms for obtaining failure rates using different methods. Finally in the last section, I present results using multiple different settings. +This document presents the implementations of RL in pseudocode level. First, I present most of the nomenclature used in these notes. Then I proceed to give my personal views and comments on the motivation behind Selective labels paper. In chapter 2, I define the framework for this problem and give the required definitions. In the following sections, I present the data generating algorithms and algorithms for obtaining failure rates using different methods. Finally in the last section, I present results using multiple different settings. \end{abstract} \section*{Terms and abbreviations} @@ -182,7 +185,7 @@ Given the above framework, the goal is to create an evaluation algorithm that ca \node[state] (EA) [below right=0.75cm and -4cm of MP] {Evaluation algorithm}; \path (DG) edge (LP) - edge [out=180, in=180, dashed] node [left] {$\D_{unlabeled}$ (1)} (MP) + edge [out=180, in=180, dashed] node [left] {$\D_{test,~unlabeled}$ (1)} (MP) (LP) edge [bend right=19] node [left] {$\D_{train}$} (MT) edge [bend left=60] node [right] {$\D_{test}$} (MP) edge [bend left=75, dashed] node [right] {$\D_{test}$ (2)} (EA) @@ -193,6 +196,67 @@ Given the above framework, the goal is to create an evaluation algorithm that ca \label{fig:framework_data_flow} \end{figure} +\section{Modular framework -- based on 19 June discussion} + +\begin{wrapfigure}{r}{0.25\textwidth} %this figure will be at the right + \centering + \begin{tikzcd} + \arrow[d] & \arrow[d] & \arrow[d] \\ + X \arrow[rd] & Z \arrow[d] & W \arrow[ld] \\ + & Y & + \end{tikzcd} + \caption{$\M$} +\end{wrapfigure} + +\emph{Below is the framework as was written on the whiteboard, then RL presents his own remarks on how he understood this.} + +\begin{description} + +\item[Data generation:] ~ \\ + ~ \\ + \hskip 3em \textbf{Input:} [none] \\ ~ \\ + \textbf{Output:} $X, Z, W, Y$ as specified by $\M$ + +\item[Decider:] single vs. batch \\ + ~ \\ + \hskip 3em \textbf{Input:} + \begin{itemize} + \item one defendant + \item $\M$ + \end{itemize} + + \textbf{Output:} + \begin{itemize} + \item argmax likelihood $y$ + \item $\pr(Y=0~|~input)$ + \item order + \end{itemize} +\item[Evaluator:] ~ \\ + ~ \\ + \hskip 3em \textbf{Input:} + \begin{itemize} + \item Data sample $(X, T, Y)$ + \item something about $\M$ and something about Decider(r) + \end{itemize} + \textbf{Output:} + \begin{itemize} + \item $\mathbb{E}[FR~|~input]$ + \item curve + \end{itemize} + +\end{description} + +The above framework is now separated into three different modules: data generation, decider and evaluator. In the first module, all the data points $\{x_i, z_i, w_i, y_i\}$ for all $i=1, \ldots, n$ are created. Outcome $y_i$ is available for all observations. + +The next module, namely the decider, assigns decisions for each observation with a given/defined way. This 'decision' can be either the most likely value for y (argmax likelihood y, usually binary 0 or 1), probability of an outcome or an ordering of the defendants. + +\textcolor{red}{RL: To do: Clarify the following.} + +The evaluator module takes as an input a data sample, some information about the data generation and some information about the decider. The data sample includes features $X, T$ and $Y$ where $Y \in \{0, 1, NA\}$ as specified before. The "something we know about $\M$" might be knowledge on the distribution of some of the variables or their interdependencies. In our example, we know that the $X$ is a standard Gaussian and independent from the other variables. From the decider it is known that its decisions are affected by leniency and private properties X. Next we try to simulate the decision-maker's process within the data sample. But to do this we need to learn the predictive model $\B$ with the restriction that Z can't be observed. + +\begin{quote} +\emph{MM:} For example, consider an evaluation process that knows (i.e., is given as input) the decision process and what decisions it took for a few data points. The same evaluation process knows only some of the attributes of those data points -- and therefore it has only partial information about the data generation process. To make the example more specific, consider the case of decision process $\s$ mentioned above, which does not know W -- and consider an evaluation process that knows exactly how $\s$ works and what decisions it took for a few data points, but does not know either W or Z of those data points. This evaluation process outputs the expected value of FR according to the information that's given to it. +\end{quote} \section{Data generation} @@ -200,7 +264,11 @@ Both of the data generating algorithms are presented in this chapter. \subsection{Without unobservables (see also algorithm \ref{alg:data_without_Z})} -In the setting without unobservables Z, we first sample an acceptance rate $r$ for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects for each of the judges randomly (50000 in total) and simulate their features X as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as $$P(Y=0|X=x) = \dfrac{1}{1+\exp(-x)}=\sigma(x).$$ Because $P(Y=1|X=x) = 1-P(Y=0|X=x) = 1-\sigma(x)$ the outcome variable Y can be sampled from Bernoulli distribution with parameter $1-\sigma(x)$. The data is then sorted for each judge by the probabilities $P(Y=0|X=x)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. +In the setting without unobservables Z, we first sample an acceptance rate $r$ for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects for each of the judges randomly (50000 in total) and simulate their features X as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as +\begin{equation} + P(Y=0|X=x) = \dfrac{1}{1+\exp(-x)}=\sigma(x). +\end{equation} +Because $P(Y=1|X=x) = 1-P(Y=0|X=x) = 1-\sigma(x)$ the outcome variable Y can be sampled from Bernoulli distribution with parameter $1-\sigma(x)$. The data is then sorted for each judge by the probabilities $P(Y=0|X=x)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. \begin{algorithm}[] % enter the algorithm environment \caption{Create data without unobservables} % give the algorithm a caption @@ -223,7 +291,15 @@ In the setting without unobservables Z, we first sample an acceptance rate $r$ f \subsection{With unobservables (see also algorithm \ref{alg:data_with_Z})} -In the setting with unobservables Z, we first sample an acceptance rate r for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects (50000 in total) for each of the judges randomly and simulate their features X, Z and W as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as $$P(Y=0|X=x, Z=z, W=w)=\sigma(\beta_Xx+\beta_Zz+\beta_Ww)$$ where $\beta_X=\beta_Z =1$ and $\beta_W=0.2$. Next, value for result Y is set to 0 if $P(Y = 0| X, Z, W) \geq 0.5$ and 1 otherwise. The conditional probability for the negative decision (T=0) is defined as $$P(T=0|X=x, Z=z)=\sigma(\beta_Xx+\beta_Zz)+\epsilon$$ where $\epsilon \sim N(0, 0.1)$. Next, the data is sorted for each judge by the probabilities $P(T=0|X, Z)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. +In the setting with unobservables Z, we first sample an acceptance rate r for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects (50000 in total) for each of the judges randomly and simulate their features X, Z and W as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as +\begin{equation} + P(Y=0|X=x, Z=z, W=w)=\sigma(\beta_Xx+\beta_Zz+\beta_Ww)~, +\end{equation} +where $\beta_X=\beta_Z =1$ and $\beta_W=0.2$. Next, value for result Y is set to 0 if $P(Y = 0| X, Z, W) \geq 0.5$ and 1 otherwise. The conditional probability for the negative decision (T=0) is defined as +\begin{equation} + P(T=0|X=x, Z=z)=\sigma(\beta_Xx+\beta_Zz)+\epsilon~, +\end{equation} +where $\epsilon \sim N(0, 0.1)$. Next, the data is sorted for each judge by the probabilities $P(T=0|X, Z)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. \begin{algorithm}[] % enter the algorithm environment \caption{Create data with unobservables} % give the algorithm a caption @@ -262,11 +338,30 @@ The following quantities are computed from the data: \item Labeled outcomes: The "traditional"/vanilla estimate of model performance. See algorithm \ref{alg:labeled_outcomes}. \item Human evaluation: The failure rate of human decision-makers who have access to the latent variable Z. Decision-makers with similar values of leniency are binned and treated as one hypothetical decision-maker. See algorithm \ref{alg:human_eval}. \item Contraction: See algorithm \ref{alg:contraction} from \cite{lakkaraju17}. -\item Causal model: In essence, the empirical performance is calculated over the test set as $$\dfrac{1}{n}\sum_{(x, y)\in D}f(x)\delta(F(x) < r)$$ where $$f(x) = P(Y=0|T=1, X=x)$$ is a logistic regression model (see \ref{sec:model_fitting}, random forest used in section \ref{sec:random_forest}) trained on the labeled data predicting Y from X and $$ F(x_0) = \int_{x\in\mathcal{X}} P(x)\delta(f(x) < f(x_0)) ~ dx.$$ All observations, even ones with missing outcome labels, can be used since empirical performance doesn't depend on them. $P(x)$ is Gaussian pdf from scipy.stats package and it is integrated over interval [-15, 15] with 40000 steps using si.simps function from scipy.integrate which uses Simpson's rule in estimating the value of the integral. (docs: \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html}) See algorithm \ref{alg:causal_model}. \label{causal_cdf} +\item Causal model: In essence, the empirical performance is calculated over the test set as +\begin{equation}\label{eq:ep} + \dfrac{1}{n}\sum_{(x, y)\in D}f(x)\delta(F(x) < r) +\end{equation} +where +\begin{equation}\label{eq:causal_prediction} + f(x) = P(Y=0|T=1, X=x) +\end{equation} +is a logistic regression model (see section \ref{sec:model_fitting}, random forest used in section \ref{sec:random_forest}) trained on the labeled data predicting Y from X and +\begin{equation} \label{eq:causal_cdf} +F(x_0) = \int_{x\in\mathcal{X}} P(x)\delta(f(x) < f(x_0)) ~ dx. +\end{equation} +All observations, even ones with missing outcome labels, can be used since empirical performance doesn't depend on them. $P(x)$ is Gaussian pdf from scipy.stats package and it is integrated over interval [-15, 15] with 40000 steps using si.simps function from scipy.integrate which uses Simpson's rule in estimating the value of the integral. (docs: \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html}) See also algorithm \ref{alg:causal_model} and motivation from section \ref{sec:motivation} . \label{causal_cdf} \end{itemize} The plotted curves are constructed using pseudo code presented in algorithm \ref{alg:perf_comp}. +\subsection{Short motivation of the causal model presented above:} \label{sec:motivation} + +The causal model tries to predict the probability of adverse outcome $Y=0$ when an acceptance rate $r$ is imposed. Estimating such probability in the selective labels setting consists of two parts: predicting the probability for an individual to commit a crime if they are given bail and deciding whether to bail or jail them. + +In equations \ref{eq:ep} and \ref{eq:causal_prediction}, $f(x)$ gives the probability given private features $x$. In equation \ref{eq:ep} $\delta(F(x) < r)$ indicates the defendants bail decision. They will be let out if the proportion of people less dangerous than $x_0$ is under $r$. For example, if a defendant $x_0$ arrives in front of a judge with leniency 0.65 they will not be left out if the judge deems that $F(x_0) > 0.65$ that is if the judge thinks that more than 65\% of the defendants are more dangerous than them. + +Now the equation \ref{eq:ep} simply calculates the mean of the probabilities forcing the probbility of crime to zero if they will not be given bail. \begin{algorithm}[] % enter the algorithm environment \caption{Performance comparison} % give the algorithm a caption @@ -374,7 +469,7 @@ The plotted curves are constructed using pseudo code presented in algorithm \ref Results obtained from running algorithm \ref{alg:perf_comp} with $N_{iter}$ set to 3 are presented in table \ref{tab:results} and figure \ref{fig:results}. All parameters are in their default values and a logistic regression model is trained. -\begin{table}[] +\begin{table}[H] \caption{Mean absolute error (MAE) w.r.t true evaluation} \begin{center} \begin{tabular}{l | c c} @@ -389,7 +484,7 @@ Causal model, ep & 0.001074039 & 0.0414928\\ \end{table}% -\begin{figure}[] +\begin{figure}[H] \centering \begin{subfigure}[b]{0.5\textwidth} \includegraphics[width=\textwidth]{sl_without_Z_3iter} @@ -406,23 +501,22 @@ Causal model, ep & 0.001074039 & 0.0414928\\ \caption{Failure rate vs. acceptance rate with varying levels of leniency. Logistic regression was trained on labeled training data. $N_{iter}$ was set to 3.}\label{fig:results} \end{figure} - \subsection{$\beta_Z=0$ and data generated with unobservables.} -If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval 0.1, ..., 0.3 but the human evaluation failure rate. Results are presented in Figures \ref{fig:betaZ_1_5} and \ref{fig:betaZ_0}. +If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval 0.1, ..., 0.3 but the human evaluation failure rate. Results are presented in figures \ref{fig:betaZ_1_5} and \ref{fig:betaZ_0}. -The differences between figures \ref{fig:results_without_Z} and \ref{fig:betaZ_0} could be explained in the slight difference in the data generating process, namely the effect of $W$ or $\epsilon$. The effect of adding $\epsilon$ (noise to the decisions) is further explored in section \ref{sec:epsilon}. +The disparities between figures \ref{fig:results_without_Z} and \ref{fig:betaZ_0} (result without unobservables and with $\beta_Z=0$) can be explained in the slight difference in the data generating process, namely the effect of $\epsilon$. The effect of adding $\epsilon$ (noise to the decisions) is further explored in section \ref{sec:epsilon}. -\begin{figure}[] +\begin{figure}[H] \centering - \begin{subfigure}[b]{0.5\textwidth} + \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{sl_with_Z_4iter_betaZ_1_5} \caption{Results with unobservables, $\beta_Z$ set to 1.5 in algorithm \ref{alg:data_with_Z}.} \label{fig:betaZ_1_5} \end{subfigure} - ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. + \quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. %(or a blank line to force the subfigure onto a new line) - \begin{subfigure}[b]{0.5\textwidth} + \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{sl_with_Z_4iter_beta0} \caption{Results with unobservables, $\beta_Z$ set to 0 in algorithm \ref{alg:data_with_Z}.} \label{fig:betaZ_0} @@ -435,9 +529,9 @@ The differences between figures \ref{fig:results_without_Z} and \ref{fig:betaZ_0 In this part, Gaussian noise with zero mean and 0.1 variance was added to the probabilities $P(Y=0|X=x)$ after sampling Y but before ordering the observations in line 5 of algorithm \ref{alg:data_without_Z}. Results are presented in Figure \ref{fig:sigma_figure}. -\begin{figure}[] +\begin{figure}[H] \centering - \includegraphics[width=0.75\textwidth]{sl_without_Z_3iter_sigma_sqrt_01} + \includegraphics[width=0.5\textwidth]{sl_without_Z_3iter_sigma_sqrt_01} \caption{Failure rate with varying levels of leniency without unobservables. Noise has been added to the decision probabilities. Logistic regression was trained on labeled training data with $N_{iter}$ set to 3.} \label{fig:sigma_figure} \end{figure} @@ -448,14 +542,14 @@ In this section the predictive model was switched to random forest classifier to \begin{figure}[H] \centering - \begin{subfigure}[b]{0.5\textwidth} + \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{sl_withoutZ_4iter_randomforest} - \caption{Results without unobservables, \\$N_{iter}=4$.} + \caption{Results without unobservables with \\$N_{iter}=4$.} \label{fig:results_without_Z_rf} \end{subfigure} - ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. + \quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. %(or a blank line to force the subfigure onto a new line) - \begin{subfigure}[b]{0.5\textwidth} + \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{sl_withZ_6iter_betaZ_1_0_randomforest} \caption{Results with unobservables, $\beta_Z=1$ and \\$N_{iter}=6$.} \label{fig:results_with_Z_rf} @@ -470,7 +564,7 @@ Predictions were checked by drawing a graph of predicted Y versus X, results are \begin{figure}[H] \centering - \includegraphics[width=0.75\textwidth]{sanity_check} + \includegraphics[width=0.5\textwidth]{sanity_check} \caption{Predicted class label and probability of $Y=1$ versus X. Prediction was done with a logistic regression model. Colors of the points denote ground truth (yellow = 1, purple = 0). Data set was created with the unobservables.} \label{fig:sanity_check} \end{figure} @@ -481,8 +575,19 @@ Given our framework defined in section \ref{sec:framework}, the results presente \begin{figure}[H] \centering - \includegraphics[width=0.75\textwidth]{sl_with_Z_15iter_fully_random_model} - \caption{Failure rate vs. acceptance rate with different levels of leniency. Data was generated with unobservables and $N_{iter}$ was set to 15. Machine predictions were done with completely random model, that is prediction $P(Y=0|X=x)=0.5$ for all $x$.} + \begin{subfigure}[b]{0.475\textwidth} + \includegraphics[width=\textwidth]{sl_without_Z_15iter_random_model} + \caption{Failure rate vs. acceptance rate. Data without unobservables and $N_{iter}=15$. Machine predictions with random model.} + \label{fig:random_predictions_without_Z} + \end{subfigure} + \quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. + %(or a blank line to force the subfigure onto a new line) + \begin{subfigure}[b]{0.475\textwidth} + \includegraphics[width=\textwidth]{sl_with_Z_15iter_fully_random_model} + \caption{Failure rate vs. acceptance rate. Data with unobservables and $N_{iter}=15$. Machine predictions with random model.} + \label{fig:random_predictions_with_Z} + \end{subfigure} + \caption{Failure rate vs. acceptance rate with varying levels of leniency. Machine predictions were done with completely random model, that is prediction $P(Y=0|X=x)=0.5$ for all $x$.} \label{fig:random_predictions} \end{figure} diff --git a/figures/sl_without_Z_15iter_random_model.png b/figures/sl_without_Z_15iter_random_model.png new file mode 100644 index 0000000000000000000000000000000000000000..bdc11440fb670283494c467b67999c20ed7d3bcc GIT binary patch literal 48731 zcmagGbyU<_`v*!0NQ+Vef{cW8gEYbrq7ozB2uOD~9Fz{}ZV>5|Zlt@rySwY|Iq&=4 z-(PoK*J3H0ab|z_e)jWx$`c?bBZ-Ycf`Nd5fc-%V3PV6Zaz{WwjChI)ei9Slhz5Rp zVk`PV;VJm#_Eg^=e2;D=rD}_SfcYH$g*Y<raR+|LYbUN^_r>y?oujUe0fM=%ot2rT zotg31*A50Yw#JqguQ`}mnK>9=8`;@e@v*S{-wT*6Z46nGG4nGK5MCpEfWB97O4>_y zbRuY<^jduJlrsIhh?g9dom}3tpE5=;e1cr*Qt!YAd^yImA!rmcMxYcrJrbeFogAJh zo?I;~n<s!+&5KGT;`$-3e|;e_aqSmc{H627hlBX(_;T>eFeeEw8z0rDMTeCb%lDC+ ze7ex<-#?@JP@b|$r2gm6ZJJ(eH(399)d5oQupxLc_|A$*Cs^pef3*%l@9gD&UNVP5 zoOy`z9@-J$|2&+=p==_?%*kQr8~8g1uOUGN-1&C&1H5k_lI&lK>#&s%BkMxOV!Zv& z{;XW~n9Z}l&^t4D4S`MM;eU7)Tdv;uh~Ze?!T=Fgn{4E-v+tHV*l<n2^Y5a;3+T5H zg!Lw$u@i*P#T1#AsT287GOZ0*pgd%fAraR7?96)8Z`=%7(&rmtom*BBq$)&28G9an z8x5-~Q)TjL(Of|2KwO?K^l!1^`5N5Vx10u}r+V{3L0TLE?`8b2<<K=_JKTHyCHp1S zrRY6{E*&eP>@nUY4ToJ_*15vC<#{tvXgyTl%fA3Gyc}Zl1^Q6AQLkWyw^(?M27wI+ zUgp;6qT7ChX8HTOK_Ht@ss-Z*9cnyPot#}`ym&gugN0VHxe64DB(7iTe`hM(BnjmU z>UxgHO9Nqp*nEI`5QfJL7$Dx6-IJN}xRLMT7k|%QwZ^NVge*hK<e*6NL(0&#tn5s~ z=hmTWd>f@6u0dV1kTPXxQ9u^~9`9R7YJe2FV^24B3Mw;Vo0nd5BxEJJ&%S~%Tyetw zuYVUh9y&p|iOexZK$jEVGz(-HVj~arco9AsA$9s#@Q!VQ*D_GbBFCvxmmhDN5>i)K zF&Nl&3t7=4;%RrKhnz##-Y_)fLu@pm4*p$1%yt#Umed8CJOB7Y1G?1ka+9IXiiF|L z5SyMnj!mfkAAf;0{6R6O7Jm3*p{x66s0Tr~WMnN7^GTWDDCFcH|2y62%^W2sW4xCP zkXa~I>&Rw_e?2YaI=Ps@2y5+mCmnTL^2r_zWVf*PB@={SJgYeIW}<wAY?q3{s2lfP zH!|b30DpX2k`SKilfKe_#P-i*IQ?Xy7=a!sZG|>Bnn^RLb=7~w*GTJZZa+dhrY3nA zv?9J>B(*`axU70HEY=kU=>GJ6s9Y>+-8&@=M=RiS?RVJ_Z5OX&NZ1tDuTva+Q|LO+ zhBE&^Tbmq+H-CXc5UwF(Z4)5nx$9hKwr!&TZG0B)n!HkbZ#FgVR|aAKTPw>`xGVD; z_k&=5s_OE2!D6mU&aX-=*t^Af?%{o#KE_Y7+86Tp^Xlc~Du_@dMQ?HuSG?TJsGgqm zxq1=e8!;WaC3Fpx5|T^`1Qs1$E2L^7Cv+z{=ng~nTyn7r{uELYq9~%U1y9x?(&UiA z39cNH6V{a~lw4VwscNMVr3azG+rAm~BYEo20Dpzjq8#E943%%mr%#5Ipd@dzLus?K zVA26yM9s6!K1w9q&@4nb^0>^XTH}DGlC$}zcShYkNXg!^QiiyG{+wv^2owz27Ah=# z;mw)N&xwu~pU@yFdmR?s9lpoKeMH?WUx_ZUE7Iu}MyU5DnK+j%{b-wZep?^CL7f&K zEi0Iok2#)-pq8E^P=Gpv<l{X98BwAm2qV43cWU8tL@s&$*62Qk8bS~a^U++>B)%FS zaYVfFutS;%lv2zdbFMQr)y+;Mx*~svaD|NRZCJA7<?oc%TgOpC6c^@UL5|e;B3wBN z#-X_tf#2pOp|tRbc4yx0<BizNGQssW4bjEFBG;c&QMz5tfRki?SDl1dFV;bn7Xta> z?cHpB*5HpggJ28I3WV*1;GfL}Smda^>-H&ZQWU2Wp^Ij<OMJ${7|+@Cez7yOxvH5W z<}Txl0E-TGt(M1+#$rLQ$MTsTcZbPoGR@GMf@)9o+F*nkf2k7Kjs(W!PM}`13PbX0 zvuIt(7h|cxS0rh>owChlY3M_kZw>D)2PK<>wl18xYx`;u89+aQnfL~sEmn@G23s6b zAa`WW{<FEa@>z5;dA?b|E>RP8KBhoKm|@$Q`x~PD(4a~y|F=Z@Lcu~ebN`1Sce1OG zbbtDv=bR_+SiG#JiZ;(sUysXuo81@w9_{8whL?|se^6$gCMYj-BIAlDD_+wwC)P?c zpZE09ZR>nzyXn=+WHqz)*|E&M=<I&<ui|f@B%v}RC?>V0lnf+pNKCI)uF&hyyk=gB zvZZA3wy416>wckG_vPwvD^^X9*7?P2!m9!7<a~8!w`Is4GDAW9d7b~cYd}!-f=DCQ zZ|&1U0TT5l2Gyp=LGiiQ6>L^do?2m?J_($@*V4^C^$oI<p1s!|rLWWW{>Q=QJ<kk= zQ=iPjWJEjvxH@iycczz6Zgq~gmtT;}d3m<7F|D(xd*WB^#UU08zui9v^6#uhYX(%7 zv-ci6r};c<8-zqWbm|ljku)@Yz9gUzo>8Zj1s#3$3d3~vx7Wg@y{3819Z*kRHlT{? zG~InVH6L_4Kja*(C?Vu<`G7QI<T!+WH5Gv}(@m(#e(M@7C+k8TZYX+N@#Lr?QrNIt zxFT|0lvLkZ#$KlS{tnANXP^e7JYU%qcD+Yq(iDkV-m8un#;2(rM_p`4YiZE!@O5$m zfqIz2l_&W?Of+TEOIl{I1!r%D`y)BJS^N3vX5xflTageMwKab<=KZG>>u^iM-TH8c zvWmtp^GrU_^Qf_^0E=k7Z{+bQE%SC(vs)i`ocj9hE|4XY^i_4w6s@ggco@udp4T3r zw$4}o`rg5g@iwZ*=HCA=OW+#G?hTb*a7M_i%IhXl=fhHxA8s;}HslSzB^Xt883s|} z6{;{)T*z!AEdP*Hz+_H%V}vweQdJcMhq#-*Z{u&}X2s)D2`Z;#VuqwV4j~?&8TM!$ z4~#KfsK?}QJKm)?im&LuOK(~tIEqd#$e~W$mhias_AKQP*=r>)A8{TIv3s7fjh<V- z@b!a0XZK5YVU_bN|Dci?C6~k6@XJJ{Ic}Lv2XRs&irMyi%y$QN9xlO+BQhrf6I}P- zXiYziP-s(olQvU2?j+^2mMv_3jKZx7nSXF7`w>&%6LjTMSVGBs@=0OQTe6@;c28f~ zt0dTidvB)=^FtQTJO-{qgr{CNL$&HdcLUf<WMv6$lUZn04;u$AM|~nMqq4MM42;T@ zxs`OQ=3ToLnMGI+)qKQC0&M3e<~8!fVgls(3S<uREi>dtl&e_1WMrTrHV2M4?)1FR zgH3tPlN*$u&(Zl}KZtIwY!!C}zQZQ1*1<a>uWh-Ri}>>%m%2W`fL4{xUcQ3VPbgy( zi&+vk{s1Q3UXyMsZHIiKdNcJRuyG;B%W-e*yr4-q`=`avbH|X8wu0_sgd6JF4^WNq zL*g^5K#s&D6zN=HDAn`d(V{8bP%0Le>T*)Km-DVVVfoIHeo?T2!4cJ6OG^HD^>u0p z%J3J`P~<k~UtVeJ-Qs*3slfg2waHgb<mMU#t=8lYCK~}lULMQ!E25j<dD9QJ$iCfU zOI((qW@?-1Zt4Ef`FQwzD`o3CcZiJ_5(UE<Y=rIn^1lmOb^jFiNZ|WII=4xDjaBY5 zv_2X({4z`Z+lq-nWByH|)%>pJUtHTjJ=qMyQJHU#X3U5;fn7Lumd6rHj`pr5A6-&I zvQoUooAbBA%2*jvMMcnb@?kr_-Pbtbg^sM8Rr&c-DH#VTK!PtO>Lb7F=28r|S;=pq zo~fQG8!Ooep*!pD9&*qnrQ%w3ZrR3%`QwWZF24;(@jLU}id7J}*=?Y!(w3nMPqU@n zl?rsT$U3KXDO!%4<GyiG^GwDrk=f#PkhO9ppKF4!qr}DOy#5vb{lszLltG8y#oMo8 zcoS1YSz7$p&!Xb<%R_xVV~os@_3-Y$){4I#Y49!uYIBA)8^t`I?MV)%-Vxp3MM(~# z*eMDZRsW=B#3@bvy>G#LrRv#>m>ChUDKjtqI@j>))0>nBpMzX}@O2_G$Y6Wvj8Ith z(<9k2ZBr0My~)ShT{_oOoC<4;8A83^+6GJ4v#G8POFPWIcV{%Zzo!kjS{C7ASV-16 zt5NsF%n+U{uJfm`AnJ^V4*ohvB;Cb-q^@AQ<gA*Fm%_V#GXKKG=S+~4ITbN`jJsFv zkP*V7-XTw9H}7bKIeIK(UxlR+KEpknY}2O@JRIweB|cbak`Z+?FC+qWsTFExdhTMX zQ79l?ghXrblZqIdDGH`*tk@Icc7v4d#S;xXoJI4OqN^C*WJc!`&WuV(HNoDOlTOA9 z$KFC=c-WFyW77#MOBAqZZ}265a2ZvT8o{`a=0mIwO+kw@fo8Ga^b#!n3}P|zlAiec z5HfMtE24@=7x&L{tj_Pc({Q|i6sIIvI(vrfE(iS2qFTYTm-MR8EXtXsTXMn9ZjWIZ z*^1#<@;N5IC+?FB+5e2j8zKdypbs;&`ekg6PAExhR$wyx;J$&iDK168^33?opmYSZ zkfsdfVnPw&SZ$RS-HAn=IrYEcFRA8IS3Z0vatw@}xM2UI?;sQ|lIDL^y*2I7_|5gX zU?K!YY)(40qCR-b-^@QDCGjy$*kx-9d0&WLa8SaA;%{o^W~qaS=hZos)L|fKa^yzF zJ|8RMwW4`OBAB|wu}ssFC`%MX(dASw7CLGloSdU=@EklzMm`P|zn>YiPW(=N&anR@ zgDJ_Ed4(1$zSacFp|&|Vj4i@b(Xwe0Hx7=EGJ8x?g#Y826yJ&L*19@opS^W~T_9TR zB>q{?>e^JOg_XK0!(qg#qg|%jq~IU(YMU?eFYe1`^=M@dQfS7)6q$X~N%<vZkS(HP zVLQ)j(b9e2)jW3T1g85H^URXE5q{9LB#YU^A<}Ki%;DGn`&5*;mi$ce(yjnmPWlz} zk{(696Ma1e?Vq&+SCbEMMZ<l(%_KHO!CJ@hL%p#x7wo*NOuX#1nhrGGyQm5L?WLX3 z`SDMt$%%B|X3NlLZ=@eub1Kco1Pn^FKJAUn(7fkF_E3=Ky&TFuPfpljFL_gF{xxDf zZkjlg<@Oy4{vQ`>gjx2p_^eE{377Xt2nj*S!hCpip%2fcnHJOh>U{&He%gXF^6x?p zkp0Mo&WxL+ZR9iD#x_7z|5TGJBXKx?>LySMZBqpAIBIO4w+3IZU}BVSWw@>J!kCZ< zPZ`&vRoS6JQ-cC8mmYGN6;*1aE$=?0T`BuE`-YEV>%&>BSCP%E=WJ(8%3+|C*O!DE z@hoC5*bd{2Q2~1ONw=YPBZaE5$6C@a0v-{lM*rmY>rkOCfgxtR=3ytW<+TMAkP%{@ zIr{3Bsx8WvP4TR7+qB5iGsKyxcsgb`sz51w>rqbwcB%rZBGZ0@ib*}U=bIYPs_mkU z8+R}Ag=EwI2AheR`s(GT5lG)nVu?tz2l=$inV-D)+~NAigT|bg^DPu5O^u3=tHVLU zdzyu0BEpGbfl{r{gds4zt5n;S3AE02&aK+Eo7vulw?yI0)!clrkF8uGczBj|XUIdB z+k`UaG3}!eST}PcPnF*{BI>S!^e={YL#Sc*tj@l|q|&)>jFe%ohAk2WtnP=CCmc-z z4Sr%-R0ZTRc7AHZI{Ze#F)a349lFL~*KQnAG~|hNnf+$pc%oDh8j~KICj3tdr<xEK zI$d^#cou_;%&;Zo<b{h&G_A{lgzXtwz29g$ixGv1Wtw}@A5qeT^WhhJo+6I>v*i?m zxLG;=e^riGL64!!j`BYfxfCfV^EGtL?0xr4km?+FhWcaR+w3C$F8Z^i2B))~{BoJ$ z1H{UJ1zblS7izr^yGbg|3zAB2&gLSuhb{$pXVkVCl^ulElg{cWA=(+6L3St`blHHf z%AL9W^?{sV&-{FAu+EF9iT3{XA`hpY1(G~`{uk5SY_geM0|*6BeFPWrd2PrE@(pq( ztILSTmx{rB9~t@wikZn3<ro~?3|F3srK#UE&a%V4cg$xW%c*Xt)etp{mDAiEvR~$> z2z!$YExd*-s^8$hza*xR7^Fthv<Mjz%x4nUe^o0K4J94?Gjz_~&%gCH`>Xhx-kAkM zT|pUhu*dO_^bmT(iFE9uY{<!*8Kb$hsF{K&HA=`~W@_o130pVR`AjDk7f~0Ux!DbC zG#6@T`7=&GOb1<E5y!g6d0md1%pESgW3f7~nyjdsss2-QmA1jbjM-q;{DEY#sz11C zuHR^;+ruh*oL`rSL6tHNul2SJ#}pgX{8Fl$i073$5rdM565f^K-BZqxPrZexdwr*S z{b<-d8VoZD@$W;tLG%plvaz_`X27Wb6~(u_GRA6G7rm5uAb(bV7Z0Ov>C_XlQ+@cs z+{Cd}dqq6s8}~I<>zg2HYUbgh`c`dKt9TN?wQW*0SQ-&M+-zLyanAbdu;s^_7V}sp zx*M<Z6=84gXBk5*ZG%H0R**@|>g}?2<~{ogj^RY3N%Ufy+2TZoSSCr>5ZAMNMO&<S z5p8JQbsWx<8tX#3T0RlS@W+21A{v7&uy$)}9T+@b<QEjFFAo?f;qSlZST+?Jxq19@ zM%F$yH``gW@3Q%lXxU@SnU=KB)fxGIy#|ZlQ%&ZQNxTYoOG`o=<G^Dm--@7Q_`?E@ zVD9yE7wTziyW-{sAfBij*iVhzBh9?(Lm+bILT%h|uvB<AvwUF{Vb$*K@UwPyWZCj8 zXfhhNmg<o1na;Kc&V8R*)yU^)(-8dD1My;inIrQHo*6HrLwwnx)2D3(wIn{=aY~u4 zZ=P!=2GvK{t?K@8Rkh#okAA>A`)+Nie3R)~`YR)KQ)QFAbVcC1M-il8m)}&g&9vHT zGa~pP-+Gx4y#dCy%!_Vktp$l?in(K}kjFRwK~akNvCLhX9&3N=l0Tn(QDk!0y80;A zc-#+NN%e2q>>pZ<aRvqty0fQUC>6TlYl3!sEC~AuS7nM#o|FL>Ou6-d(d?`RIjlPo z+`muxy<al;Vm{Nki#})7$Z)78X=i+PE3BeislHrE&}1KCUIjqjj!zJ0P`WDvL3edK zB;;@`s;9X|&^FvM(EO`OFI#!&6AC>bBmPYHUsy238B(W<9$^iDD~{|hIdTT!iX^Jf zGIKMr`+xOGN5qaTj(?R$ooY;0+y7G}Kgs@|P<cGMiR9_&saR<?{i%QT=6rXpH#T9P z_fY85OX@JX)F?KCD1l#Yu#PDClem))DFyVYulOCHZ?hw2PDXs$ZZza7%~UHb7gKVb zzyJ7wM@E*E>pZs|$1Y9&MTkzX=dJUn>#Sh9%r&<4NC8zvA;?Ooo;^ps>3;=Lp8rol z^#Av9nAJz5^!2GW2U9mE3e}DI7AGfTk<oDUOOzg&z|sek<%CjFQt%m+g8xCm{8mK| z*Iy?i*CkT@=a4_4%pf2YAfnP|%Ve`BQ#SKA7fa{T$mo(ct2bkcAXq&m&WyU@yH`%b zZuES(_Jd_hFYoV%_-FBj<SQ4$(nP$2<u-+bz*BW^uV+R<`1lga4F{2k+u(~Xi)Vbb zK!8V~!z4%Ggt3LKfHV={Kg*mio+ZGF^)3|}RVwn7^@S0x8A?o`lpiO9W#{$jCY@p) zzL1cRG5ZykZyh3DOJ^tiL#-d&U}1Ui11<|JIN07ri$co-G8BS;7e%wKUGW?~&uBb~ z8;(NDHVHI~n3dQ`nU1UbdGU+zz~;JU-0cQ`^(qUn@Z<%3@UBRfmWQ0OKJbkf>j)pm z<RwR}q#<@gkj`CgE^f{|pn46FMY8vz`~Wq^Ttg(}?IuFxf@W!$M9YYV1xs~E9Np>s zvx#PClz=KG(|qPj3f^Ymb$&>rNwXHwiF>m<T{0uYW9!<>l0KW6CbAQI$v@I9^_-{O z?Y}zsgQ@=ck%jJ31m?AP^I*v7BH9DeM$XSpgX}1qa7oeX|0w5TztW;IHue(8nyiu{ z&t+kMbEF*dpXi765*q4ZozXAo<Awhcp-2nG^cmnSRM@113?dIA<FjZbm6ViFt=`<+ z*qrZ-M=8j}R9C<A<6K!;K^RH4FtIiiH;899n5vspL^I!5(U8cL2>H4*mdm_~ih@$= zus?$}xm?`z0D1e?e^BT)m|3${-{}Tn(f#t(=0I|$=i>v;Nvh{V{6I2)`L}+Ooyp?V zErHFG?(V;T|5Dw4G9a8R((H|KJH-FLT92ELbv)fZmYpW5!IeGMpJwU(4NH@D$Vbs{ z7<NRT6g2m!K0vJ4)YD<Ml7M2Umd%MU?>bh%c2Jdy)BXJ;t>cCww`^2Y=+4oP&_(3r zeq!L@$iTuueP_)o`j*#)Xw=vs>epa~GO1U-yE_=meeuU+9709)m*({3q=#_w^?*SX ztt`3CdQbbW&xz05ndH($er?6Eq-rS~fPyeKC@~qQ2e)=0(Xw&-wdHsofqJD`y36^_ z+F+{iuru$xL6D&H>BjoQ?cv~wTU%?Z)PZW_EV#q$zk(w=qXx}A_)kgOCb13sOSz&L z<swvZ`!huKQD!R4BIom_yG$}IDO?7UIW7@zzr4HD+I1QhpQ6@z#@gT0hWXoTwZ8Ft zjT_y%t@3c%dt|>wEiJ99+gsWQ+V&7qo+Ge+tnrAyn)3&CZtm`f38q}YXyK0*ez^8o zHuWn%DUQCnz2dlT=|02V39HI+4BbWP-}ynt;Ds8KDu@8hVjP;n_!vsa94ff=gObV1 zK&gJb`Ey#%=yiiv!-R>h7|GUfCK>^Ql75>nHmA`Lf~BRUL@3#ZPoJ<Lt#yZuyU!k% zT73MU1`)A1{47>2_gz}jIoTYPeYm@J-b(jlH!}?Qfk^~`+?`Kq2ehhH7%l5SKPU4= zqhgaRZEpIdrc!{1*vLuskY)=5KN~92tb?9-c_C=I9bfQt*Vt}uO%_u`(<`=uE6#4v zGn6As(c0E#ZtZfm)uOEJ-aecuiH8UMo~M|PRN``O0{vd7UNy7Q+1Yuz;Cd*Z3!@Ii zrxVSEWfQaNAWRl(SG9krrdaI=(K}h|eu9b$dK04BACvZUF+W)SzgAOLU%J28naYHZ zTDfWI@)~MKC2?=5a@et2+vL$jU%bV9S#6Fb&XKTAjX##;U;`;;k_7G|(rbu!v-}w| zi5>!=vI7ADT?VhK+~Z(7_5PnweEqu=b!dlP83iO-=#I2Dk0VdNYMkA_vbMIaq||J7 zuyC2H9K-qDU*Rx1;?~Fyg+hnw94!}Ic9{<94uxiqa_Zbp`+4m4XQE}2`HtI(w4V_X zb$&;GVKh<j((~>ZjaoWNiY;VnY6{AZi;F8DAh0!8!@<&U_B@D?>1$scTjkMcj%>MZ z8|t^dINiu(0p|!JEhq2hW)X{p`tGVlkB@Z@`&a9++D5|};(0~A1bBFO_;2OB0$$Lr z93BqFa~L{3-d`Gn54*kCZyOzrv|jD7UT#IfAs6Tx$^M8KagNCAbfoi3Cb_5C8`*fF zo>wxIOn0p-d~d!kmdkYFUA5%(*{E!;QXvV4;Q$pqePD|Z+Gy?<+KYqvAV0rphgs0C zM_RjkX<s&YaAICCHuG2Uh$UhfSY@_cIoFkwbGdfIG67%LgsNrC7k$qlQoj3V!FNAF zQvuN?{34}Gx0y=^p{h!E_g9o!ywW^&0)ukV(YUhqaHY9=A|nk=N1^TN>gr2y{^qll z2GeB*+~B76(`h#ffPIl2Q{Vcep+N>lU%(n@X?&41pCQ_fZgx9k0pdY~Y%XU;iFjw% zo2iiu%FMNnhZg*XGZnL_Hg0YLpwKqJ6ZfSE@{0vGl5m-@8uXZZu9lXTj^!(d^+Yqk zd*4izrEGg30Ua#sDY&+DIP1QCey1&H6i2O?EUflB3PoBCJ$hk+66vBp;Ds*yc*lV& zbd|>B(dc%qQu_7B{^|;t)@KLviSu=iUvgxU?X=-gWbSiPolEF3Y3FHosO-@*T&==K zda(qYbd|=h(}fAM`qw*}reX5~bboohNf}(CVJ#oJR=unz!l|<={ra7sdx+v{PmSun z{H@plwq{l5DBIWl_QHCj?<I{)($<i=a*59So$>rmUu;s?r#H$)8aQpq=ue(JnR+;! zuj2uAwKA#gnf>8K1Jh}Sc+l2RI`YHAL#0#G{RJr{CFR~!sgLL5{UlAXV!l#B(csH$ zd<wTCMB9zN<*VaW9I+BVoL3p(^Kzvv!9o1(=oraYW<hfvOc8W`xZYH4@@ViGo&<;I zx3C6w6~Ss}jP5_)Z=!~OZS!AkTK3b+__@HQ_VPce2GCQyC}tJDI>nD%)5~S;R%m*b z8rd=5@0DFI_C5@z418fu2VLDF`vpFJl$q1+L?NAO8C80EI;Zi-_hf#@GRs9Fi7;~W zAltnuHnl1X(3<S8wlc%sYSwas=Ce^)wXm``U7lN=mle-x{M@qPoY1oInx;_gPljB& zC{$8%wBFga%2jf|#z~$<z>ys3^5Wu`PRl=)M^7+_95mjhmMqaQIfLQfHZQRjBK6BG zzBP*JOSQu(NrTD7SA|n~g|`}%VDTIPd1hfKtD88xxI}<b19x-#b(7WdKW&E)@e13X z?nv6v0@ZTp_F8`;kC@%r(a};jZL0pkTn)J4KA=*UH#a-maD~l+%E6=pO|%1?(EiY^ z<Ngen@&}rc(Q7qu&^2z?Wj<!dEA4h$LoK>pe1e!t&w~|x`=0zS3s8M@WJRw~J--E> z?8VEM#thnU`#mf9x4L}aojc77&*ZN5tsuL`Dh@rh;N`{)#|K|6_{tN(e3j2r$c5r0 zDHp1(AJs{OkVG-6Mt}i)G-Fz9kSF7QbEZ3z^?^~lF^Q$=F2Z8ImbW@4ATSW=wd28T zSo1=I>vW?#KWOyQ-20$6c|2Sj`nA6^ohVrD2qDEe&dA7k-Y=ZQW2u#KR$pK59~vri zoB*l=3U)xX-iZwik;?9-s};;B7^mfeKszTKMJ*+emh!}v+v2S9gwo!rz1wG~G&Bn; z9b;1E`MiyS*0$dJXL|pEWbjibvAZu;x?~vnr+D@spz%G&$NyVvziXB+|Dr3Jfe7@i zEYry%sJQrWjjbVkpg1|bYkIh0h-OgU@O-@04s@<b7~S07{xDx#MbQVAC6}+nq~*HL z1xD5Od|j2;9U6t(PcUTQm5z!<+zh%ZF_#IxK~I$Rt{M@uhSXxC`}TA>ExdJh1iuVW zVy`lt3<aIQ>vF+0jL&}OXf;guWZrR+TKcf@_CRmB^+#Vae{2Gm>B{P=*dLRCc~#UW zPmX#RidoHPI8QeEKY~7HmhT8q$_G&MU&iL)Y$x<@M`xMNB~phOaa%4!juH7(QnqI7 zNY<ywJtd|#kj9`CgRe@tSjzx_J^166>Pc=4rdp~?g^PgRqf%w@>ahM4XHf8xY<PG$ z>aF}gphM88r7Z;l_(;NS7AK{ZC4~opK*;nPTra;JEwx0kXfLE2Vl4q+WZ3c#O7Ke# z-_Te5Fff<l0|U&D>Eu>JRWMoN+4N9He|^>i#rXsU<rvH(8nq>MhdmW|E#DqC4T2Lk znl7WxS1QbqCg|LEy16_Yyx5<0zCWL=v02AZ%u`qfK!o`;1zb}^M8v*$4!`ZuoYlia zS+KXxo5_wEI1S()`m}Hz)29?)c(ng6ktb_(igTgfJvQ!?HP&oA_pB6*UaKl?;77;6 zfX#x=&3*?O{G97y!*<WAjAlb(^xTKpU;{Kq*tPy&j!42jLiujJ9$JHc>640(G@TNe zT8qE^o2%2i)UmfpKBY_@CsNUp>|;}-ZFRBJ4RvyX)}ulGdvem$O+9#{qp^Cd9V!3f z_;^29U~1TX-_f78>5EHldV-?AvB^zY>VGVpy5^Tl7XC+3A4bji{sicn`oW<|&sB`> z!5iD{FZsANg6xA>fdSrMa@?vNumS$6FoXU0U!>-acKY}d$G4btVCPLfI^aTR`@(73 z$sSJY7t+^joEi9i$(XZMKCqO%X=Itvo^tH}C2g)`OAqgaBz!~G5|J0>rs`N<sLQT- zo<I79<;ecpxV>B)DyFzQLdK_mLM;s)sV=qrwGmJ9zx2+saLaIzB)Td^>!zoh%!9!7 z%W*e+9}=uq9?K09E$Nn(_M?+t7Zt}2ER{;EB8_g<AcK(q27i`AH$JVs>?oq>HLMeE z8*Phh2|+zoTCIA!5_!!}aDU5Ee-^=gLc-~Vf|+JxaCNi$X^?N6IP*Ugxb0Q<_3mbT zi8WGr<sd|>{q*ZR(aRaTx6~L>QrBx(I@dN%56;zYFBja2P;pUBGk=i<u-({Tv`j3P zn2r5=7{2^oABSV(Dx9B>dM3(zGQ*M`cL@ydmwc}Bmi6OFliN#FEUzD!=?>;9<)|iO zT@eMN|L<1M;b}BjM{hTMHXPabpiyJ}gM8eTmCuPYI!IxF{gubV%M^FQfn*=NH#%2V zU6Hib^(CxNF=zYtwUYNh5BiS`VZ%9Gl@b5Po$v+s=hqPWe<bq+TBiv0a#icU#cW&c zlhj|+^d+Du=C{T$$rWqG7^G6py<+~2-OcX#;0FEvMlv*uzi?@333|K#%Mak{gffHP zZz?WeE>D-`e3g=V3OZT;i5oVMK4dn&&3*o6nfkdMm;U5Nw%FFQ`TlO=k|*X;B_$hm zu_Ht-pRg|lySNF5-*Leil>)xSUC-g;^50mNRb=(mJHi81squKl?WR28b&TjYd%3J0 zJNGZnKaLNw3x552wi3M2e|~trt2;t<bTPnAz>fbvF@sX_S@FuX%j0A)7HM~jzt0$* zydN&Vn^axkewka;w_As;Q8XMfFCy*lmy3hEv$@#>qoamaK>))IXMZG;j%5z1s^S5+ zUKhX*Fs<r>o7}E#@|251V`GT`?l9<%pbmhKZa+zK=O@C#!u1Ue#&gwdq&ya%<YRyT zehUZK0HjH#2spo0E+Sj)45JkiTA*A2{l;jff(~HBY=vA{@GE}8>^a*g=iLb=Ut9_q z03X39#x>}TF}ONfo~yO*C8T9!#KNOwWb9j>`@Vegf>s7$iX`uNwet<c|0&q@%B$VU z;+)Tk+*da@5iHt5CgXYSb2YYKvU|axd4~6GFs1(|r5H&20ht8pY-c<OtSyv`S9G@0 zygOA`7|y&v;|wU8PQEQQpXHvZFcu4kh#wsvr@LLB)Sr!fw200HWlQw~7O3c12-%8! zUCXrV>*rKbu*+U~IV*E3y<a}IROkFcB4kA967oj(+(a<!P=@EK`RvSq4B31BK=Ly5 z6xCH*2z?VZN6c@gxxy|f6$`Zc3_$b+?$1WyYyiMDwr_pJpm%qyv<JOfA?LOE4(M0( z&!5i%2^cy6G=bAZfJ3su7sB3LO(fvaHh?&Q*-7T+<`yUD$_)VXHvss?3e_jG$pK8R zFrSUNzrE!6`uC~H*zXpAb6@g1FcPt7=>u|x0Ovtv1|N}-kW@-^5CM3ue|)%2;<N85 z+;!i{%~2`SM;G(M$^H;YV>Vs(15Qc+f@{252~vojk6}_bnku1`6~5<WsXszO$o?3M zT44=#-H?RGqOX&}Gq|Zq7z~}&weCo|9h<Eo${1$Nou89{RXxSQ`3ClTZ?P$rXVL8i zU{qii#G5?si3OZk0is`tH%y@fx(7JM8h2q(EE3?La<!X;PB#a0zzHV3v;GG_w46Kv z_^e5>@0?_Fo44XlUHIhObn@K+V?AI;_Gj;#-B%0y^ZBlq4*MgXIkJ<px%Y;0((!HE zztyXXq(i~3&=TUvNpm?qR*$d6WcE$+!NMgn^hC-`XuIp3Pw~@mD1`Qu?yjz!>_K4? zkdWj-q2f^JRBHl{Wf8(3gI>Z!Ms98;#ax&;m+{D78q?{r>^!wUd9~K7zGC%&Eayp5 zxGT_QE9mQIxq#hN(9ua_8fg82Nsu;CtbLd^T5Y`=m6MZmvzh7{1(U{p#isy(X<j6) z?97Trox^89XrS9BshmLV%Rw6ZEuTrYrq>y&=rvPr7zUHh1&g8+0mnT+sU_-6F6=Q! zgFIHE+eWt1-r1QC(4AtHg(d+JQ7p4&D1~ql!gz)_rk@i)-Y_o=Z0tYX%v$xo0cg(_ z6%{pOcRc8<G@m6q`Gn1!8qe5#y+BO%UtNV(aJ~HeOljQYJ%jkuys<Ud&gwozeqt#P zhfIyaGt&IAzX8(g-I)rdU!~n|%{#IZ70=P8isniz`;IIm*s%9iru*OA_!&v6n(s=9 zlLUl*+F3{T4-Q@fm_I}G2Zocg^D=;RhYJnz($-f;x_;G{bGEqHB%CGp0{|3i);X+S zE_#Bdk+QXA1a?gps9MKIN3XfLW2UB5qF@yk^9k6b+*G-pfJ&ibVP(l@N>rYH)zfo6 zYC)^9-z5ZUBZ}Rjnhz@W+b_R@_vgTU27s#*znF{iQLDj)x9f#RF(|Bd&bj5Gbg?8r z+#B6*SC*G=<UbWM@6T2_UTOX@QAC)jG&haBzP^?(P+^lv6~bP+xc{w?`}_w6!O9OJ zEgit>D^EeUr{vm0Uu=7$EhOqwgMGD{DjYZCKrg8!*m`Q8+Q|`X7_)18#mZ@pVcCF! zD_r1uOYX|pJKpsijB~3X!xU%V>2kx<o&4gH(?Q{K(1(QXj>HhYe*H?eLdc>eFnrw} zM6|ilpLhqLnnt}-IKYD)p|65K3AM4=ZhQg?VU&@F77|>226rxCAYWU%c%#;883_R> zh96;JQPobz5Cm%JcNVKJo;_Q7mZJ6C?lbXD|5MGoyE`(E%~Ap1+6dY?9>+t!;$jv6 zX*2b^BjDXHitdXq*xyronK_*i9oDsXIO1d(on_=>57peHvgZ13y~kvvR>9ubs1ZDl z3yhPrLge2D#)?$HXc-iqyxk;ZN?6a+fB8)&l~No$j!L5&FKF6W#H`IUkKj=?J08Im z(C7gjNet{{Kxk-3Tboa;wnw~>`%U$yH@PXr5b;2{A`RYHOfiH+*{0{z(p0&U()i38 z#9sfBsoy%0etv$lb_iXG$~-V0%LTi4!Yy$h(Se76FpwgcXrVbG2H5{xBgG%n$&KCO zCK^yc;B+~3Tb}?9(vc$Q`WsY3tvwqt)}x?|hEPk~xt>aiA>u+!!^;UfVjoiMUvdk3 ziHwdXSqqAK`)Wpu<Qsk7u<WwW$&7D$Lxk{Z(Bd#E5TB?ZV<|{e^S5b1k-T4Sy&wA8 zY_G$@Do=OrDPtX}mf_q4qbKNP!b0G&n0w94j3X=CX>kdp_PSutn=|7|i+K~$m5`ty zz3q|gv0`ls&=^nFdnEy62Ze!azccn>q}f&+E+yUU7K6dnWWF^*0Lp*u{&I2iY<qOh zc2E#Oqsb!~aHd~zlD55+qhOG{1f1bBApNPxLj|fF2uR51<YBIt2kSr~sc64l_M>>7 z9ZxHp0%b@BqRuBUeBn|OTqV#flCf2eJ^LAR8_w@&LBeU&JXNZvTKW|QU<OurtlVnp zFyE8Iqs?h!FUiNxiFL^vv3`EdJaC;M#+;81<#cn`-8OopW5IUtJ@?h#AYs|q)(f}^ zVTJ63A=ms)C)s~YL0VIG<Lpl42`kw<Wc(*Lh{FC-hS_60GRK?96#U%}(wE|QeyR;F zf6S*?5w*3o;iDN`<~RXocA&{MFD|A6ah$Q6JP$nRXoIUG08XDl4aIYr5_;aB6M<n; z)(%v5jQ#|!OaN;HKzo5xDu4f{4hM4|fG7p1UQura5HjFB-w24#aDfU4*DK(nkqNp) z0c>ytIN|c@YFpZSAGmDc1X>F^I(lj0!ns3R<~Q(Kr<DNOr|9UEpr`;RF9nkU+{@k< zvI6h>6J{{o0-jSF0m<$K%_sPJzqSXK8Vy52$psVM_TL`Vg#jQnT%^el?%-P>n^1p@ z(FYGH@Nl(SVKyB>r0o_C<R6=*X2gM1;XwcZBFDj`W#-l#3F5z81)X3sQdVfWw39p& z$OG`Rf64I;2<wP&rby`mm#I_ze?O(MNa*S_=LiT1Td%oI)pIIej$)2GQ-~>8n&Smf z{p!JW-^_VI;H@&Vx?+#Zoa%nKJQ^#4KQjGHcMoD|v#GHZ3y&3v$~Kj9b9Kc|{IBu4 zTq<_<5&5AxzB2Fc<G+eR!K|jsKHC`rlRWqC`ZOObIuBf7Rd;|-0+fomEf+MnEap_0 zv>P?R1Akucj+9g^(okj6s(&Znczb!M474|8fNK<;PuAqKrK4fM(Nh3K6eeAx)sP<r z16&vY82LQuXnK0t6oH<>L0J?Olw8p7b3u=vUfG{26$4`!>g?>C8$task4>-RclaC0 zU)3(kblE`Z$ptL>S5FjOrp@L+A^dmv_ZACw8mbQ9>YX38;WB{oQml8f=F;za#$`B= z1kHEkF`vl-EIkvbA<qjt?g3#|u(B%YiDgNJf90u`|GL>LAB2sqgQ;Hm4n5y-voC%% zZ4u0B{3SVNX*vR8;@>V8d+~X<)<;Y4#|zbYfTgLrzP_G)cYm)4z|lAWWM3F%%UyU3 zzy62hhPhvBgf<pP6urvDsQ)739DE_?-ngF`swI%%-ZNe5R0{in$q>y`3>*DL7yZ5M zI~HwD;R3-c9@A&x+Fte2xg9bm=UY71r<_?eL?B0eUY-025kxWCMl%e7Wi!+0?i#TS z?(Y&%?mvGV;Rf2Mv^Nrp1?E46O}g9C7sBEh?CkHXXrpB%1UQTV;tmEhhjH*yrX@<Y z2RNuHB_*soTzQ>+i-zpSlK~omHPG1GT2>k-tV_cF8^eWo|EEsZ1}bGw$ej=f8NKKg z%a|Vv@`NE}Vsr#iu=)b626b#f+`)KY&cWS1a!7<a6bY*TMDFF)koedG#6}F70o5<` z=lonZqbfq&u>|*u+g`PWOp&_TUXarF{cfIZs{h>PN>X-uoy@pj%PC3h#-J>EzH_u+ z#p)qoHWT#+Ra=HCpU4IumAU4p_LDn}F3n@|quTRFt~5W`4pGj#Ag@F3CU21?Y@I^? z3VG=t*-FO$`3EowQ&%dYm)}P`6+JEf&cCiUV_md+^p&{e?6DX}sJ1~t#U8P}Fq!yH z;W=iZilu*jbnscH3}ymMMS-Ij7`^x#1*kMK;>0kT(~~U_#S@CR#Yl4{mSxCJpu*d9 zUUK#VO={A9L9LG*lp4KKL0m*$_j4j5NpKIE+WV5f1M{{fvS+g^{0+Fv)V-$-4*Mk6 zkC>$2zCHif?H)E?Q4}D3!+kOxF!+wZJ}?g@Z-gU_HsmAcz(|92BtVCv^_N<T5J<h# zN%xntZCfPS!Gdzzr0%?%Q2_s{d>zYca}J-^Rt>%s*0@BV5v8+7ZEzu4a>YYOrb&0b zh~V4I^DjV3`A9QB+f19bc}C5H>bcbHZ8w-*8@ZupKm?4oO&R)B&?(`x!_c|$n~)OR zfq(f$!lh+XR?_q9)=c`IKvm>z;6i8BtETl~`mi#O`x`QOp~>RiS6o7Oa=6PyDu}oO z&-}^vdWCG%?z{i><+M`azT9ZshJ#KT>G6{W$T(a}L-ipw6KaU3Y{JrQ>&A{^Qi%Bx z#<bQ=A{){BW;2-GYynGF5JfVyx!L<@fPcx?v8XPhK&z`1$>=p?{lyaqjL^vJM>YoD zF+u`Dz^hE&4u+=!Pwrx7{$&k1)w5GC8vXp5oZ>oCxi*S1J&$$$aCy&~#LkMw`8$c- z*w|_vi;chdhy1YL)!9+dJEE3Ux;*Pgd_ZF)3SZtzsRF4pS8mCki33teZ#L;%wiw1I zf}D2@&q7m1FUjO6oJJ1jT0{tRUR4p<U{$VM_KoHLn|oNs**N;q7K}mK9_!kaCAT2@ z$%xBad8bLVQQ*2voeRz3;Jc8!&Z5xPBrc7tFTZ}}$I6IoiB#B5t$zj7vW+m1+~yvo z0ehCK?l;m}YbmV_tqXA#+ENhr-37wuXjs!sJO2~AG92yK&&}To<wV^GauhL$NfDpo zV)n`~!TFLEkqylWmfmET!9h_C(5Jo{MW)veUxk>>Q%n+6S!^%QTCb+5uw5;qH8@&? zQoW0tiDhX!NGiWIjX7+{KO?V8{^D<oWPUZ>tF+YdtORC4{qqDh|6g5YZXHmhqk~_L z@z=MXK&`Tjy9Vff_LCRzJO=6~-tFb?Lc=TmG(*{|CFCR9$!T?mH2j)kt$qt8vM!td zYD;1lHs>9Ra1novDYC|6m(ShgTo;J=;P|<Lh!53BO3CMOt0r&Nti<A@owbibzS^Xi zs*AlNVrd-|7E9!wF2wtJj>(I~`x79mHxM#j8!CAfGc!hrsFak{1j7XdO?fXTXl#I1 z17Y{o8m&x{2sBRE)8p5=IV-UZGg~R!r)l;dCmcO5%7nh7F$i>}-aqOuWS-h&wK%Rl z<+Q}HtWWo|zTB@v#%erl@+09|8lldRj`^-sSf>7l6drGR@Bz6K;A?F`CA7ixpDHuJ z#1%Y~<2DBWfUe93beWC4II(P8`ePsneaV5osyv_VD6{CTF8-}vm-dZLx}`wXg*K$Y zRd-qRYJ*fTjHT1&p6~1s_Z7crcZ6IOGq8tH!jkk%;+Hi+xTdwYHwf6e`c))=fdu(0 zA2Uu@eGlK2u(?{%C5f^SG0Ktqrx(?*%H)I14X40m5;=kU(fc@lpzjP=6vA|F9R!Du zj&$dlcpVs>oJ;vZ%io*m4^7hZAUPlg^iad1<`f{pFJN-b9)3^%3$Q2$7?D6Ucq^BN z(BN_o0e&Np#D;*K1b3x@6{lLF<1OX_wEk?z!-XgYWgK8=gNZ5o_;6oiw++j10|=)7 zzakKbm?-2a1b}y~vlj%u=-J_7Dm>h>zAiqVr+B><DQmXe^!UIJY3+#)m_$1V{}~R5 z03}BNtmsp33=^GN#anRHn?V1TwbLxJVy=7gkB`r*`kKzae_4%&UIW2O2Al$1{sAqL zOu%V~kd}(-J8-p;m$tV9{HG3-VQqE5am!FDR0G}*5ugn&mk0g8n<86@Vp5L*)S%Sq z`0GK#r4}5I%gH@U<TjT+2H7RCiHxWfzcyjH%g9=R<MS75{mHQef=VUV)BU^?OJ6X+ z2;3R})3!ccu6w>iW^vTs-g0$3R6+?AZ((U_c0KftRdz7lcn)N0c`UNHJcH>4Yipe* zOOw``?dhUy2lF^?rv9AH_I5l{(nP5kEt*epB34$cn1qZvU@PmdHxiwkoJve5nL$LV z6Dad=*gGh2iuL~edxiX8Jm%=QxH)#)BcBqvv4J`V7nb-B>w%*43RGl}7<qVjxB%E- zEV6e$0aRiKo(>TFWr05gx2Yp)#U&(0s;%`hGBW|(O$Q_C?rJp*emp?mgWDi-O&;#R zj}kR9dJDi>MY8MZ#^)GD)m8vV19Ea`5jsO(WrBmQzrUD;FB7=qHy8UK?d&*N8n3?A z_MQOKNu$9fdb!PSb$9n82s==?pWy-SzXYBH7@<Q|mf8bJylp^InyxVZ5_o&+anem& z4_sZl!-Zt@7c@se8sM<olJmIT=K*MbyTo!0yd|&Q)-!O-)RqhN!NhF;_)&Po0liS} zx7>iuJ}`9)%>-(~(@p)#w#R7buN0R~JB4#3&&i#n2KG16as7z2hGuiP%rQ<k#ja22 zQeqm&gmD^N+lre+FArP<_#|0qxdHPD1?tW>=~@DMg_3iJKR{vw#>sOM5^1m#;65O| z2HF+i4JBsN?1{sZU<+sdm>Pb}0a#U`KqVZAc4gqm{2DZhfiVp<B7Ke{U@~<8CG9Vq z^cD>BxZl{xqzH6_e9s2}g%OPAYq?@sw7;Eg4a2t|Y{)1`FMwz51Vr!X{2XNoJmnGq z7r?`wjadLfhWR5%XS^UI>jO0$$7QPIOYGj**ywh%ol|Lg0c1@;h2Q}txJ&rn2UWh- z&RAMKwF6h+2%*N7_C5|&92-y!!7T#5U+HHpAb})soA(%|x_9IkH=0CBN=THsURvB0 z_%gkI?FAw_$G{dn0#}trdQpc}{}un>zW&sVZh=r)LIjF5`)&HPfa_zq)5b}k#dw6l zG`rKWc(uc4epPbT=2BUz&UF0mzO9cBXpj;kJb~-12Vp<G;KpD`w4m8Ah_*E^xI5uk z4czTlEzSi0cmncMBZ6oJ4UwCDPgcvogK)=#fD33ktAGJ>PXk>LZbYe6TTud1O9i3{ zgbqM^M9UlmJJM1OqDUE_y8w-oUUgmxj2>iM0TJMBk-6{!jj<PK`8^N!x4Ek2G~gh= z{`JRW1gZ*<gpi(r;{`Y4w{}zGetnxCE{DyU6t~%wh?7&bIpq&!REKjG)w1tEx3&eJ zR-{q$HIjnQ?(MkoD?U4aAX{>H+&Q5+1H<qs7MA|~%{h*QHpu#zqf&^3kZ>Wu7!5&$ z(wQvq-CtmBsnmMX{b;~E^+>#Qu36}Ha^2Xw?_$;(a~O@)7M1&{RbYMCFkPsKp;7;v zX)OC=x++JZosN!!={h%<JySr)-~+{H_mda*@)wG5&cT6z^9dDQ70({%<yYVazXSsj zd}sz-NaeNl1xoE4WlDa92&vk@aT2fRg8(o{OR)#}Y(W48s0GOISPC%n&-Q0ydt+JP z*0)43v2KtnaJ>Oh^$82Z1ss|g+=bVGm-QuZ1;H7)s^FZ#dQUX`rskx$1oA96`G926 z((>|q(0yR_O3FaM!W+tWNk)JAwB!e^T(y<1-y(X4nc4|AG1m6#SoD`*9Mb+f!PDb` z{eJ&%Z=4#Icds_i`z^*{`s4Ilvmotsmf%;l=&O%PZG&n$(fmcWrRfobrCOI-c<Vp1 zv+*|gWApw5NENA;mbt~tXBHJEaSZZNAdf-;Oa_Zcpe-`RbHHSQ(EnDcfEfJT@ugO_ zG{Nj6uvLF)H+jItKnl;h@I)TVk@C&`{iG_h=~i&S)792*J|}RNcF(gV0ja$gRNRYh z7L95V@J?n;KwAF<iZNc;Q%JdRVFhqgYW9IS>K1=YTwGavLUMAMzo8TP|H}f%$;l;* zfG}BnC-Bpp4OjX5W`r=kly{qYe*O}B8^c0-%P|a<Xf-X~Ca4+D-!&iGLp8UdVPj*p z`+f0D^ACN22D<%@ewC6jWOHDLb4>-QuxJk~e?}kPF2LemCdk^^*=3Md1FOZrh<tzM z&njrHa6K<AEe+~-|I7^ts@;h^ETGl!!V?>&6Meev<_Ze<UOodrI{tcnvQD>yM@-xW zQZr&u==aYKpb0_6D&^(n12(pP`1;bQSw#*Z6TNzsY}N>zqI9R@6`a#+1i<(Ez+Qo< zl5=1!DVA@+vUDGTM8T`~*W2sYOP9D?n&mux+Pr;Z4qpzR`dH5M{Z@Uk(LXBaI$O1f zh`N~SDSCf1v*dbh(114g%H+s<dz&N68(7isNdY$s1YJ0RhPKpjxnQfZ9*<XHG9HM6 zNhp^ofem<77jP9Kmwngaf(?*U;Z_sSj55Ieg$pD;Xt-t8s}g8Fg&;#BaMJb0?P}RC ziQh4l*LLGw*7$GvH(+dc^|Cbe0kx&Z<DL&h+1eHt7j+Mk8EPH&d;Ia<Y=Ia-al-`( zfGeNkSP=nU@N<IiEy(KW4W+$@3pXH@!K&903}rAptdr$e2azy#AUM*3oDZ|>K0E^% z$EN4B{DWv~Jf8@(8n}ywMamrv)_B~<F_@JnfDIzCFYFltaXlY@I(oXt1`QK!D;1LJ z{nIJe-Xz^ayNQsIq0{v&jt!Y!@t@C$6@HOqpWOsLr4|)_5f&CCpHCNaFpahVscOn` ze0l}{!=^`apeMrBPGE&Otw$?IXi_H<(tJ+%`zB1F6-?)?g$8~QOIU|L`H%p}IZoF* zbAa}xv+_3pZX<#2AG6*YTUVa~f+VM4_O1em25N+?HIR_02Oe?*a++qXoo?4pO3*AO zD@A#E;fDdd(RZ#FjA4Qo#D@)+<X?V$f~SRWj^UUEd@THg;2#aNp0A)|R1&nK3)~&G z!F6Z1vtdb2v#Fn8z);6u0;O0M3|L@?(1r=!yoE=E%x5ZeK{I`6(FIZmmo)^ALDRE_ zU#um>7c@?3aHCwjUJV{D<uhx~v!O1=FwG=R1;0Gn$)Dj@4duBSNE+5k*LMAUcz>~( z`iSm>JA^~lzw88@GiB;dFasj79sRnxq$J;;Zrrd=NhwI6q8((Nbo(39Fcqj*F{__6 zd|?II(`k8$QtMKa;S}+_yR(zPX9}w|A>+O;NXs;E9i{TzzJ85zxi!xg5Qw7xB9W`@ z(XG}n(icH3eSJ;0zM45koBEc3BDH9(EbjqfHk$Mz<mEy?oqlFMAzYBq7Y1pEhd&YU zD8l8PmI*;|dmgRwaN}3k*t*y23c%J1(s;c4VwuBjfPv2#H?Nj0qEA(S66nwZYihh` zFub<7XVLxd|J<W29`2Ia?aNiBOiO3CMyt#@vuWnr_Yc<@J^44JV@@jF-qHFUo%I{m z)ot75Vw)JQL4M#tsd40j>gpIBG4FF<TtBKgr}^#wh5&rczRpgYW2y58gHXk%?SHc4 zN3C&yi%;Kqn6cdFja=(!Im_*|f)1!&$tia<M~ywEMA$@($#j`x7e?gS|GTib`^N*r zzqNR7wo9aU?sxGgOZYdFyRr*&&gJTV6w;%}8(;C^pKSV3e@ru-+?(jZ#(DLRRzt;N zoMGyCoyqiJ#5qO#e{FqzJX+?|*Hnz(hlEADH{-*GTQXlx>AXg1u(`>q`U^1kaOSo1 zy}i>K-qn@f)2Cg4{fN*NZkZN)SMj*ra|t{+fh%M1zvufz1L91pJi(i*uP9b2$+1jW z{i_n|Lz==o!R34Xa8J~DgCX>&fxG@7?0Wf1+5TME>ds!ox0;|mIzd~~ICNxW<ZpP4 zv59I7Q(<2cFU&R#va%5K=5s%p@dkH(Doyq97(DhOBGMt)B#cA+x>fODoqb`j(+BOS zCiT`i^|mI>a=?j#me$bY23_bLf8<UrGGDpBCqgkl&BOg_oA#~7)NrA+V#FCb<@aX} zHVk`&nU%p`TPxA$!fFSJ20h<<9zNjrtBwtSE}v;|EisG#aQ1Nc_?nM|Ug7^?>#M`6 zirzKpkQ5a}N{|$!y9GoVX*hs%cXtU20)j|4DBX4FMnJj`-QC?FvyS)v?#weY|MKWQ zYwx|{{oeSte{TAhBCW&G0=1dN-FUS^xpueB2!{H({3pEG^Y7R%sHF8?C^b}HGsS8L z;Zxl=5IIDCouy@W?31z$Ud&l{dUIU3`aZugn{=MD5Iol;F4__8`f==a;q#|wTZjPC z{t&M8)DWo8mu_$y;`H26%~QpM6$hTIlg+;lj>=NRpbRRD3faQQIZPQ`!U?Q%Jbd)6 zkF%>KLL~N)x})>hk8CdMSyO_h&sYN=Y!Bv4n>yZ805W~M$jQ1JckIZhTW)3Z5RdKl zhnf0+-9E!po3Ew|%^uj;q<^+&bMw_23B$CRawN-NMA$+qBFMSEf|JO8C8#HC!Lx5o z7I42Ef(-mGzTlzj=~Y%3??dvmC&9yfGO9Ajyk`xxuPXDAPk_~3-Pw@=Hc<fkgh8Bw zmY;uynGG2k`S|?2)3AJM{icUl#8*%@j>%)IwzSkPDc@hO!PUmHJK_P0a`b62mn`0! z?3MA*DhMpJQS0<%^SvLz)N59GI`4Rv<kvJT%@`(q0I=k!&i5zUuRmgfpbR9@q#mK7 zwO<`Ks1)|V_*@<}HpvI9Zwwe5ew4mikvh*(WH^se-r>m}C(9n!%^oMnR%K&M)6ijn z>M*!SGCa$PsV|9nq$<NDx2EHkJx-rJo}J)S^E%sddh?kHHgI6%0*PX-(IfitE6Fm~ zeTeB`iZl>N%om%5zz$p?I|rm=Kqka&{AlL3nJIJGRY$Lq!if4<Bvcn?DWblbs<%iv zLoo33lCXTWkF4?I&N=7ldn28;HdZfgPIH8Jp`tamIV#p?=Dco$&LKV*#A`C>yX@pY zq0?f;$~2V^vvYMveJtPUB7bSe<z(#~l_>WjYogDgLl9pap(Dj8KZC+9f4F<PF7YoR zr=U9`=^+)yDi1(m4iB4Yh@42CNOS=at$H%~@lcq>-Vj0eY?%QvkPdQzZ&xmbmu<la zxInUjyfxPlKdv3kPxa~*FsaBE+!+B|yizEkyh!105Pm-0mN))A?A&NR-{onaT6m(o z>4|i<;-8h63sbpw60LfEiJ7y{7+*5=pKYCQ8-1}$_koSPsR~Hu$<!4X6VfV-ll~h@ z<mOyBN?Ytw;Dey+Z=Ru=Vx)+yBzj3#`;l;ow2XbQTqeQzq!MM53{hRvY5uiZ!B!UF z9$0(2iybZx=G_;)ypr+W0}DmwAkY$Uv9Kz4?m#uO4Gz0);I^;;hqW${@SDKj+&2Nf zks$(pfWsN6>|~LairGMtT0HP^Dkie8xA6h2G0t|V)`(XO6?WN)K|9Nmj&=rCUl*Wx zRw>IYHhQS&HF>Jl*vzVf^BMyG&qQw^ssPU_r;GUg&8$9HXwv4fg2`<TBx^J@H0%PX zz6G3=mc>wD6SxvD*M@?_$Hrm4&gs3|-jov2YgMU+`uZLCKLcXAWmxCQQVPfu;A{bW zunTC09U!w?C@L!6kG!YY1`t@w#qY_<#RY5u)0Y>xDvAJsP~-&62lMmuE<is!12Fq| z*a-;NrGU;UoS&OJ14?Etz_4js=X(Q$EgXteFJHD&I*eh}iS&edMPBGm=O+IhRb34m z6k%^k!{>Y({QiqTi9;klS@C(-H%N_DuFFCrBoGFMF`pR-OXjg6+e|Nd>U1?UoWupp zphYfmOb|Sh92eCXquFRt%Xtd@;A*NC>3tE|B!st+-PLmRDp+oea&kaU>r{7L0*qgV z!38};4*wN_X2Mb<s;FIdOfu}oSLUOHVZG~mTh16PBw{eM^3-p!TbPGNrRKE;w-YD% zdq8#s1Oxz7jqP^1R`W33;Ks7B0B6J^(!r*l{S*|E-LtdF85u8MtKHaro&huY8c0#w zGf+lkG;DoXkyaImu>l07oU1?vs;v&dbHQDlfPZS|JHYwM28cM2;&=x*1xfH*2L}f! zLSBS!Zf-!`k_7RPI-vLi6q*UvJgKnvRom_qFaQG$JO^&OBH@XEGikum17ZSLt-vVi z0YVV@z}En{0)&65n@O8;P4n@*$3Sy#9~z2$^z8K!kR0JcE8H>)h=$eFMc@>JJAQ!Z z$LF|)0kCZQ^mHPi^R&;Ksn-E1F<zt<4bbf=5UJq?e}Fh8K-5VSOeq|aBw{?c{rFd; z@K0bef;(4%k!uWUr2$O63;-#H&QeO4I-J0y(a>;>7ZyC$?E3=z$o%S655-(3_rTUJ zh>n{;-gJGs+)rG&EHRdo^ZxLBvW>>aW;40!$bM^bXb<tSpQFr?rt#?0FYVZkY}Zi@ za?P|q$H@L_4d)EmDXdP9h1fb8Ojw0N9E?&%A;Gi+9na{Wok9^x^jZ`&HJ^7D?>)La zJ?$76_y%amWI(<k!-+4M82UC)U#tv7VgWZ3ur7?}tDyUXoXfG_!=>NdNgoUN1Kk3? zC79oTeylH3yk}uy0S>4ac2Z#7Re-W#x$P2&nn2SG1d{MED8r8~X6=xNf4%=F`U8@Y zoSYnC{2NE+CD87>2L^D!f&x@#+S)GQBe}o~FoaJJ+xZv%V86CMTo3}LW^u5y9G~5l zR`>$<{1wQykf*q<{dw$rcifHs)lmjG?c%_4EC->9*BT|*tsrS74ag6WidYQHvI9yF zn3>EA_k|xakw7g6Kc^XWu$%wX8m($JIdCy6FrO8Sgni`ljN-BS_?~A!0E?)99O`i@ zw;2!}J#B4xq+f~uO5B#N!7jbW_;Nomg3Mq|D&(5yBlR0-baP{Cu|&ioN>Qo}AHfyv z#xDL6a`E}1dRK_g+y;3~@Ecy<a8d_fk}+9_4d7`Q2JR?yObSuJ09uS@VFGJHxLZkZ zaCcx3UMqMNV6r-0>}eIQg7gd12(<-Jbmc(e2{3)XlkMEWEhC7Di^B^TA+HPX??>6c z!Gf@Nbo>cSg~t(Kx9Nsk`hk1u1g32##Jd0#TlY=1ybl3Di3S_fvqw4hPQ73hADTQ} z{$92`2=Q+0?ZLU`<I~gCgZT#IzPN9I^8`t$boa|cU;$d%&P`WP@}^|3C&}b_Ugtsm zt0toB=bNh18S-?9@YBI4?&`gIpIK{S0lTzo5pgT`ZJNrF-?xW>@$tX3&FKikJffPs zl2Ko@Jm7-#+m?DZV?=^WlIHb6_x8<mJSK!kNa;wYAW?5wY!n|~K=(B>#uBRvb*$lO zg2V+N0hs|+NAar%FDxP=!tLAER*}Cnno4wGA){8M={g96s5j*R8Ut7(n}Y`dU%^si zJMU>P$j<%)OlJ}2kAStU1x$V5>g8c_)CEv{-GzLBLk9uah&D5=;13o|xe+j*!Aygv z0m?O*;Q1Q?w*!2@F#=l>_=CHrC+&586-+`>QrKBx&J__5#-9Q8g#Y;QTM3EZfv1K~ zF0qK1!GDl5&)e2_b#se!ljm4(KPxiri`$RdmzJ}xOPSi$1r<6df`!gFVu0zS3I+;u zT(F<P&+$Z#P4Uu!v9Z(4%^7XLDF0|txga1QSovPN{dq3^O6-@ImbU>L*3cVjPW~8A z)SZ!^qF6F!i~}R7@A-O_f}wAy#L8{7g<(a<AXG^a6{YZ$fuJ`x{o^`xvgAWm-gV3B zFy(0!M0wZj58$@ah=o%G8(bakV>Nh3E9s)h$t{|5sf+I;z!u^b_S<Xb<h%RfoOl&% zldaGVQJo<hDPTm@derTSR1u0?8gC?>>%2uPr$1ndcd~YVf;yW1Bg=d=us(tpG_`Hb z&~y-;r`x~{j)&U%`jt4jXM=EA6>v7eGk~m-2l;~ArP{DCESdb^!LZaCA}>MikHE9K zLgO=CnOw&XUaZg73os*pfmeg~MG+AM*Upzb!4|xfpPSa+)AJP^veX`mvC6fzwSw>$ z5^ycP1ndU2b#==-J2y*>Q@`^8&ksUmt8Ytx1_!@ywCWn<07<J`qn2*W!$iQ~gDhY7 z^fccB)ONA?n{p`Frk0nN1HhQTT=Ah_INzOQP%qLf_*+!h&~SQpI+P1()CBjVyvmB{ z=ofyJXP<MB&^!E1ypGWGo9Pgzk$q~LpvDqk@WQJwRBmflA<ve3Q_rhMPyH|U2evlC zSUfXSF*Ab1XVCM{II7Gad!Ij>Yrz}KS)R_pNwX-URxli$In=bA+!pXpbc+ALx3u)+ zqZ7Jm+Q+%)irq26($8NZ@kWH?g2BzzIs^hw7wyeezDh1Rlkd^R#RecOA}3{^g82#@ z$;THLz92%?qo$c~E|da@uUhJaC_!)(0a)hl{-M%Teq%5-c?}AnNKxoM$XRz98URh? zIASQ72Twy|(s&bPMtScih?oot@)DAf4S-SsZkg(ddWAkXIH+0-i3O`dWXl9)3NY}2 zC|V)?%)JDi;kq33r@F-T_Y>bjKR&~}p$f@9WLd968sf{6hjgR~4Hw4e^DE~@Bvww= zvfW+hCU)=`d?Fr{r}G$!Ztx<4)O;a)li_T^VR78Y!qJ9RlRmC+qmD2Ut4w2rM}KN2 z^DUv9T(<vbL{jTl6gHiZN>&MmSX6h4D-o}vIr&4lD;hYsu7OVW&rG{9U<9bGBF*wo zz&dyYH;+j@g$qF7&;x;GcuIr`P}-9py}k_(e*lS^qp9+~SVr_#z+6pL+mHyj?nzzn z*)<-c!JSq>RWbn-7@Q>rM4X`W0-QW^SVaR813O5iQ39O+IFp9K({Miq%-tWbF2GpO z!3L_pX$q)tIOPuhztP>*F)%uR0okQvcpPVdXYsf8Z-ZhmaYaUcMu0!Vy=ZVT0^kiT zfFa;%F(5RW0MZF>kc875A8u{|Qh_PBg*z}O8$r0|DU&9CE((dcY0r<(Kzmv#pQV!U zG#()&JkXQ6?pe2}tibu~_|$Np&PwZc8&dGBc;h>FDj#ykm$#oE<q&k#I^+x<-Cdgo zhx0l0Kbn((HJAWJEs=!P3>W*kelv^i45%C*it=|23-Ml(<mB2=<VeUq(Z|d2cf8=; zeAYdFK!U%Sz{2`Cy3wQC`>#mrC$0X+JcCI6_6{T&<VPg<xQ+Vq0vy_@&6;47hQS?a z%$j8xgFk4(2BYaB0S;+S<1hm|dxWq3M_}TaaJeCn(R{`H`n8PP*6>>ZoAns8$qUAS zY;+b}@)#JEXQ5WPLPA0=7kkq#0BfBACYCD$JecQ)bAa~lEHu*qVy=+))e(9mP${<F zlD#b|8iNNC_g7Ya0?F?F55Ess3|}wjz&2wcnhwHIZRKu@J{n#g9ztg~KN`#+$^1S* zL>L8}>A0<}ZDi3Ha9s-O=ExE6@9Y$SX_6byr1cY=+C|AglRRv!EuAONQqY@;nLdc@ zG#qK6xYyN4gJ`XWF^l9kesne0YFu0n+VhCCof`&hL9w3C#P}$3v7X1fUFqnmX4e5* z1DoEBOFAmCUEljESI5zMW9i}=>+=0`6)i~NSbTwWx&=|Ee`l-i%jcSCF;eylnEi&> zi@e=Q`mU$7q0=L)*f|=dl2mLJhL(SIBcv~?5uwF4MyB#Nqe(%R^uHK%YRkxh<n=`4 zLHb|_Owy|4<m8LfQ?Hd;MX?{vRSX>S={UJOTS**Nmfj;YbTQ*jm;Dn;BRxbX&~u?j zI1`@BV#UdvBQu?ycPw}P9FW^vE1#1rdGYK=$qVTn!O#-O#9Yjf@EAYx9mRLpk7m_F zdKe@fHHpq?(1M_-dID0~+DoZl?DBkAXycWxlz5nz#A{yHz2{)Vh35!u+1lIN;Vdbf zbp|<FxHbVKTVPav3xMDrp+-oR@np8{nf7F)NaTZb=HBOoQS(RXA`g5egC#v8(~>`b zQNC<t`lH!6wHKhBhwpq~O=v9m;7yyJlfxyKj5gm8*wCN_9Tn{1d@GpQ&n_Su!kG<} zW3Z8Sl(40wrh-%>J1~#00MQYSec-VKVAfO0`#{;yMc6)qt0yA&;Q#l|^@!)hbfE9g zq~z#vc7%IvmcnDbVuMNM=&d)J2=UB`Vm*h=Rs>BmP|7Iz5cc#!jpZ;F{fXBqYB#y* z8TK=I!3mG0N9iQc)^~Q`!8NjZY)a*c#96cFRlfL@m;GHGoq>o@wBh^pgEhw?K$R<| zafY#M41Rv~z8_|0*K9%1)b(uuW=_>rphmmg;MC0|eK6i*%|Nv$`9m0xWZMg|-x;yz zd1LYga({ks&WC*#=DPhZqP=o!F*^#iI@&GG(XiW9cPdhU!vVQIX!y>vzc&-d4b(}V z#n$os59L%v+UV;~3O8u2<$pBOWkD5=$qU4c(fAcoMJcWKU9W5;ZOA*XY*y<iT+)Zq zA5#88Z%$Q9a+STo*0y}H-@CVPe`Iud&~~y;J94|r!eLh`hWcEX6jB{z_|@j|OZ{$K zz)bRbKJ`39@bi;0RY5Qi_;DtLNJK;g-oJH4ZXrIguBPUccxTmTseG@;mshs8ZsAjc zpJtb9u9xcYo~wG{o1Da!Yxn2TYc{~J=b5!l30i)>lh2)aPm!p=c#JVJ!fJ?uO^Shv zl|-UdQvyn&ZK=^qlt)kLTR{r}dJv%oD?XN7gpwc=N()Rf0I@B_8o2or<-eig|70PM zyWG;2&Ujfeoag-NZudr|PT!>A_t=YS8xA2)ETSYA^g5@GV2UJ(!wC(O7mx~t)K7}S z0Rzd)_m>8}PeB^%dJ{7_I_nT~tv~UJKj>#bKumlsF^PeP=T}BiD3vnzD=Rzrc6DXt zQ+)hn;36?)nranIQk~c4O2b0@SdF4eq5B)c8cn%xhFp6Dhg~?lJ};Pcd*7b#n4(lT z7;&&qmt}@aLEc$a{*ug9$e|sWtE1J9iy#1$<00lch%3H(h(bj}<2OdWIg>b08eRJv z(l2T?Fxnw|thL#Zxf`6PocBnC^KZZn&F-v83=K6(S7fl#uYOqRbftCzduQUt0Hwwb z6T;wg+l3(4ef<%tF*1I$h-o=Z-WX~hF$~I4(qb+vg_6v}MW1O83%Vh9;SRgQ`!0c@ zW}|px7AmA1#o)HUfsZu<Np07s_{1KOLn1>qr|!fvi+<vT>Kl@{BxpijGD_{7Vy0Ap zBb8FAPMH-;opy2eIoQ>~YZ@%dshpbhr5Nbrs_|$yD^IBR91^yYr0k3P{6<@UTlr7i zKu#um^O1dJ0RXjfG&?r48E$scSEKmb+fT$WqG<Q(8qw1cDAdVxKWlKaG+SMf=`|nG z*lJme1SnWtohpJn*u`FeOsxL7rTZ#QqT_|c#Xbk4_QikKa^D{jSw#H1QPQ2MZ$@yk zmF3otvc}8y3yiFHa-x|wxzMM6=F=xR^zobX4;5KjiMMU&c%|()*g>tW^P)BlRj<U$ zH1+3roy1Sq0v7#vw7-XNO8;A%xDJ00Jnmq(Y^RHfwI&X~>;{_8+_TX=DrRz1y4wPW zOVjhqH8K#qAB4QGX=>|dXmq+RPx{8ES{93ZLHtH8l<7n3NHKx*cR0H&QBd!C_@aXc z$81z2y38Dl?Bky3qQ<Q<tJm9x-vVBQ-aZBw)*Om<NBUbc&nnDnWNX7&sM_~pZ-+#T zM_%N}2XfmO>j;wl_qA%h9+-`)!wsy5HN{?uUssLhVxN&qeVwEEHwT~dKc$stce<)~ z<#M_b6xt_XcDh={b9xm?{@ME)V=z5EMb8&hbeN1_XA8n_FKMUhNH`m!{$lf@YoIK- zQTssm&hqxy`mfnO0gG*M(|3Foq2H4l7aj6ZtKFH}Jetr)y)kTsA75}AYv^b6yUV?& zhQCV#qNtIm{yR5XUy{4p=iX71510JnJGhxL%dcI(#%mS}`T5c7Eif;$2QTSAXaCIv zvv=Z1Je$<(llbE-^Y4LkKLeC`+h0^{4ARyfZ90$je2s*MLGMOc_gR{>P9!Ws(TBhG zC)DEwCOdmgcNMzrCb*DflYu7BwrttqdMHDc&am()^ShmY4=G6AyjaV_nFda(K1|%J zo)r8ph%0ojJWF<+ekX3ZKixB!n!{t)M+mGR(Qh>hH^2iS`A)_cgfEsgRj;z^?$Oo9 zsXH8Vt8}R~?2XvaJoD}s`?tLxN2sW8Q~7hKb?nQwV`iXOFSuiZ4!`O)pxMlVP3FoW zfp2WiT>6R~``-jV{#~s%rO@JXuj%FZ=A9Fv$&L1yg<AeI=0RrHuXNChy_f6+z*HH4 zyu2V(sc+PZ@F%u!<joUqQ<u@)m;#I|1gL+bs7vuVb9RhK*;}i7KUd3N_+lZPrr?&& z@V163I{J>zj*RDaSIsq`WCvPv`vi*cdt3BN&YTNG&wPtqxp%E~TU0<8VWtKy>4|zp z!i&X(*c^IV_GB3M-;-jmjjmBxA=&DiYjWxt)WH`2j~8G$4!LE<*SUBhmeiJS4?Y)! zzC*mYoo+b2PjQ&EkQ7C1>J^eXqsou52WQfnA17p$Vm{D#l)EBOOxNndH=pmaZSl_= z4OqwA<mtjx2t6A|1MRH5WrZWX|Lg9lIiE^~`$xSRFzpckB6@kSWSdS7iK^C2K2t+X zvMPSFvrJq!iO4d`Eelo<#QxP8+AE&OwTAu0#};4L`iPo;=f>fEc6wSZ+xXjZABPxe zy?2^MXCssA?jm`69@OcOYR<2EaFm`X^$u3D(1d5~^V<kDKmdlODkGE~b0g2-@}9v( zg8>T4lD$P+nfwBod<&WU4w?K9+2dN-<AT}aV_#FeAPm`0uFXwt1U}<aabPu5gg>D9 z$tW=O<h}W2{;`BFSb*Hr@mG(l^c53fg2<vA-R?MMng?37E!Tt?^|EZH&uxaSuK5Vk z$;M|KlKz3XAeOQ6>Rh`gM^I%;trR2vjnhq0e=Z^=84rYAR%zqH1gk4#M49|h$gY>P z;5~ANAnRjZgr|r%$O19Su~671LCOQsQu5N&W2+g4ApAr%cU4{$H#w87u1p=QCdo>( zB(~Z?{WQj-6x|gXb*sZjk)`uV6Hl$s`9=%%WrakfI;Z3zJzvbhLGWDc@vWkp5fgqN z>ghkG)w<PW;3CMwZ8TnYX-1JjGJ(Rn5o46S0*n$mDUG7t4={?)p|$967FvaElI;7^ z-7aMJCF3j&7zHGTCUm;NjKlo?<>0)~`=;DowyXpEf@e^@Z`Bzux8_M;rNKXF<TuA| z50mpvsZf9Z8hBn8i8oh|x<4D3p1!^QBr!>?1p?Xi3z%uOkvmL8sz*8y1?)K`<0=>8 zC&MSr30CPy+{p6L79CKDh*ZQ91J8S~SOsars>|#j#CjE(6_aCa=wp82TZw4(%_vUJ zyjd1-$6xTBwT^bZD$`2z+WMYoN{gxY$Yu^htuRRfAf2mAJ(d0s1j21bdw(*af8Sf} z<E){`Ak;x&rIy8Rf|89Vt$!sVC=kfKU|*DXv@#IBYmQ#4_s_N5%H+RH90I%N!wBSw z^Q(~8V+BWTD|q$}jt0}WeHfsQ1|0^bX*Q-SkFGaqiL`14nP9xWr2Nj`S9%#-{|b6v zWlp<ab>Uo{YdA#%Z<KSN#EYL*u%7g+aZdd_*o`w)<TGUNDws`itpW<Gy4Acun}c6Q z4eZ7t^qpB-Oq2&9hmJSnpwS}YgZ>xaCVvHgo};fY&x2PblZ572OY7@uCLqrW<6i$7 z6cqGbw;+^O`X9QWRy<Hzaa~-HZ@It6_=cNZ=4AkhH<zDBa&b_<NZfVVjKFf*Bs98q z<e(obnno4A*<z}5d^bar_9pv0oiaBBBNQ~i=-eC-fA`+0+C+A++WIR^tV~(f`R%HC zzKb7-rc|m}>2gg!fx>!x5eS#E-wUdvhE$*MKW;6Ph`>YqSyU&PvMGm36@aFmvKuaq zG^FLU50of#FDziY@(Mpw_@7~V&kos5;%smZU;V_2WGHGF+$}hKKVPHWxTIf<jtAp6 zQz%YNsrtLeQ9P7VuFcyZRVgA)7zXQ$x6-Z1f@Pcw9Gd%_7#Hxo8dyl@q=Fvcm5FOd zElwF;1QFqzuGiJDYS+@l&~304(r14$@LU(3RJVS}fkt#Oi82(#yf(HWr40ImaiKRq zG>f&kkxijzxY?N+ULumTni@G)Wv`->Y9mte;<3TTcI<1^``cto%G-;!{zPS+X<Fb1 z;92m`k(XCmhgumN8&+0+!IySlvoBCCU^phyIMa}!(UFUK#$jFG*XxeXdU`|f8lALi z14$;|SJZCFs`#9garKjyH_}6F(qpj@?ER~O)ho0ccE80t)oJzt!vIt)xu0$))b3u% z^GyXB04nrv4w6+qa$Aw8L_7|{G;RA57WPY<cJyo3#&9gkPPcb4n~4?`L5dSaCC+S( zdY3k0xVlX2I3ykA1MqTM>J!vaGh{b+ji2x4LjMl-CX}B(EFceB7PDyI3IfO%IXKVP z4K(q@>q9x6RNZa0UqnroXH<6Tw?#`a5HDBL^47iSoaO<j)o{+Y=^Sc5-}g0gSsama zH&rmue+cx>a}qTwK2Lkvl^mg^TCT&e9w<$Vj=bqlVW_Aq^9)@9!53oHl3+xEuo@r| z;3AV>>nE@<0ig)zE2YT^c68}?Y4VRqs0)6hGUW?~Q(3am&|CJcBca0R5ur_{&&0)< z50vGz<CL9xAFP;`Xu9kzH~~AWZHDVO?oK1~9V$J!RP$H1)W16S7EDw?c5|&C%USs- zGN=(n%MG?+*ZswDo`3}Z=2J5u)cbvJw)!n$)$X_VZz#FSd;I>;d8AhQ{=2ph{ZtV= zRWQHl6&LtX<S1~*{i`P2)O*;y{b#$mZax=sBl-tHH;0B!L3jL{i_hzQZGC<H%T{BO zGNn`f>wP)9XP}_`K$##g8Dkt(q7sFq9xsLXL1rCA#vqiv`xkV<aDb}{W)`r~lj4;0 zu(8xhZiQ1-y>jzbRM%>T3RH?(QW6+XYUGW_<CNxbTLx~|7tKEGzl}L(vZ_fi8)^rU zlhdK^LJj%QNoe6UWJ**bD6w*L6McC(hXiV;_s1aJBZ11P{PnhqOr60OQ|*(jPlFYS z=>Y9~0=%g2)G@L+56=2dQ(>dp#v8OrV!7;3v3rE4H!jcl$IrGHObD8UeOkxHY$-WF z5g){?yR@ZbKKHyU;`3-Wuuwz=XwHsp1_EmbS^}!~H?7|zFaF>;*Suc^JM<kLJO7Vq zul~Qan}=z+2V*Y8%5E4FVKa6f)>0VZ6nMWR6HB$BNP2n<O@=Dnkw7sjbIg`L@qHj$ z@E!vIn)o|Z#by!t&VOp2soK0a*Q(e`zgn#l$jJa=04RNWIgmTI=IC8_A{)9!-#()V zJGspDn|-q!4e`o<N&OppK8^(s5s}rAdT)^hGrf$&%IhW+5y+_{GWk+3wNtu%QB0BM zt><~cg72?_74cRefr<pIe8qRAp+#5vsK5v!Ic*`<GCm`V3IOLI0Gyp+N87oq-nCj~ zltE-#$!GHjhPm5m=&zATjGBi68Ah1^u0{jb5~?Ev*Meif?Z)iu>}!@P`bE(HJQ+d{ zwd&ZPjh${1;5NO3c*Qcx77H~@L9v?uzTmdw&erg~9f&b}O!W*vAsgh^29}F&5YZU3 z1^wwWh{~pg2cC$9^qch6y@B&9tz!Xj%K)*w>5)aYV$aH%W+x$e7<{mkB>|Cma_P3} zEq7P1ye|^xjH3#Q?lp|5@wJb7DCm)~JNhx_5S`0>#(<~h^y+f7<qGAh>}JZcvBHDx z_}ka2;!(mHCR^7qV)6rtN>gR4p%P&6>wOAx(*4W3GZWsa0ySWxVW+eT<FG@o?)LUU zH!q0keN<~zY&TsF%Fn1wvS!}|L_}mwXZyz<bEm9D3#|Mt<B8TK(?9%9p78sU;!=EJ z)Nr)lCb+sy)}c<m7c*7Zg(VU&-ClNBl_oYh_Qg6m7fR5^Sp)Fuh{|nn(V+XpOUH@~ zEoi#j2K<0QYQ0P7+g)@vvqMrr9l<TVLXmmB0|i^R+j9gm5!-6(RF3Zc<-YU>;b7dl zXqNPO@B_Ju;*sQK?rbsih_dlwV>#@6%Dg%i(&;dMF$OiX5QWbdV2OWmWw;{vOLCXk zY{jq8`?X}Eezd{V?!>Imt|oy_Apyi^omx9Pi(X+o`ZPRjf3ogn9!PVXB_=LE9sBr| z+$SD)RsfQXW1$gLHf62~i;yKQ{Zz79u#kyi--b!x6v<(YpJEox5ALCwHUMMaIT8Yv zB$`gX0{9APr+4Rwo9_u95pou~iHq+O@;i;pobC9Wew)rc2*i^+xr~voE+%R>Et0?K zg3E9Ut?Ww#8LMgdmANILKHxoAXz80OHX?3tVWNCY>8*2Y<ZX4U%&sU6_9u@~?A5`v zd%cRu!uXhg$}peX{>CPMggng==UiC9I;ex9=m98{XG`}&6rym5*lS`8!e;|@W@42O zK?e`srs<UYg2x3JC=!*LMLob3U3OZGho*`7UD$=ZzS4LF1mHifCCRg?xiB`bv2AM& zVD(^M>opPfyQVQN*Rvp_RPLQgAFQU{ng(U#aoK;nuD*X0uYKzHl}DxtE~pngEitS~ z$W=@>KFm#*tC-9Tl)iXGRIUA|pOOECX+P_1?mR$_GXd!o6)z;S(81Thu16Mdz;SuT z1Y`|R$q)mAF4r!7W5Tes;%NSJBjipEjMV4F7u?TUmEeNSP0|;kQ+7%E8`U0_#EcJ@ zdK^Il4pgcIYv2JGaBT+@iiJD{yGs}zv#ID30-R5b6;n%?F@KHoce2&?b~TO9$n(N< zfSrWD%F4`j{JZgx0<#WlG}Y!%@XvQ3C*^)9#Lz}HN+x|1guj9bicueHE@4FBz2?Sb z$LqfG+D^j--wm4vTCZ|Iuz;?XiN>YoN)17vN2${O6dMLEw}92zp&j_zS}0U17hYk9 zbU$_H|L(hcQ@%b&D6_%PGc@44(ea34WzRVM+}dm?$=GfKH1+bira9Yw)sv=M{1FFO zq+v()?zcA2IndI4fhs^i_3mG>&S=w8mI}Yr#To>@X^u;(T;E*}IXJkM%QjY;8BDQO z+P>tT-ksO(ZJC}(<j6tkJ6T^^ek;}U!&tB4H@Hwc?Y}V@?=@6J{zbgk@-^m5BToyr zVEuBTHXA+BDJ<|NMZoMw6NORSFw_D(D(dOVU$>X?c4;jwJ!Qdo!Jv!A&Vep~3K+>A zd%#2%`|J;v&IsiFbh9*A*W9EH4&ea-$XaE7h<x*o?4Y8lSKSrEts!;&>h|}}uO|(5 z)Ja4;&8Xhbyev@!waPSl4`|9Hp5St$0r`guZC7+O85;2@1I^SkhU^zef&N5>xJ@W~ z$};x|DCWgPQ<?DXX$L@?;6+an)BUv1+JrpK#m8@itj?(IV2$u!Y24OK5}v2_O82w< z(X`UJPoVId-*3S>^<ua5L%~zfgtPJZ%P(!3pn1($@EZ&5)-8mfVi#W(^u{&EkpkR` z)MQDJj=@xpf!s73sy{A^YsO)r4?{vzhVF`Pt-j|)jv{(kC$*Q)txScPTT~RQ0n*h? zl3|~(?{FnuZG%9)iP%&uRLG~fbqKOM6r-#al76<2JTqNy0EP~+{XB07uz=hYcL3lh zEOhJsK@g^RpDr~P9abT)v7AKX!^$DK3XPvZy6s<UVWm9cb?CUFt6e#*6-B+z5`&=9 zdVCpf{gaqAMh&R$Gez&fWo5*u#1im11C+ES9X9`x3A-O4qfL-YBzl_wYH6kO;YZV! zx%7qd1VA)Ab_Y669U4XcH4Bc;g+Wqk3hHS@*n*ZuZ7Z!@R>-fj)4;<9?mzJDufiC} z&ls7DA&YEP@YyZS>~Vu^)jZ{$B4x`o<(*8Ckr-tKnS5cH{4tq)`|NS@Y*i<#S^A(q zQ|-Uni77bKems#`d9oDfhG}<EHQT{5;8!l&?soh$A4$1_S}qYO-P;g`EtgD-nLhvS zUE)Gxg~`C25Cz3pA01};pP-`s?OT$q;ur|dTo_+Yta6Fy`z01D=ASVq2r$IU0QH2A z;(jkh8Pt@ld|1Bb`XR)i(;}h!Q;GWN2P+p;z;1L>oY0Yl{C!&o6E>NZWw>CF((0UI zv5;^$tkG&PV{`A&A6yht1QqYH-emgDyTVzTg=|^CYTq3NCQ8EUq1)4pTBBf=ifPw~ z1>=@^@c>)mq90zitU$e*7;iXu4SM<l_Rp`#qKnQ^UK@BKEJ9EC^^j-+09aiG@VTj# zZHZCenqY`56B;r3D=%gSJ0-O4z(2tVl@)W*zW97AK?ONRIop5PA5fvj>?3jJgnN3e zAcdS#>+%T<h@)ZJdPi7ylKGff_fym>gB{iAJ*Xw>{f%@*yk&_lhgy-@Am?n{-33YG zX~bSEBfC)H7dI#@*T10k#mj2NM&UB7yd0>ook=6D=m+a|qRkm#L+hzp&ZIOhJ}2%U zcAT^6(nHq?sKZo9$5NHD=GDZAVzVgL@-%0N%~4-j&8CQ+=MrGlE-~)g)CLrqZZr0L zec~E$17(=V@;d(B%cI29dmR$No#;AU0buNKArUFRvE`w3J6+HOjdleh5foOe{Jd1K zOfYH{-T#vO(oiPfEC8uB6NT*nx%)|q@5>D*KDomTe5$}vNae=bi~76S&mC>S4AG_7 zSV=5PO(%!TSw*S6)=ho!@<R(T3^`_p(Te@!<q!8m8=1d<?M)%>&n6E6OqM16p(F(? zYKf$uRSLDwdD<{#>JSWC1t7c67#`)Q{=c<&KbQBvT72V*Gvh0)UjNgntihKkkqO9< z^qQwlKs5qrVx>mNRAx8b2J*cXW<$1<&$m;7tk82WJ-0CHmFVD!=5@H&`L1rbSdQm~ zJ6Ed~->e{PAeos-^F#PE#z#+xw<YdxG_Ka7Ie<OH^i=cW`(xiP6?08}W1z8y`??I( z$=b5S?S)RU#*nFy7x6Orbo5+$RyOP&SPcdhid`m*6~`fTw}?6@3soC)#wAY>v1Qk; z@L%q*m2y1`L3u&VD@;}!^XEF7&FQg-^uY`;T8&%~;^XUI{%4?H?PjlS>f2J#Ug$Zu zji8>p%{Gtu-QUOS8tOI|o%1Z3r*aj-6civemf7bczg#g*G`4Td==mYL#2i%@XX7)| zTDv8>&}OIZ4TI5hAsJLhzaMdsOZ2JC;y<ZH`&!9(-jcmUZ|B<gW|KdpC3F}4jCt{8 zJJu>2`nLrIZxQ8$K3lc_TL{Uk3kOOGwDQZ|k2mONW}Q*b*7}knmCoOfEO+9%*Sh0B ze{MdesZrXVr)0Wz^w$RnR~+GtSYj&E2lF|tC!lfOFEqI{>}QPpVA*APz-WEm2VBM~ zYqL3>Fh^xbRl;t}7)zWGI5t7^*w(jJFMh`C1T#FnhbkB+aMOMvITBeJ+6_ycGf*R? zl$de7x-sxZ_R(_Jr>vWEgcEN6eLQhTx}3ibC%5_0bYy?E^(uNVwp<a%?3mu|pw%BS z=L~qaS*-}YZy0!|ebaLAiKC#>i{lAH@BA&l3YH*R{b+vHYM!ksU3@N$kPW;iXb<~W z$5Jx+rED(uHx|V$UcW8;48in5LhI!F%T}hBJkc%|0@@ZAt6)P!LioHkzjMi|-@x`{ zBQ-p~(^;jhrQao#=-!r^u?Uh1-wjiHne@#F#z=+2SnbHqwhY*hF813NDNd&T3K3Dg zs^s3ToLK5~&UjMxuSh5S{}<_O()0Y;s&keFV2eOUtb%F8DzEy3&0AkiEAcX*o?3-a z5+lkrwZ$uqlH|+LYKzE9QOY)?m~jzy7l$<cXi5+UwF2w!_E5fJvLajhBF&>~BU8c= zwD1wH+nwx?WobKX5s!TxVH=CT{X-4F@|&PHpDc>Ow_A3QR{i<>+lyNF3!u1PoeGdr zzUsX{`k#6|k8JbSR}^Cyl^%l>5n^7fF#|8wm4_z0G>Drmc%vT@!{2F}-->D9G|$9S z@r6-8taUrz-}v=>G|!X1xVels9-<Tz(;t5MT!h?lgL5{i%HoxHomiIt1dX!wJ1ZYT zDMt#O;&ThRPehlRRvFM(wx4Vrt$!6qB`Jee=dl}lw%+_oEVDscR$8tq7!O5UK&Fps z2pTZbZNW9_O8C^9nF$*8&`x_@Xe9>|^o-2xWsDS)=+x>HG#PY&(i-soRP&Y9yr*mg zOmk9FR&P|2KI1chj|S?}qR8u?!A4LP@iqcCh4nKoMSDGGe5vNYkvz}<XSsC6rv3W} z(apg!QyjsEM(Mu=vu1k6l<coSp<8`yKN^phhdYPLJyoFuszy3a_893|IyS>o4BMdj zjA@R6qr(07sHKm<#9c)TC&PL|mt=f+e<@!<N5ac1WloPxY^Xlq?w-KZ=;LKy?eo@# zlAXh9^UNn@${}0zV}E<-qRlitrNoAV$d2%stAf#=E=rv`x6c5_w=MAp=0kX|S56{# zH{{1EiIVrA<_15SPQE_-L2!}FRiufiTMxS8=G^uEi2|JERvcy&WwyBjc;h+Bmefn= zOjYvHfLeZQ>`V>U+U=SsHV@J|8ftl3pjY3LIxT0`ZvIn7&r-v2G$rNHf){wg2Yksv z1d1zb(i|}jo=}fh+}8dYdM*H@{28_`|NiPJy=mYs1|@rdxh!YP-UI5QsGh<c|63^4 zM8dQ)?Ri>BaK(ske)-RzPw#I#f-vz(t$#EjB2!O0<sI2SXKQB~w0B_BElm|jF8z$} zdj4BFUAY&tvab_i>H7eLI_S@LrkVCpaam$~UjM*JT;-lZ0&w(YDQ!z~D_#JZRwZ}o z?mC5(7XdgAel$I*PA8`)2WHy@l*8Ycm6o92;=dRT0o7QU>$xp89?P12dyE<;;tRN@ z5`ryeHLzn;xJ@yf?#J@b$B{O4wA;`!+Nk4{5@Tak0;bw(SE36-TibU=4QdjedYOt% zbF)Fw$r6yZVeqVVeKTIT39s<B0bj%ODLA^>ehK@i0d^B74}k0+{J+B2JfKKHNyYnV zoc7~xZqH1(=!kMqp;|ZA<GdiTl1N+iy6IBROj%Wx{@Lr=8O}I&?8lD*6g<-Z(2Kq8 zdWc(cl7_L20mPQ`ayM~M?RLjGX&-5Ainnefgl;hP;(ha5s_ac)Ua_9_&<2?kGR_>i zfHGDN!>Q7At#4L@j#Hc|?xcPXHr0v(jwlNr-Og=<(c6n+yvhZKe*i&K>-up{8gA@x zxWj|96wBW*;Vi`^(*gH4CjbfeK=3<<WBXTRhTY=TY&I&InEsOO%Hc5m-a$L+Sn}m= z=~2r=qKCH~^&FoH7${&VW0c3pSNS1U_pvxLuY#n4;hZnPPE34NK_DW-z5;#h>|Oq9 zTBmZFbMX4qbQv@@!+(YfK<AI9(QKO+l7e6VNU1#Oo}6st3q*Tc`f<s2Hb@WSc<sl| zwpX-q^~bP|nN#o}{*;q+AL$<UvE2Gn25aMbH~DN|IPy5wuUA>5RGJMqmnCwv83w?L zGZiW5wMKIcen-!gwPCLxEaH88k+`O~KuS59@}AZQvimcC8lO_)#$n@v7|rf^zhZ-5 z`<pP5Mc7pwdFk29^!LKaU3@OR)LtU@#?23RPSJbMSZv2wSEK>z67p)FtJ{#*Y9>wM zbO6f%Kk}s$C{NWJfL@zP63lM1$r+>U?3w?>$MT|$vB9Qh08libVovwto-M7m!CLgi zQWP?QUkm{42@YZ5oT-Y)$eu1CLDG44N(q7=Nn;w%YYU(eq1XJ<kliqDn?!u7fm)z^ zzv7P62g-Lyg~V~^sowD6gs)(1U$xfM$S+o7jQ(UZZu70F5jiYI<=;655;7>L;LBP6 zfU<rlRUE@An6Z>a-&GYC`IbxoR8Cvl+@G#Kio<VT2I();{y4VqMeelWKOclkuGo;9 z(3ROEZ8ojQ_)-4;1zkjI>)ysQ5C1}c`r3Gmm5QcBFL<HJpbI<tGYd#JB`4o_ffJN6 zKdbbOJ=Nf3g{F9j92GTH5a!z_&zoF0YdY-4etKhpx8=e8P|5wR(yvAO!uNh69Q$Gm zanTzY_0be(xD;ksCsX{vShuy)Xdw}3i!xmaFWy4BW5&fIh#i{$vbiL^3bM~C`@@>E zm(X4&-%(5MnM!MtyreN3DTB%gCRUn|Y4n%QF!_Vwh8l+bjcp4s)NI!SPVu^jJEH<! z#UzyVUOs?ZLg=WmfJQAL@&0JFgyMK{X(;=<>^O@S#Y6qyM%6W%<gRIGAGKFs+}pvF zoQ^yzjX%kg@FzN7Zvy%f@IPy8?574ET@!kZ5a+=iP<F3lHsZyg5~$C{tn`azi7Um? zZ|o&@WSj@`I&ETeg-xu*Z?r7ww$J7`RNL|NEEK4H7pTc!ygi=;i7EMxkeCWhePCP& z^4g6{)Y;y}s&nK6caA|)1}B<h5vvV<2)Qj0ekZX<IzVW<u*|@3zW}>q`#l!%bKdVp zJdwwS%S4G6FwUL$qR0vZyFpm-(k8m!UklIEyZcNPx*p2WEFrIc$L)dSOi3J$810_w zjvFzIZpVs~Mx|Efmm(SdXrkO1WVFjx#_=#rN^2Qlo)MSL=Y$eaFkj<?ZGp+lk9c;* z`d8b-iz%k%*{UAZQ}^{}Q{^2`HHCd<!k^2u$9K)u8Fft+s<Lr80X|2-TB@B+;)~J# z(LtCf`b)tLFS_D$AN?fd*DS2$d1k>E;8%b}N007ryICrp0Ly-sTr)e9d9(jzZ%c4= z#f4qVTCtv8wGIvjE2I7UZ=YQEjWf-X*7gU&0PiS)0va(a<WY(n_v?mW_s?Xp(AkSy z*(k}(qpp;c&*EN9HG-#?j3G!CGQ>~8ojxlEOdSam&V&>icL_`i)mq)zTt(VuUmSR> z{Xd}^>}g)@FivMs%7=!2%9dST^y?uc#b#+TrqxylibotK<zD}c-?<`k`7IL}ViK}n zm-ixmt<9_{CZ+Ogc;F2ArV<c9k2dN1V<c6s-~^D1E41ev`i09%uA(MY=IHD{UH}h{ zr_9(-=){t_zjGDJi(zQjdl8uqg4VhHnqIJ?Ai_7H-Qd+3H!OSv;Mio}?gp|1O(^X~ z)T7VFrO&=Vm=8!V!pV#AlwmkeR^EwF-YHSG{Hk1#5IaOx5OX7vJ&uzdqb>vW{p}IJ z7D;!vWeLP~sZv+Hg#qoB#?C&DkETQGLg6;7ad7#q#8M!c+8ffbGXc7ZAKmQQZ-ghF z`mLZiA24C+B{^Lb<$K<bs|*(>UpHD4qo7y%43bJ;1^tl#RKPBdG3qdc<%7(8cZ}UJ zf-gc2#OZN%40;)EEnZdo-pMi^3Vrr#%i=>Cr>}#pw))SGEZ8>>PzmCq_-y3CkRow) z1%AU%2macSxq~`lh#P%sp$lz8p$+Z01rDP|Qd(20K&HC`XjWxD(QBPbJDNZy(9e5Y z+LCmrUBxQB7{<b14ZIP-K#3WH1fMQa;a0(91F{wI4`nl`Kd4*zkcu)uiFm(A4|ma? z-s!NNK9Y^{9wjP*;(C7KeiT)bQtR;v&Uf1_3jUvb_vIXSU2`W=UwpE$-K8x!K&)GC zdgzu`45RVe)q&Q2*T`n1zbdJM*r3fbhN|6PfcOm5QWt-~4xmOfRRYB=H~6pO9z6pp zoDCQTPMX9lMJt<f18q2s^+hjxzqcCh?g92q@6!_=kh{TB#GBnS0qWlmnw-3og(f&B zcJ>4)+tgkbgH2xGZ?z8gceUGJ$arvtALgii#W3EE3i(+1$FmhWDar652DB1Ec8wJO zcU_-$loWZ=sJw$~igAO_N_pVhE|#UCai|NoHpndq6R&4&9T}qEjPHqOl76;!yx%g{ ztolRkg^njSUBT+c-1s1D9QBQ4EKW9l>Gp8I)q=-P3~I^hOy784-KZrN5=>w0vVuo% zf>>ZxY!oeQ_L3m40J?B4(H0Ym&}CWdMaO%9cLsxKH;79y^nX7xgY2dgc+BDPqLX&+ zk)ALd;STFr?LUNARin-zxqEo1!JA4!S$6+RVh@d{0TR16r4r?x=Ya-cs-8p;%_q<6 zo#S`;EJu!)GJkv2Ln73RwByt3oWh(gthqypTDo)7)7oZlUk?s)V@B<;?+ksYenRJN zIYRa5?w;p0f6^|Om1D^}tb;g~2hH16)A3s)S;xp9w3l=i|CiSO^`F+xyC~32>b0yi zBz=G!g7AgL(HjH*{P`rqXDyV`8@9B{rx?f;bZ)kwX-riUD)_F8kfbNw<sXc17!$8} zzKwglUz@o4sm)}WiKi!EU3vS2IR9Kx#6lM&Xfj+rKZ3A8vRs_2<e3jY5bv1%F&qKk zT`Jb|8fa7k(a`z2N?3QK$T1Da_<i}4y7$u2x6xJO^&+jfHt(2YX6_$q{2RZL4m~+d z5V}X=M1HM*@tBZGJ}f-K7<Qm_ReZTBc7(b>e~t$HV#}Y!SP<;L$}%+gQs3QG65|MZ z5WusGS4rHlugNWB+-r&TD0l|LYlxV!JA%b$t1G;|;IEWZ$Dch@l8Ft!p5YrT4-RFs zDprI%K14A6s3*4WAE+)ULSxu1NI)?}Nc9bn`Yq&Fv4FJZ^F8G)6+C}*nmm-NehlHR z^OXqF`p)K@2aJ8t*Fc*5Mj`_HlTijf%b|Z_tb%ep!xbGnlxQSVT04`|T8&TTB+a~i z`zFe$kKCbztI}5;;TJsl5H0bqbk8Bo5b_BjUYIxA<P{TqT+HQ1`Va``+;2~8Uq8)j z?Tur!P_2L5i#9!Vf15Mjd$eqSkdk;R;=#^oP2ck|$#LuZ_QdVA*=Y`!E%tna`2Ng^ zB-psA^Ro^)1b!#uIwQp~W_z<X*#@$OG5dxHNi(RC@*-YY6yL9qUZR~KqZ;9=smXjs zFfaBC<J(k|L#jhj3Fjlq!FPVrZy2@qNE9n-hdXs%BE99dY<rIut|-jaY>rll$)>3G zc58LCFLhHG{KlxYNBro~=?y&pYxovlV1O6e*#*+V!NG7nm-GIkA;HxxaPYE+{KKZx z)wns(W+IgbJ5pA3j<p+}VYTj3^gLFfV9bYZ5)}9D>t>_=_j^tV%$<Tmct^jBco(p| z^Pqn_T}vfHVrHE@@PJ=$_0p(C1sEe~Tlf-LK3=uc&Sro9l0?QK84=VMpQ-+4%tJLd z0&Fsp5-3bM=B|TNO(c(=vZ|HMLIdxv$>#aN#umNvIpu$==|5^~yREbx?pH-S=&aN5 z^H+eQ0vqFb>wm1GlOzh8mZ`_~$5O{oaWT2+YNcOGJ8F5_M1)KTc86=}jLJO&$*eXn zyf4Xg8Zp-UlFKjgL^zwgf$0%lxk)8N)p_{<6^_Nj{mhnj_GA{5e73cIZ5r7nsyA@Y zHR~qMH#`Usl3H)vMG_-VmL@OHA|hv)%Fi~VMIm)ZCaZB&nkJS^-JBb2$e9m|*6V?) zl1@4uKYvMb3rEtLyv=R4<rRpyYp6B11EmnPl1T1vPfx8=w{<V8Ytgo-<rMzSWpKP+ z_1lhjy%sphJjvjrDeRRhUBF`9N&M_JZ@r6Hh@1rQSnkmSWPAK}l^AOBwCytRx^|@- zyFe%;_f#--#p?ZgMl>9DviCK1$?wvT(OSb;W-^wk)`8-CY&dp)GbHkzhvjS^3$*;B zoV88_-ls@$_$8No$9;UKu93yLahHL8fb-4lQ-DQ5tg7y*-tCPGugjys^r5e%ESy%R zo);h8DcAQ2x$QS264QAMkWz%OvSpKJc#9zc?|V0`A5s2}{sG*wB%#$39Bzj?AY;4M zpUMIMNW?k?Q?BR84ny-rXIRdd`Hm_F8Iwkd6s*)OTbYK0QzvUKk%QHN3W(jbnx0<C zpI>|<0Uv1qPRZqm*@nZbyxyXK)fVIcQBi)Bpby?kPai8i#(Mo&0O=z1(-PJWWP0M+ zhwoIOrSun{K9y~KVth>%RuYQx_AQe?(rEJ8M<i<MHID~go@4{|e3j^w!%dF##5$+L z)J@?;IfcP7rY#OyloTg9E$+{BX2LzAWU_pPZCZ_E>txJA%cB`|>K|(qHm67g2qVZp z&)No>^u2twil3Wq%g7-ye|J5jXIH@!fB&XNbg{X9{3~16Z+xtqaLmzgE{^9%`v@C$ zNkcs@3Z^IW(RF`gb^~!Q;#h(~s}U28zWB*HPYOR$1zt+8Gh3-pyU^7wr38Mpz$QMY z3<wv_8M!CMj~_pE`HjLc|9lcQ3f<0?7a8%B^fN6=eX9(m?s6s*zZ`3LqQP9NSNJZ> zS$8f{c$8t5+#8?V=jjV>Y^65&V=}?KvEs%vf})Q&^2s}^ADfnHSN~nHCmz+O>*)x% zSC5lfx@+g@+;Qo=jyy(52fJCX{HH{7S@owIZAZ(jHc4H0_cz<Gb<TIz7kFq;m6ZvR zdfqnWGGq-TL;V(J?Lf@T{-CZt<QO`+^OULUxeC%$O)T5zD%(STv|Mb{cDpBe%9)SE ze*_O-&NY(~>D^&RI=yJcp}^%Z-6|p%4{k@s6CFs(WNcu_`HTg{bQ`6%8Erb?znWdN zCXg_a`)d3)oegy=uKwF{W$-C%$WBS2cLZGNtRaKKg<$9DZOUNV+4hUQfmE#X-Hty| z_CrD+pq3a|cA?CSSj~6J!7_fgZ&dS<F6Yrfi+r-z-`H}3Dl&!=1ovcTyZ=x~vRf|D zkFt+#xk$30xjdKnW%(`CXRwIrYVFB>WsN=}r)`mJ?)i?1Y>DLjatFWVMkkSryK~1E ze(QQgiaez%lap{ZT0*U1v+(o|;$RP(zgFQ_z9<cNhZ}J!b_QFW;(YlR(w)L)rnGV? zd2I_7CibJ!{Nx$hJRs>3^qJ>fjZcF@+Fch(nGt%5!xuC^o<(aBQX{#1LvYt=;lGH( zby?#w7jaBZ0|s=a?_|=pudvNHd4El9$|(jrta2JuxxT5gEuQbNZB)uNU{k7c&Nn?@ z@YD1Apj*G?Sxd$*`h9Hwxse<bxaAlRE#@#hBELTwF>i}znnF*b2hCP+p48>_yz3O+ zYzt)dthyMRZ6uz7j;Yo0yH&eW6{L(k=3r^exW9O<Hj0UVd+{0cwEQ<88L@8U64z5! z!_@Rx^}7%VZL}qJf5W_eXE$|xRwg>rG(8rD_kZzN#*{=Qr+_XY9W?QpWkhP*+ewB# z$M3H8d8Fim3_3v5=uCxU^ffR*X>h{~(HqtY;t$04iIoPpbmM{ncqI@1+S>Cnd<+XO z@&(*1X+a8v>!@MpHE085z9{?~mFFEnja|BHmiIo_R0S#oI(oim+b|$G_}r+M6h6WV z`(3fLs|(DW(iDZj0vz|#9iF<|@P_;k&F*9uAQ~6fUb8UTmOiP62R6(^voEzvIp%~c zUl>a=?m>H}EU)Wze#ecIzBlWZ;S7~vn=onb)nz1(VGofGqf@F>mY39F|Aao|@jd7f zW+(q*y~~l`1G-VyR!URNJlg%Ocwb!Rn;M2s9l^_b52J%IB6kQ>r1?sLS6Y=zRb&4i z<X3($%=~JL2ih-#FM1PDjY1;B%vw>A-HYyx#`9DgJtqI{7N7Bihl7-c(vJRDW#1jo z=KK9EiBVf@wWFmrHDl8#YPBd;yH?cR)Cy{^Pg*S{ifZXl)ZS8U?LBG}rDAWfis#nP z_xpQ(e?E`DBCk95eck6=XT8t4&N*6;b@nt7HGk7xpr1(;a=02Q&!?r4#?@ohnCU=y zlq^YF1~A&Ffo9{;cMP<VFzm|FtI!qZzO|5$^g1tm^aNPu8_h|X^@6lY;qkM>Zv|-@ z1;6@--J-mY%FZQjr^Rlyj2-WL)T(Dle-ShT_BPMu0-rs(_9A1c>HD6lQh($=WIFgH zhiX$I(@7?qX)SbbX~oE8xbUlYyLwCbb_X9Y;3%HbgTi^mh<g8ghjzSz%s>hHI)dxT zKC0fo;BxyUxG?X(GU8R1%BhJ6&IaVV;tUs1qI~@Db@P#n!RNro=>FdvZ{H%z<m^dD zK9c;8ju3AU#Lj=)-f5qFs_2~RbWqY_UGb!|^W~^iTc*b44o7NLq~4sbA*V86>p2Nq ztE*l4q1WUugqKz*>cIQZ6dI1%0$K0(HZ~2hGrqJYpRdNYX8$?ciE}z=OB*Y;-dj?5 zQm93%TXof5Pm<BosGKKW`&qmmGdc`bZi7&PqT6DW2yD>fJBWaUcm{OC?nF&Zya)r@ z4{9z3JB(e2>5ahgM~i8O@*BOw%g5%1tEL~i%>qMzByUP3a%?*~eqHSJ`e|POsI5?6 z;p^^X)pkvbIhN&~i;KdY!dqmV6lXv%JmI+AE2ogS^rc+{2fWv#L}Z~Mf*$1=>6b@_ zLls57f(=c=1ItjxN>@aP3qdn`!MU^8DQpE+4tpKT4ukd8$wfEQG2EXkK8^)Rk!}w! z<;vIfb?P;{+#JjG2}7F=cJw?=VDOjT<c>fdmL1MUd(2dl3|<cIftxqYH2BN!$3qpA zCZm)9yOW?Tw?!Z|AbKc|HwDFacw+D1xNtwfsim8kZhG|6B6L4Nn?r&l6Nd?Dol-JJ zq>{xZbTstUCDU0ZC6pa!FAW3ss@dvPH06_=liS#r%boN6h45s%yfSB7N;LlUu$%ST z&w7oq6giFK-Fd+Vavo)?)72C%>Ix@yOAgDB&(%eN>sNlmX6fvbCEq=K8{J%jZCppu zV&OHWh-R{qd{kaPJmY@+p*-z-%EqmlFz^6FEm5X<x<>Z$!}2h4!@kgGg58C8<?_YE zt#;@StD7>8YL8$!c$|6=o|ALEE?BD4wMe(ff78t#1bck!bEclmPSz0MV!AcqEb}QN zlXYW=4baC-D|uTcxC)}F3?jLhZDk^6vLIU2%LfByFgN|FE-T~BN0)}~;TNG>&*OGG z>e9R{|9ERE^f!l1%D9c(u;P=0n_ED|>%K=d#p@Wx8LEy#YXt?fMjMu{_O4p_Bsd-b zq6UU>?vH{A#N*BES4JIJs~STt4ktDa>l5x-7}xCftUCwo70D$CbGO^{p9!CdEo*H& zodllImy^{Qa&VvePf0z+>mcxC4XyE4eGg%?$9o&K-X{>3NfYO~%?aZ;Ep|ZiGLd={ zzrb#kj?LFkEhA?IwxSUyL}5hq3=BFtI^=d}A6<QY>eG;P>C>A8N$+onLbul%w@pbi zM(dIrvgh<?68(?E&bMMz`b(^sfX*`4R4)Dm4GnjD&&MdP{B&0q$VtC*JC;A|PV|E_ zDxKS;{!aZ%M=rzf>uf>5xRrov&wk(>{KRneXQzXgqQe%MKOS@bp!k#<WzPA#e^nsj zi>WG_=7c~eKWzFO%ZB~6-Mj3*GhyAmbzm=#zYQq>0dsTKo;`nl%LIcpGBUby7?REy zGECTQr4`>E>KFIk?oi)EhLJ@pP(51kWKS~DTKl;o?P1@(+A$3{Zs%wDj@|W0x&EQ+ zODe$exZe&30qZD!eW2F{+PdleRGzv?I9Sq5OR{aX$ktTrxZ<SKrg+p4*mKtx_v`jX z=^tEeJ;a7^&*hcA3*`QID5(zAbD=UKLSLa(lO1eMR6JA;oJa#%dj$OrLAHGCl>V=O zcl&c-$+(f+O|O;bciR0!QREeTT0jjZHNmN8V7}j~9%<9mEmko<(8kJe3*f&#$?e1r z^1eD5BG?ckl6IeRFr<eh06a4QKPjJybUJRP9X!o^q>%0%KZbAV^PN*|F99-Yg+FAd zbhuhq4h+SIf|*5!Hto2>h+hbO{f~mbZ6{RQ`Q=GfDmH9OdAynPs$8tyw>&d(`ST-W z24F1phybe3g1CrO7|;TP;ep>!s)L>BAUZTZ_Ob1IUyt|w1RA8GRRHaFHS8G$4wJn; z;~d|i=67>RABh`-E|VxNV-)FUb)|!Ky7lb$#S4O+2vTl}wJE~cHk|{D`IwpQbwK3W zx&1#>_N&G%qz)Hb&o#@&d5&|!!Nx_aSEfCi2Su#$eSkpx@#$U#1THxVIe^C~-hgpN z-dk=A2KNwgdH20LSr<|Z_7P{0BVNYs{R!WC8Ky@#ZM+VnIbz>tEdvE%;fJ@ch_^Ei zp$oKvJimr0DWAH?Zq9Z5&=+4?$W|>3TWF;%@HZf{rQ$C69AEYL>p=cC7IIh0WT9E# z*7fJ2!$Gxs^xJEn|5!KW*?s$$HoTgl`z5{}5U*RH(_%hsyfxm^2Re&)4=s=5-@RFJ zGx(zBknN`Hl{G@i!k@Q$Y!Mql3bJbta9=t*%K|;wfsWnc%>%Yuaom0{)6je}bq=n- zV(;CKbvgiyZE5omw8qTlGgHLx7k{l7{f(=})tN?{$e;IAEO&WtIZ@mFC}F~k;zVYb z_esrUTgnI478J-r4oz{z6}Df&8#f6jYgv{bO$2*b?!NqN^~t>Hi@nUJvG-6aE~>ye z_nhmO{%%EH|I=jORKtw0uDn;#56bPyi$)bw1Z(v2U6V>;Xb8ZG2XY1+J{K5SC1g_k zey5!?P%VbSt{GJ>#CJ<k+sXL=k!LIbC@TLKmx`(|9dI&;d*SUZX6M=JQe<Cj*T4@) zJifkV=l34|Aa~DzqNed@ZUo@2<pkOudbroSPap9_{JHnzQL2}D4Gl2Fu`N0Bvjq@6 z<f&(k>fT8VSV@*_dzwiSRydCF4Xs#WC+*|tNXrgie3~U7aXz^-9X`1MSdF8C-yA*J zWa3T4+!4k7r42M(!H5jqsT%Qb;O4vCJx^VR{fIXs&I_g#{G(LD_Eq|t>4C*omU{*n zi_Cq#NR5;t+nqVt(*F4JyQ0->e*22@`@79J*>ON1cO9%)0?$L=TU!-b)?I{KWieI8 z3_cw=IRH$esD+<cQzQhSYOQyruJfg$23$eS-Gw%8HhEtjo6_Sf();Y&tM^NXPJ3p* zxBp-XS_gEp?UM!S@kTZS1)Xd^plP8p{eOd}`P$@iUMYt2GtbZa;w>ZYX4d4M%^&!@ zMLz-ec1#Rg%hoV2a|A^jkxIJ%kY2quG9S}zgKMrnyjQ338=Pj<_@Ls+RtqiQG^A|- z{fU{(mi2h}zstIHbgsJ3Qc+(;h8$m<mzKo20xz!zctwk@orLR3FLoKZFLoqlghv-& zrS@;*;Iu|nkItVjIy$;MTlt;ge-r4Hny*D0w9E^D4|BKly&ard_g56ahe_g<(ThxG zNTDiU=S$H{{sJ(+`q3CgY|qu!?{fmcZSKEb-DV8y-_Sj{GrFg|i3M5J&X1bejSA&V zx_`g2JY!)tD8UPKMa>!vIkXzD)NwA|oU^HTGQoK*MY4?*AZ9p#BX*Z<#qOkOUht@h zy>6dU?JK~m-T@5UF;|Tfbt56GjT@*b55}(uT^+M>-dl^Ybm9j_H=P298AeQiof!^q z+@<hadBo)Lug^+F#D3`Ma1{70IPhyjdd9AjU*9dI*>i9DPy9>4$-ck{CWYTX|M3-$ zX1O^kT2(4wUSQd_BhYAB!T8{4r_5jY_rfpSPP<IXB+wJ<FVox12h7^s^=G=`;e0`B z_?iwM^L=;)Ekuk%?b~DOJtcloYJP)}^CwBn>Kl{5;PUCf+`cVWjb)rVP)7u)`~IID z^~M6VryfpbA2i~0#Zv;vfwxbmW8QypPmy+G@pvm2KYCp1v$zc1eC*3&XuW?;-&MMI zFY~j7e|4JN+*4rC#eHEb^#Thy&i8g2-{Cn}uO8M+X&uEouY+Jpr^S7qzJGS=E$-a$ z>vjQHkNA>TnmmzRoxu_w6qykonh>o;GxXVC?vhu%t}^|5nKt2r#j|g9CUc5?o!whE z#s~TD(R|=k^qZgmVsF<;udR*B_81~h7q7(%O|jay3NpwObL`jkuX)>5pMh8$t%+43 zpZT6#4=x8DB>x{v$g<Roovmz|9@*t56`(D2oWbrDIXFF5ZOX8Yg8TaIE}m{ilW{*? z3T}@pd=KC$fCem{9r^GNaMS=c7tZd{#Psog(j{g1WgX}&@0t#*X(c}30@0&{W<|f^ zn?c(G4h~LqHt%phC}BUMnvFK^w((l$UMTd3U2rteY`p;#8ej=EvQON>n=Q_1ZQP~J zAASGGx{?CDF`J&O__**ReijcV&(?Y?jNZvn0JQ(Z!Ossh8~gy^qRatVQ9~`V|C*cE z5A+~!Oe*m~v(F+;TREgMi<ssoMTO|8_jT#*?)K^Qx@#APK2S<76@Yt2F0WjY&mE=v zd%|Pg$!ffRTv&b`NQxUOvBTL_0sRY;xfj~L=HL1UQ><SPMCIck25=nhH-TKFiL!5@ z?3lH8Ordc@KujW2ft7}RGTfBEjAR@)^Yc{cobBT~v*@eHyD!bZ`(_AiVLt|-++(QQ z%C{B-C2k12iYyB|-b{7co^3s3CCo?whE6+<pEEOb&p`|ss$LS76J6T!GjkzHTzYBw zr@mP)l0hDdOzeUKrxt<8?AUO;#&EdkTkHz`bse2Sv3$uw5k)lvIz0D?JCQ6{>n!yH zi8QH@`t4BCoxnC0aSKxrWf!ampgBxR`1xT(NN#>bY<a-e!#-C(u7wgdt#&6)XbXra zj%EeeZ#J>2=cw-p)|<qebz0onbO6Y!a-<gBq?wdwbiH<-)V*2XpjtC7MRGpl#~1T@ zHT4;;7W-eQ+sM0tyaV4urpH4t#7D)ga5+b@&d$#H22utifYe_9K`?OU(dJ)VNt|Wn zpN}atwcYP6?P6L#J1!FYp#XpwGm3k9NA0S98o!UmSDYXEI6AIqe6w%E7Uj00`5txx zqj7=oT*mcw!_&6Rp+%l;fjUUtI-b3AhPFfj9%&hpO1*lu076%+Yxu!Y-G&^1Iffl` zcTKvCMP{2bO%ERKtcd3N=qI_Rk`pk|!F!eDhYM*3$Npnq`O?%*39^*h+Ql}dIlOZr zhTLPt<Y6bvCc-}rJdy=dMQjx#D|{#V1CKe4X^`=xK6r1p*b>RCcNL&u$1IYt>wuA7 z5iXLt;Yiowar}b0%0gl%Heot+wKx4ahX31NJ4H<hKhe>eC2V|xAhM+sevzazudGNo zCORE7AKxxm(G`z@^5G_3tKeg-_Pai;y+b6A1FW{1mQ-W3@B4sjedT3ujS<UpoqqDz zb>vQ?Z-uufS4pt~c5F|!ufROTDY+#;sU|l-(fhYgc(P*PDx;@oBM2B@pTs;_Ki<^P zSLGbFKjnFKx#^;rFr|AZDiV_KY>1qco_r_O_8m;N&U4Z1H+7Z@l}5T!Rg#nl1V+@a zj$_Ff7%5NgpeELwrM#BZoIdAj0zez<Ot5rdRb3LrZ{a_IxpNU?k!;+dd9DlAfHFTV z>AUjCo;0d5uvAP|$thXP(CEt>r@hT)cCoteOO=v^#X4H2-M>fI>p|Lkiu{on+y+&u zdw_egZ1-fbK7WtMa*~~@#~<{i%|FO0{a{n2Qfhfj(bT`H|4!arp{FY<;=&@^tL4me ztYu^HR*|I(TTni=@dI;n3D=hfc}l_Mw}*;y3SWe^bKY$TsMJL!las}zBCTkr$u|g< z(NprW@29TfYEO{c0SW^#(`PG>?aUPz{Gqfbh->7mB$lz~6rm8MUzn-8@%F-?Zz#oq z6&@CFnj*e=Z_1PN<kQlY0)9F@PmBl5>}HMy5IH>y$rJ^0f7aj$?M=l~6?&m-L|!;l zDjQJk@Sy1`&>5)&7|(v|^TT^$p*l4#&uO|?6-~{0-<wiz*6UV0an5n%vq=_Q0jmD2 z4FMUxII`{AB)^7TTO{_*=}`W49Gs?3M8p}YgHSh-A<wxop2^BGnD-Y~7+egZ-H-VA zUtmF^Wg$`$JBqc(Ud4suRAD}^eLeE$nlC`4r|uS9(@amtE-_=F--7(&IeIB~WLRgt z<!P%!{#p2y29YKWKDeKvMc9hl>x*`NJvdm)B*f_D^SlPwxs%fF&1bv1y}Q>1zTv(q z)L3h1TvAoA_!dX@i#^(9u)eG%JN2T0#xQh(t$w~tJdAsk#jHjoN014Y1LXZNM3r8B zpTTtKIn)cRGBzog^9HO4QUhti_-+MHIe~Oh`D$h@w*nOKOEG^aT5W%qyr6m|^EBf8 z-0-7maaUdv>EK~wGk~c<@I2QwEtrZ7MmO#MWBb9S@0}=IFYzjVJrt)R?r0(3MwK&t zurc`3^zYyYT<-jVz~^utMRStBJ6^dRfqlyT^smTIY)g8eNCYXhUoQS*9V<CVzmiuf zEFrFlg8)lqLT^R7b_gu*rS=l3?89Y^5&WPt#I;#?23Mg^+>iREHC9<y)&-W7qDRMx zf11wbg4h4Fzt6dwT`BF}8g}exHIQ$>$tpo~zRQxLuP4bVPxPGMrQUB=DL!e~-*c<k zLaXJwxty8(8-9jy#H@KeHIl#I3=EH)Hs@d;aismH%*NFo)o~$&p$KKRJ*CGLYH&3C zgyS!STZlRLfKK6<&q?td8hB<KqU87&=b@MG(n#XHP{~uuE*&_R+ab>-!tiJmQSBC~ z&WHP4BYiyb@kMHD(^&xEek6W{12Z0bSI^dL>S<;Ki?9Ijj?V#*KY*ut6JGx`Lh28Y z*o@zSdREdwuH=@NI=&4#TrAUc)%XSwY(7SZyi-NZsHwY}{0?*@tWBtpg@b>B6R;3$ z5zME^ck>MPLY}HG9Pd{B&SPP=`tT;M6(s%fXS_{#WV`jxYbH+oew)RgoGe4Xq;TG- z23(|^I>2c;_Q`n<bUpPyoAT|iN|fPGFUJ>li|gWBqMmLkly(w(JgE|^YI~Y2kB1#P z!L(2;7~iwAYFaI=`6afei5+8V_wm!g;Zx#}X0Vt~UvJ;S_%2o{uh~~jFfHsqFiC%w zw2RTacyWBd+bvt0Rh6t!c{JR26#ylvkIxRTnv`HV@0+>*K3S6+ESsM%Yl_f8XJy?P zh4tMK)k-sRomIN3mus*Qy!TJB2%+lnkCz5H<7iCJpi#P*sKHsf3;;U_-#ODRq-)`O zedNAlGHIG{XG#d#GK1f#4(j5D2lRFIbiH~jQ26|1=Iw`%uC5$}asmHXD=III1y}Xo zJueR5W%+PY2h7xt@b0S;MYd==pAfv<Zi`vygPnImH*Q~$QTYKB2f^{Fi5*&4U)T_U zrCrCW6hsaZ0llI90dq^jSadX56IbO*Yn-p)2vpxX_1ccySe}qdT^(i5zc|TCPiLe! z^L_9|L+Z&wyKAhtBos(FJt4dWYF3On<>8o^lqlG!A)BLrdW-!ko+wzZ!GlQldBchf z8gu>Yp9;Se-V!GcZ+b1Jk55mHTH91^{co%VIj0mM8u>0po}d8L*<KqPqqoZUx{v#I zF5Dn0?(?Bnsn{H1QDe#vH^)z|O;0fU-*_2K2DJRGES<%`A134|tmGvd<hXIM+pD#3 z*5or#oX*Zh5k74AtHc~Ep4T*hCmSbOYoAVstvo{wJ(rg&)Qk5UkYi#MgbB#we-g!O z8|Ntxl+v}+sFQ^zAEu^2JV4D|o{J?lbNX0Pyk%b92%nH3`N#WH{XMTn-&mzTYlk20 zXaTxIKWfB8eg~10Qy&rtj0u~(F3ta^eBj*sJkm1H!rGn3`>t3CCe=eZcUs*l>{0W| zD66sbCGet7c0ZIKX86Xu#txf{otjWg&}Oiekr;u?F#@c)i%=o9rbkmO^Q4@joYdrU z?LBW5MZDU~k%Q)ZKNj(m%z2-!%57v6t{EbhtugWC7Jisr>Nb8%S9^e*GUOnNQmjm! zt#Hv-O(=$Pu^Jr`WjD}c0g<*<WIIdzz>PDdjgOlUtg!#M(#gtT4W&K-&P!>&<*TQf zBChQ8C#|Ql_}E_(b)IJ4x5cO&IlnB#C4<t$zUZs72_u*%g}+lyBXBD{O<imnf*<Do zW0OvvTcBlk;<xch&R@vE0Sm`tmj}JNMe7k+l3&D1mqyj(F33NqwU9G(l8;Z)$^Y{y z&ETfn#RcH3(Cr8cH^~He-muN}Cq7#B>Ek3lU!B=i2;dr!tToDd??nUjAR(c|&BxUt z*G#GRS4SerxCWY^6p^mdKh}HdnBQA?u0HjWXlnPd^=D0kvH-DQGM}o>v#nCeHpb{) zV~;m{QpWf`i!vU3wHNPt=Zb##e(k~yId7QX3Ybaw_Ls84o*Q@e9y_5HlExb!CrhG% z)FXLIrS#F+AqKZOW^-_C=PA~D6ePbPUAuEzeu1i~%A@yi4{s5{$I!@!4WMA@;iU3v zjM!UUd9e2ph`@m0`{~cwrmQb}y*MDtK<J0Ow+6ayM}};6l5ZQROca_)YT{90*fu4P ziupJDNnqL_lzp~Y|JN+D6v=n50X!rK6D?|yO1%l7NL8-B1eXD|=z7-@;MZ9)73k_h zTbgm5O*N0_bG{cnn7qh`e0et=O!|1v^N%q6X0FyUZRvJErX>nUJgkn^K^ixvfLqLR zOjgItHu-`ZzkgqTG4Z{m0O{*$%~rpT>x)?G-No)8)yA$aFDet7WYh$h2tE3*T&;)! ze8yfq7yc8?r$GDK)2jvv<&e)SZU3=yWzrzWC#qrCux7<LxeK9Hw!|{v&VR@gpSXPO zYsx^O>4j|xbh5OMpHddcWmM#qis<T(qWa{p7Uc+tDlpGgI&W=OSpcheV8R(>*Y(;@ z+O}IfZ|ctGfw^#jZh(x2Rs|`=@~SO_2Z-wduTEGvV7+5Tsln$Rp%;=vxs@!1Lu>hf z8<%?B@8QaS(H+ZGc_6YK&hGOGc)4ogP$i_y0|1;zRhCy;xs!t%Kdg2!?o-jvLf#$w zY+-;JE6b-YyYZRuJR-n@uS@{zUDZK8J^4&A(>0zntc}(F4l&@imPhf+i<ub|-O@4W zBi{u0_ps{CLpKH(jnzhe9%@q!WzR5({mkaY3k)fFy3ITX0ICiESYX8H6t(d4^L$}8 zu)bk~XyVgut6v<q%|f@WN=GktN(XqGqDjM>yYl%Su!BS+yUCSWN9!Gd)YB__bsG_( z9^!Uq3<&5px=!5gO;|`aZ~mk~OtBPNv(dl6Q8fr(qK{m&vv0fotj|zEHt$o~nJIwp zlXsjeA&l+#<yFpus8>sxWCgIUlOrc{Kce*f!1I5=wd?H-d-7WTKHxf8m9(&}HHiP9 zi+*Uafw{hskI@zJ4q)vrPU<$&7$1raIrpfp7il@Tqwfs!>lOKixtQ}n*{|LXj-ZAP zRaAF)WAt?IC!+fu<Ub8=7YXiA<3gkB@7Oia+b2sdu`=&#-g<cT_syHQSa!Fl1#K^^ zHAP>W<6!}1rKzhDT-`znrv!HXO&|GjzJU?=MPV)Avd31rzRG#_sQVVlH_!*hlC){r zO2eEMd7r2%QY_n|hiPxPC3UvzC1Rc6q@J6=Nh2Rm6Esfhzcdo*xH$9ui98nGm47x@ z9$jsGWxDtw_xqI%Phjh&g8(Vm?n0b)1V?gAL6it#n+zRQZ|?U!S6C!=ozVXjS?=Rs zc3=+RF_}b{*xo`$3MFgpvC5n#?kkPAnsV-x4su|rVgsL|I!sutK55ioE$w8rPZop# zSF1ZNq~1%xU^lMez^T-Wq1<D6*uv3~bQ3GKR^S>*bzs*^C)&zxw)C$(8cw_XN)ia8 zpTSDqEUo*KvQze`7b(ywQowf8>$Fw3sdO-eKbnvSE^9-eNWumsh{Qs7G_?B{{JYx# z_)U`k`z56+Y<<UiuT|-nyI}wf%^n8(1&2X(=+T|9azg|msY3uZRQpf6DLopm=>Rx- z%;-9p&pp&xSAuo~)La1O0xQ=>cw9LfWgMn1I}!ghzlF6@6Tpe^kY8qzfn)?TU<we| zKu640vCU*&0$wl)W5h?sUySysSu9VUR2j)pT72cslqahMYY=rUMJ8G3HCT>@7aOpa zWXbCWZ?gkKAOb|97~fAsh($Tu>t3|mkF3cOJ65n8YU23mklAW;EWPcGfzc^b+8{>O zc?|msr;0Hm3&Mw5v8xrkeEZBy=9Q(H|H=0;A92+d(zQDgai4Hxlk0&?=+Hr)drWGY zxUiOmIWhwVw3E73<Rvlm$Qduwb++E94PDgB82NzDzMFSZ_QK%aFoG_bDam-6Mq}FF z3qLRbPk4xZO*9n<k%^X<Jv~@IZR&$xm~Z?!RE&+^2b~ZBBmbT~duF8O9rZjb>nh>! z#!7MOuJeJh#HWHk=4XsOt2ZJ{RgaUZP7>PEMI#GYUutj)slopM^-_}@7z%6o5r z>FVh4PH){C`kU_hPmW12bM)R{ug&$~axu!peU+ovyqNpPHbYZ;!<A2)3*(Q-g3nJc zS>Kk<1~?2a^TIa&R1v>q{x$A2TPc3t&c$0qJ4esMb(BkVdN2O)^39S3{r_f@`k2rR z<#LxkP1E5+^>$Mtk6pMdO)be$7d)fs{X_<mZoGHvND=j87HRjF<~Oeoh5g@LQ1fLj zD6*y^kp929pc^P49*hsY(s&KVgsQ@ZsY!)`mGIL6P&Sf%7BmD~inJX^M-|2VyNDOC ztNU;~O`^7zEu#d8(^3)=^c|kDTJeeKcV|w*Iyn{DYtqL=NhskQ-<Fe&L*joZl&D6? zUP9y)@hY?%O#i+!6_mSa4Kqcw*gyj$VmLv!rxfrskcb11W6lUhYN}kZ0QE~8+5Qe% z`*7t_jFKhq@zmiZWMSoy2i!|FA0X>gdm-t5e^Yw@AvcASf4b_Y+&`Kh!?Wb^tIU<p zNy6^IV5*Av$=eMaU;gDPNrggJ?x^9{zYKrg^57G<>#WRQ;$F)Ae?KGvfv%Vux$WN@ z{+r4CpY);LXxhQQO9E8IFo5p^FeB-M0TvC|vum*Dnhv?~>nvzP#9MFPw6NQVW_q+0 z>=$COM1n<5DA7U-He`ypoz!s?3cm(pM=V01F3br&T6gFUh7kxLRd)dMd4LE=)J}}I zWCFf7l4x-b$FFRimGqKp!3(Z;Z1HBaf7Y+<=G6Hb9*bCHgdTUCDl3Y>x-}Q)y<Wnf zMICWn#q>Mh5T$oaOXrE`znat$w6!(P3pMA38767JD9f120@{}#=m#9<ha%VgV{%F9 zQ9t|YqDeR+h#p)i2Gv89b9@(C&6l((3sVse*Sxs4L1o0qD^$d*Aa{&!L~PCeJd48_ zCb7iiIoOT(Bd96zQzSdaH}`4PHk5vS>s5a+&^-!50|wa7^0eqXnkj0Fmn`|4v#4Lc zXJ6edUU4tRr+KN9;JG&~uJ(~(*o4afEoojj*n#+1dE^Rmv8Ik<`}+0=-_4~mMupa> z;sPNoI1enrI!=V4rUDfz;62D)=W~1mD8Eu$;SX;NOgmdh@h}{@@}`R8XXLb0)dDq7 zvmSj&Mb(3<WkBVq{K4jG<d`8BJ_&M8tdd5k`tgtxbfFH(X0$b^EEP6gZ9m-%R+t=v ze)4}>ohqsh$$W343*?Bo@D0PKmR6h_u1PTpV6ns11)r7;zQzTHR`USYS?Zh;EFdEv z*QxvJs<4Mx84}KQOgDx7#3RiwYaQ?!K5X>?mPUHb>?-jA+b$l{ji{hw;}y2sC$Z9k z`6znv52%V<PcHc<JQg^nyLy8SNuGX`Y^|bk#<mJ_yLB-rBpUUhAaV9Ayk#R~Fhb~> zNetEZsOAAU(*q75^555OeOj9e@V_$nFpa01NjR#68!9LO^M)DOAV|RipwhUq<UwW= z&IE0JTgL4`{PZSWhA8vXUxDi?P@Th*t6{=0me`UYN#0C_u1(UrI*6qN?bvuX7PJ}S zt&g@Yn=<d|YeH6tIH}6^Il1WNT08-a1_&&T5FY`_mkv34DeS=V;#YZ|xZh(?2-t0o zdL-G){L%f6Rc*vCRLy|iTqZ7wnL*>8>P4Irp_(Xy%)`I0_lo|`BaJfueWfz+MvduJ z5)0KWNCZfX<b<dy(o^#q+=L_<^mSx#XZ9=(Yld}P-kQDuUr^l#6^NuqbZ;USl6Sr` z3$-yeq+)zsmQ`sdtVn2xq);wcNWQ3(hxdGV^iBSO_nBpdk9G6zjt;tFkCCcqwU*H9 z_sb6U=q1SCr_o$FDT<$7#$+=mw*H8JG>XpnvPy$lX*7_2XYxh$R$rZB*y}!KbpJqd z+wh`8-JR%PKko&+Sq#HZ^K5x1#;23rj@Q=3PY?Z*E>W*>pghC*0Eamh?b!YP=2tlF zeT@s3_i>~@*iivko=U^HFkTURG3Nc4J}&8#L$l}D3uw9~?*~3;FmtcQzE@uu)0^@i zQF&|a@ERy*6QzVc!U%<4jzGUtm+;@0&0?Cp0h4KT_f`wuI<~`GKIyn~m6P|33y7iU z&=HV8GK(@+dOgmK-OU!l)H%~6w1xWaP;~R%FvA*%0Vx;xy}Cy_68?U2lX8`Hz8+OI z8;Z~gvSem-4aPS~!_-LiXCu3U?m$3zgs9-L4LG0Pk29fzK}{8Bho62*_Y&AE3sU=1 z3b4k?D}|{BpiRw|^a{_7NZ+P*yE9rvjn*ADda$$1osYJw$b`Tx8}13V*FzFK;wHKI zT*#%5mC_-n6u|Ewgd^h6iKURkB4YFEQ1by61!LeA$1Oy3=)z_07a#5k85fg(1U52n z<*OBP{PZU~A$#eVeW`1(-vj*c3-OF+BAE*H@>qB1WN5IY1bqKTO6}c<*pK<X%IB<a zc7H_Kt}avhc~lFZRol$ZTySK;Zr>ls<%NE@GEJdJE4`;7NT<i?PVzW0{z7#DA9R?l zVbX?uqdceYQkTzgw*(xn73UVHd68GFF0j!vTS|U1*U!_kphzV5h7-;?>AZ0p*M_vQ z5E+4<kUWbCUwOS2=*kA@gUAy$sz&hiudtUM>e-m`fv+6*TAGn#_qg!7`F_2_EIrQ4 z_i&uJfXd?!ae=S-urYuNdhnjl^VE2j;5+~lKSO=P*8aV5+TrBE?A({Nf-vPTrdn#o ze)TVzX1B(FVC`qCb9a{3sVyc7tb*UIkV=!P5W<7VP=ad4En!(tTBxGWs*8fAd}rQ- zS$(;ywT$dW9YEe9PU|1#h1b9NMC_&|1zj7wke|{5l;OM7U3oK#cQ=+Pccn&1a-7`+ z6u_Ywhis2oHe3^5DC|~K)}QnWN%L6KQjrK<-XlM}aZF`TMU|-_O!UhGEu_?T%RuKI zZ2<_Uo##~B?cQDXuNepZEb70s&4oZP_W${T!5g+)5-$%8mYj4Hq=2%Cz&H!6QjrYk zLTf9`-R;@7%m;Qr!7Tq9#M_%*&krlJ<G*WGC~599-d&1T@f(^bA_7XX1=TN&He%9W zO~zK?Zrb!(X4VZlG*AKa6#zb%_u1@WpUKL|YALOv-iPGnAQt_g$0k6bUx(dgb>G<; zq0Ru&%z`$7PKd+yG~a##@}RIG8^p^5?fQ5(W;6@p?X!Lr{iedDmiUe&Sh*E~CZR*x z6MC?IR-PgLq;+a8p~H5oszTGDJl<_za81hEbhxHb5Oz}wA;yHZX*x6)fsFwT`$}2R z!9aU10Gb0F_&jcuA-q1m0}Rz6JO9;0K*jekp=V~{_=Jv8m3DrJR8x`7>4;`|ze<y) z13La~LWcpAjSp5uA(SD>-+0HUA`z(mU_dVnYOZQ2;sfG47;#UaA676^3l%nsK*9KZ zH5*$#FWA7Ob1qq=*?^3A2+;@ZE99_!_2Hn5V=g3|$N&@@d^(LYYdptl<OyU&hLRrL zK^XY=ITGPPzJvaGbA;51<rz6bDra2Dw_qWOEAHowqg!F;WI=2}%vN}UC)NQ9pMckV zyfPLczRkbQRZm#+#@gDxjIRvn<K&4D$Ul&yvbqsoQ`024EmlTz#y&`r$q&oH_}UP) zfDa+15L%FGaJ%S1mrQFzq1iypB0Ja+@)@xhik}_?cR41LXCTENy2&+6d|sbMwGWbX z^zXg4nOANZ^K97~_|d_zD{m+xU3+pZ_pp9IF)*-YW2SM#y%De9gx8JqQ8}$Tte)Gb z=mi<Fc%?*<>IM>-tGVZn8KJ0fh+OvrQ~?$Rvy8ZJ%PsNKGsGBoWm_BMsJGMgvk-`+ zg2#55wqNxV97@H+sJG9xBGtpED%N%<krAXDPBrB~9gCH{-Zg(RQy?Yrq`w6uyD<D+ z7)Fl#XFC!IN4W5CZtBq6_&sa0H=u!bYbj5R9CA^3>mcb5As6rty25{9PPux^a?A!a z6SQTZ!3GFZ$O_U{4n$34xIY#4&e!8z|EU{Ub-_eytMx@N5_cLoSLIIplBBj;4Z!)C zNo!wLG!|~Ss}%-{W`IN~y!*Nb)COBDRl%o}=3@4GnGg0#B>7>8MYp``+nD%~?cfy# z90&^Ugx7%ICy>&xLooan?prD?VXGjfL8rMteQ0+JR9JO>?{ku1TK8(Mr?Puo#FP2@ zc`yDDX7oK)R8E<ePS%1C=N5NPUMp3fPX209M?6EZA%E_v+d{4$QQyjLqkLvnazD6n z(+1y`c?E#SSQ!MB8&BJtvRgK>&ym<?n&)4C8f-Q5mdU4u1%O<TQl327XRifF#|5C& zzjha?De6dB*D)az&ZjQNoEd4YmKS1M=VG=xs4>dbezM8w)vY^u3SJeyn=R@^8DS#H z>poTnIIOQ3${lzfP`JX%5CAiRat>_s4TxjK3Q&rg4tc(t|HSuzHtEp$eRbbJgbPqF z?f`WDynQM>0jPV-@s*;u*Tb&q;1$478ed6vH9uOeoD(E;%E>~Tu9dAGHUku&_PhhO zHxY6Z!)}8)?7S7=bvWk=ML!={a+>S0uLn#Xi%kK@)gC`R#w!9yCh=cIq~ToYvIV%g zj2A4Li|&5c9^X{p>?pvB*p|dMqDVOe@*uQaetn$Vh2p{Y5h|oAYSDSJYFWOU_wkmA zz<D68w&p86T99XjK-lhG3Wra5V;M_D{09fCgd-!4)+-omA0nC&Qs&t?zS)`%T-$Qc zi6|%DkbAXG^NoytXQ!Hrk~n|p2g=Y$nswwAKO!TH?}bR)X?V0O{`_0W94VHr^3_-k z?Gc4%i#4pAof@2>h&N5@@Wr~qhFTk9rFqCVwhn=KjK3{&Ii8?R-!ReZ@$P~&G&W$d z-&OjtKaNhK&v}Xsi^p2~skAsE^Oi!UQ;>x1vcPlh$Uc?Q3<wt~bN<(Mm93qNd^WWX zwx&}SoThD@*~<t>@1NOH<?W<Eu{hZkr`!cf>FsHnMpDa-jpysWp%fAV*n`r&CITRt z0@B*ETN@P=tdx}^I6SnBW7btJWa~w&EazOJfo4UYXG_Sy2kV;<OMDJisnXM4XgkhK zAmz=Od1dxY*RDQ>a^&+j;IIIxCwQq!%@aS}FenOyl26n0Cm#JbR{L+z21pAK@#(SI rzEb%&P{smhaxPJdoBuB#a2FurSBDX_UC+mefIl5g14N02ZPfn((V8X% literal 0 HcmV?d00001 -- GitLab