From bdd3d80a423df290958c88fe73127ce74d0a57ac Mon Sep 17 00:00:00 2001 From: Riku-Laine <28960190+Riku-Laine@users.noreply.github.com> Date: Tue, 11 Jun 2019 15:08:27 +0300 Subject: [PATCH] most of the fixes proposed by AH --- analysis_and_scripts/notes.tex | 94 +++++++++++-------- figures/sl_without_Z_3iter_sigma_sqrt_01.png | Bin 0 -> 50123 bytes 2 files changed, 55 insertions(+), 39 deletions(-) create mode 100644 figures/sl_without_Z_3iter_sigma_sqrt_01.png diff --git a/analysis_and_scripts/notes.tex b/analysis_and_scripts/notes.tex index a29e8ce..d9a1449 100644 --- a/analysis_and_scripts/notes.tex +++ b/analysis_and_scripts/notes.tex @@ -1,6 +1,6 @@ -\documentclass[11pt]{amsart} +\documentclass[11pt,a4paper]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. -\geometry{a4paper} % ... or letterpaper or a5paper or ... +%\geometry{a4paper} % ... or letterpaper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} @@ -14,6 +14,8 @@ \renewcommand{\algorithmicrequire}{\textbf{Input:}} \renewcommand{\algorithmicensure}{\textbf{Procedure:}} +\renewcommand{\descriptionlabel}[1]{\hspace{\labelsep}\textnormal{#1}} + \usepackage{subcaption} \graphicspath{ {../figures/} } @@ -31,15 +33,16 @@ This document presents the implementations of RL in pseudocode level. First, I p \section*{Terms and abbreviations} \begin{description} -\item[R] acceptance rate, leniency of decision maker, $r \in [0, 1]$ -\item[X] personal features, observable to a predictive model -\item[Z] some features of a subject, unobservable to a predictive model, latent variable -\item[W] noise added to result variable Y -\item[T] decision variable, bail/positive decision equal to 1, jail/negative decision equal to 0 -\item[Y] result variable, no crime/positive result equal to 1, crime/negative result equal to 0 -\item[SL] Selective labels -\item[Labeled data] data that has been censored, i.e. if negative decision is given (T=0), then Y is set to NA. -\item[Unobservables] unmeasured confounders, latent variables, Z +\item[R:] acceptance rate, leniency of decision maker, $r \in [0, 1]$ +\item[X:] personal features, observable to a predictive model +\item[Z:] some features of a subject, unobservable to a predictive model, latent variable +\item[W:] noise added to result variable Y +\item[T:] decision variable, bail/positive decision equal to 1, jail/negative decision equal to 0 +\item[Y:] result variable, no crime/positive result equal to 1, crime/negative result equal to 0 +\item[SL:] Selective labels, see \cite{lakkaraju17} +\item[Labeled data:] data that has been censored, i.e. if negative decision is given (T=0), then Y is set to NA. +\item[Full data:] data that has all labels available, i.e. \emph{even if} negative decision is given (T=0), Y will still be available. +\item[Unobservables:] unmeasured confounders, latent variables, Z \end{description} Mnemonic rule for the binary coding: zero bad (crime or jail), one good! @@ -48,11 +51,11 @@ Mnemonic rule for the binary coding: zero bad (crime or jail), one good! \emph{This chapter is to present my comments and insight regarding the topic.} -The motivating idea behind the SL paper of Lakkaraju et al. \cite{lakkaraju17} is to evaluate if machines could improve on human performance. In general case, comparing the performance of human and machine evaluations is simple. In the domains addressed by Lakkaraju et al. simple comparisons would be unethical and therefore algorithms are required. (Some other data augmentation algorithms have been proposed by De-Arteaga \cite{dearteaga18}.) +The motivating idea behind the SL paper of Lakkaraju et al. \cite{lakkaraju17} is to evaluate if machines could improve on human performance. In general case, comparing the performance of human and machine evaluations is simple. In the domains addressed by Lakkaraju et al. simple comparisons would be unethical and therefore algorithms are required. (Other approaches, such as a data augmentation algorithm has been proposed by De-Arteaga \cite{dearteaga18}.) The general idea of the SL paper is to train some predictive model with selectively labeled data. The question is then "how would this predictive model perform if it was to make independent bail-or-jail decisions?" That quantity can not be calculated from real-life data sets due to the ethical reasons. We can however use more selectively labeled data to estimate it's performance. But, because the data is biased, the performance estimates are too good or "overly optimistic" if they are calculated in the conventional way ("labeled outcomes only"). This is why they are proposing the contraction algorithm. -One of the concepts to denote when reading the Lakkaraju paper is the difference between the global goal of prediction and the goal in this specific setting. The global goal is to have a low failure rate with high acceptance rate, but at the moment we are not interested in it. The goal in this setting is to estimate the true failure rate of the model with unseen biased data. That is, given selectively labeled data and an arbitrary black-box model $\mathcal{B}$ we are interested in estimating the model's performance in the whole data set with all ground truth labels. +One of the concepts to denote when reading the Lakkaraju paper is the difference between the global goal of prediction and the goal in this specific setting. The global goal is to have a low failure rate with high acceptance rate, but at the moment we are not interested in it. The goal in this setting is to estimate the true failure rate of the model with unseen biased data. That is, given only selectively labeled data and an arbitrary black-box model $\mathcal{B}$ we are interested in estimating performance of model $\mathcal{B}$ in the whole data set with all ground truth labels. \section{Data generation} @@ -77,12 +80,13 @@ In the setting without unobservables Z, we first sample an acceptance rate r for \STATE If subject belongs to the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, set $T=0$ else set $T=1$. \STATE Halve the data to training and test sets at random. \STATE For both halves, set $Y=$ NA if decision is negative ($T=0$). +\RETURN labeled training data, full training data, labeled test data, full test data \end{algorithmic} \end{algorithm} \subsection{With unobservables (see also algorithm \ref{alg:data_with_Z})} -In the setting with unobservables Z, we first sample an acceptance rate r for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects (50000 in total) for each of the judges randomly and simulate their features X, Z and W as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as $$P(Y=0|X=x, Z=z, W=w)=\sigma(\beta_Xx+\beta_Zz+\beta_Ww)$$ where $\beta_X=\beta_Z =1$ and $\beta_W=0.2$. Next, value for result Y is set to 0 if $P(Y = 0| X, Z, W) \geq 0.5$ and 1 otherwise. The conditional probability for the negative decision is defined as $$P(T=0|X=x, Z=z)=\sigma(\beta_Xx+\beta_Zz)+\epsilon$$ where $\epsilon \sim N(0, 0.1)$. Next, the data is sorted for each judge by the probabilities $P(T=0|X, Z)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. +In the setting with unobservables Z, we first sample an acceptance rate r for all $M=100$ judges uniformly from a half-open interval $[0.1; 0.9)$. Then we assign 500 unique subjects (50000 in total) for each of the judges randomly and simulate their features X, Z and W as i.i.d standard Gaussian random variables with zero mean and unit (1) variance. Then, probability for negative outcome is calculated as $$P(Y=0|X=x, Z=z, W=w)=\sigma(\beta_Xx+\beta_Zz+\beta_Ww)$$ where $\beta_X=\beta_Z =1$ and $\beta_W=0.2$. Next, value for result Y is set to 0 if $P(Y = 0| X, Z, W) \geq 0.5$ and 1 otherwise. The conditional probability for the negative decision (T=0) is defined as $$P(T=0|X=x, Z=z)=\sigma(\beta_Xx+\beta_Zz)+\epsilon$$ where $\epsilon \sim N(0, 0.1)$. Next, the data is sorted for each judge by the probabilities $P(T=0|X, Z)$ in descending order. If the subject is in the top $(1-r) \cdot 100 \%$ of observations assigned to a judge, the decision variable T is set to zero and otherwise to one. \begin{algorithm}[] % enter the algorithm environment \caption{Create data with unobservables} % give the algorithm a caption @@ -94,32 +98,34 @@ In the setting with unobservables Z, we first sample an acceptance rate r for al \STATE Sample features X, Z and W for each $N_{total}$ observations from standard Gaussian independently. \STATE Calculate $P(Y=0|X, Z, W)$ for each observation \STATE Set Y to 0 if $P(Y = 0| X, Z, W) \geq 0.5$ and to 1 otherwise. +\STATE Calculate $P(T=0|X, Z)$ for each observation \STATE Sort the data by (1) the judges' and (2) by probabilities $P(T=0|X, Z)$ in descending order. \STATE \hskip3.0em $\rhd$ Now the most dangerous subjects for each of the judges are at the top. \STATE If subject belongs to the top $(1-r) \cdot 100 \%$ of observations assigned to that judge, set $T=0$ else set $T=1$. \STATE Halve the data to training and test sets at random. \STATE For both halves, set $Y=$ NA if decision is negative ($T=0$). +\RETURN labeled training data, full training data, labeled test data, full test data \end{algorithmic} \end{algorithm} -\section{Plotting / "Performance comparison"} - -\subsection{Model fitting} +\section{Model fitting} \label{sec:model_fitting} The models that are being fitted are logistic regression models from scikit-learn package. The solver is set to lbfgs (as there is no closed-form solution) and intercept is estimated by default. The resulting LogisticRegression model object provides convenient functions for fitting the model and getting probabilities for class labels. Please see the documentation at \url{https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html} or ask me (RL) for more details. -NB: These models can not be fitted if the data includes missing values. Therefore listwise deletion is done in cases of missing data (whole record is discarded). +All of the algorithms 4--7 and the contraction algorithm are model agnostic. Lakkaraju says in their paper "We train logistic regression on this training set. We also experimented with other predictive models and observed similar behaviour." -\subsection{Curves} +NB: The sklearn's regression model can not be fitted if the data includes missing values. Therefore list-wise deletion is done in cases of missing data (whole record is discarded). + +\section{Plotting} The following quantities are estimated from the data: \begin{itemize} \item True evaluation: The true failure rate of the model. Can only be calculated for synthetic data sets. See algorithm \ref{alg:true_eval}. \item Labeled outcomes: The "traditional"/vanilla estimate of model performance. See algorithm \ref{alg:labeled_outcomes}. -\item Human evaluation: The failure rate of human decision-makers who have acces to the latent variable Z. Decision-makers with similar values of leniency are binned and trated as one hypothetical decision-maker. See algorithm \ref{alg:human_eval}. +\item Human evaluation: The failure rate of human decision-makers who have access to the latent variable Z. Decision-makers with similar values of leniency are binned and treated as one hypothetical decision-maker. See algorithm \ref{alg:human_eval}. \item Contraction: See algorithm 1 of \cite{lakkaraju17} -\item Causal model: In essence, the empirical performance is calculated over the test set as $$\dfrac{1}{n}\sum_{(x, y)\in D}f(x)\delta(F(x) < r)$$ where $$f(x) = P(Y=0|T=1, X=x)$$ is a predictive model trained on the labeled data and $$ F(x_0) = \int P(x)\delta(f(x) < f(x_0)) ~ dx.$$ All observations, even ones with missing outcome labels, can be used since empirical performance doesn't depend on them. $P(x)$ is Gaussian pdf from scipy.stats package and it is integrated over interval [-15, 15] with 40000 steps using si.simps function from scipy.integrate which uses Simpson's rule in estimating the value of the integral. (docs: \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html}) \label{causal_cdf} +\item Causal model: In essence, the empirical performance is calculated over the test set as $$\dfrac{1}{n}\sum_{(x, y)\in D}f(x)\delta(F(x) < r)$$ where $$f(x) = P(Y=0|T=1, X=x)$$ is a logistic regression model (see \ref{sec:model_fitting}) trained on the labeled data and $$ F(x_0) = \int_{x\in\mathcal{X}} P(x)\delta(f(x) < f(x_0)) ~ dx.$$ All observations, even ones with missing outcome labels, can be used since empirical performance doesn't depend on them. $P(x)$ is Gaussian pdf from scipy.stats package and it is integrated over interval [-15, 15] with 40000 steps using si.simps function from scipy.integrate which uses Simpson's rule in estimating the value of the integral. (docs: \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html}) \label{causal_cdf} \end{itemize} The plotted curves are constructed using pseudo code presented in algorithm \ref{alg:perf_comp}. @@ -134,18 +140,19 @@ The plotted curves are constructed using pseudo code presented in algorithm \ref \FORALL{$r$ in $0.1, 0.2, ..., 0.9$} \FOR{i = 1 \TO $N_{iter}$} \STATE Create data using either Algorithm \ref{alg:data_without_Z} or \ref{alg:data_with_Z}. - \STATE Train a logistic regression model using observations in the training set with available outcome labels. - \STATE Estimate failure rate of true evaluation with leniency $r$ using algorithm \ref{alg:true_eval}. - \STATE Estimate failure rate of labeled outcomes approach with leniency $r$ using algorithm \ref{alg:labeled_outcomes}. - \STATE Estimate failure rate of human judges with leniency $r$ using algorithm \ref{alg:human_eval}. - \STATE Estimate failure rate of contraction algorithm with leniency $r$. - \STATE Estimate the empirical performance of the causal model with leniency $r$ using algorithm \ref{alg:causal_model}. + \STATE Train a logistic regression model using observations in the training set with available outcome labels and assign to $f$. + \STATE Using $f$, estimate probabilities $\mathcal{S}$ for Y=0 in both test sets (labeled and full) for all observations and attach them to the respective data sets. + \STATE Compute failure rate of true evaluation with leniency $r$ and full test data using algorithm \ref{alg:true_eval}. + \STATE Compute failure rate of labeled outcomes approach with leniency $r$ and labeled test data using algorithm \ref{alg:labeled_outcomes}. + \STATE Compute failure rate of human judges with leniency $r$ and labeled test data using algorithm \ref{alg:human_eval}. + \STATE Compute failure rate of contraction algorithm with leniency $r$ and labeled test data. + \STATE Compute the empirical performance of the causal model with leniency $r$, predictive model $f$ and labeled test data using algorithm \ref{alg:causal_model}. \ENDFOR - \STATE Calculate mean of the failure rate over the iterations for each algorithm separately. - \STATE Calculate standard error of the mean over the iterations for each algorithm separately. + \STATE Calculate means of the failure rates for each value of leniency and for each algorithm separately. + \STATE Calculate standard error of the mean for each value of leniency and for each algorithm separately. \ENDFOR \STATE Plot the failure rates with given levels of leniency $r$. -\STATE Calculate absolute mean errors of each algorithm compared to the true evaluation. +\STATE Calculate absolute mean errors of each algorithm compared to true evaluation. \end{algorithmic} \end{algorithm} @@ -166,7 +173,7 @@ The plotted curves are constructed using pseudo code presented in algorithm \ref \caption{Labeled outcomes} % give the algorithm a caption \label{alg:labeled_outcomes} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment -\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with ($T=0$), acceptance rate r +\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with $T=0$, acceptance rate r \ENSURE \STATE Assign observations with observed outcomes to $\mathcal{D}_{observed}$. \STATE Sort $\mathcal{D}_{observed}$ by the probabilities $\mathcal{S}$ to ascending order. @@ -180,7 +187,7 @@ The plotted curves are constructed using pseudo code presented in algorithm \ref \caption{Human evaluation} % give the algorithm a caption \label{alg:human_eval} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment -\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with ($T=0$), acceptance rate r +\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with $T=0$, acceptance rate r \ENSURE \STATE Assign judges with leniency in $[r-0.05, r+0.05]$ to $\mathcal{J}$ \STATE $\mathcal{D}_{released} = \{(x, j, t, y) \in \mathcal{D}|t=1 \wedge j \in \mathcal{J}\}$ @@ -190,20 +197,20 @@ The plotted curves are constructed using pseudo code presented in algorithm \ref \end{algorithm} \begin{algorithm}[] % enter the algorithm environment -\caption{Causal model, empirical performance} % give the algorithm a caption +\caption{Causal model, empirical performance (ep)} % give the algorithm a caption \label{alg:causal_model} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment -\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with ($T=0$), predictive model f, acceptance rate r +\REQUIRE Labeled test data $\mathcal{D}$ with probabilities $\mathcal{S}$ and \emph{missing outcome labels} for observations with $T=0$, predictive model f, acceptance rate r \ENSURE \STATE Create boolean array $T_{causal} = cdf(\mathcal{D}, f) < r$. See "Causal model" in \ref{causal_cdf}. -\RETURN $\frac{1}{|\mathcal{D}|}\sum_{i=1}^{\mathcal{D}} \mathcal{S} \cdot T_{causal} = \frac{1}{|\mathcal{D}|}\sum_x f(x)\delta(F(x) < r)$ +\RETURN $\frac{1}{|\mathcal{D}|}\sum_{i=1}^{\mathcal{D}} \mathcal{S} \cdot T_{causal}$ which is equal to $\frac{1}{|\mathcal{D}|}\sum_{x\in\mathcal{D}} f(x)\delta(F(x) < r)$ \end{algorithmic} \end{algorithm} -\section{What if...} +\section{Results} -\subsection{We assign $\beta_Z=0$?} +\subsection{If $\beta_Z=0$ when data is generated with unobservables.} If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval 0.1, ..., 0.3 but the human evaluation failure rate. Figures are drawn in Figures \ref{fig:betaZ_1_5} and \ref{fig:betaZ_0}. @@ -221,10 +228,19 @@ If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval \caption{$\beta_Z=0$} \label{fig:betaZ_0} \end{subfigure} - \caption{Failure rate with varying levels of leniency and unobservables. Results from algorithm \ref{alg:perf_comp} with $N_{iter}=4$.}\label{fig:betaZ_comp} + \caption{Failure rate vs. acceptance rate with unobservables in the data. Logistic regression was trained on labeled training data. Results from algorithm \ref{alg:perf_comp} with $N_{iter}=4$. Data was generated with algorithm \ref{alg:data_with_Z}.}\label{fig:betaZ_comp} \end{figure} -%\subsection{} +\subsection{If noise is added to the decision made when data is generated without unobservables} + +Results are presented in Figure \ref{fig:sigma_figure}. + +\begin{figure}[H] + \centering + \includegraphics[width=0.5\textwidth]{sl_without_Z_3iter_sigma_sqrt_01} + \caption{Failure rate with varying levels of leniency without unobservables. } + \label{fig:sigma_figure} +\end{figure} \begin{thebibliography}{9} diff --git a/figures/sl_without_Z_3iter_sigma_sqrt_01.png b/figures/sl_without_Z_3iter_sigma_sqrt_01.png new file mode 100644 index 0000000000000000000000000000000000000000..d1d016c0fd3d478ed5cbfa4c8a06105d77c51f7a GIT binary patch literal 50123 zcmb5V1yogC6g7GQk&sY80ZAn<UDB=8l@_I23F(q9X{EdSq9~<wBQ4$C-QD^2#qW<7 z<Gt}5<NL(x^_+e7UTdy7=UOL7QC<og^C>0-0>PG%ex(e7puivyq&@We;FEZQv{CTe zJv(t36?E{+4gGx}_%nvJw7MMx@&FI<AJV|I#})XH&t5{!{*9H9y`#SE2Z)8fy|uZO zy}79Y<);s}cBWRAl$<PVESyY~CieE${H(11>kBMaw#KX}4}NArAe0c9S7Ito$y?Ko zZUhn}4g0g%qLdgJJ_M$iFpOuu4<E`<K2oguLaCjNS%^Ha^cL%#%DrsqwOT0Iy;p1* zwa>K)sF3lX$jXa;;ljHV)qG*$n7#sY=N`hRf46tGwu%KDt$Vw-k_R-Xd>@LVg9|R` z%AeqfB7OpYBn_d4-F+&K9^wE0_s42wShor+gext89-g^H8u{=vSoue$G6QYYHVX`z zAI;#oo7v$G%T0ylqPw<5B;*;Wz_wLj4)u<YFrMwakcswv=;)`+0E0Tbgg!Prq>mZ) z(AZ4X*bLi|2zG=)kG+*Y7St|Ehb6rK2p`fDXxooh-l)6vu5*n^H_5;4({LRlJxz5# z`?NG#{7{@1`R;meUgwtvbT1aVI_SZpzY3i?LZ-bKS9Bx%(9&xqo@9skJ#>WO(L8%q zpbX=K!ebfXJ&f=IDExV}vciP9?)PX+IpccGy8d$JBz{>1=nG}219`lDffYRZ;;-O{ zJY3}%YXO#j`vN{>Gsk0h{T@C<3?CAK<<`P-FIFy|G_a*djcb<8YUwIMUr0e6dZu=T z;6u!}Weo5R2Dm|tvJUs=20i?S+b}mTdZHlu%R891GK{(B&x;dCD%u6o+ZbhG(=r~g zP28Kp`OzB&1-*sQPYa{@KUhu{M0c23x^_&hCMs`)EC0xla~FtFreJ`dBwXez!ya?+ zSn+gbpD>Il!GsE;F;!vO+`SfJiJR7v&=+dZ<6`yM$RXaY?cOBztE_1Lg6NNtQD#=L z*P_tUuDnTP`**P6V!k#zSZ)vusycZH35{Rf|E#X?Nmm!#qBW`akO96BtxN$gi>us% zo4d?KE2lw@z1R-p@y&mje@wl63m<xww8#sEOG4o{T)MCAVw6$4EXuJyyeNF5C|S75 z^`ZEZoHQr8>U;FXYv}NBj=5Ozl|=EBCJg$)4xJ7@6latq#Q=XgzIFMdGE4$`9H9Ke zr@IV<&TN<2FD2+(Zn>I~(-IE<lTaBuomqOg4o_OW#fX&>j7$ku3bP~T2xd>&j8W2( zUoqRXDo$;J<^CWZrt-C>)G%{ye@T8&v558%)i=9%24fA!3E8sYy<S@PiJ$2AbHRIo z9BI{%r}Swu<J5Chl(^xz-%+&KZuwD!yzoU+?ZJ6_;wz%J8yD;%6L6Q~qV*s<cUw?E z>;{L5$<OfGaii~@pcEQehm@fdjxmLy(I)lQbBC?I*ZKC%)_PkPsVDx@@?Pt>`A>+N zS6r7J1Lj%$WDb(1w^Y~WFvJ?Q13At+$0()S>$T`3yZV#{({zS8oILqjmIlLCPiCGL zRbq7R$z0x|2SjGY*H}f9H69XPv)-vIWfu)E>^$i>%NWXSwnZR#Ua>|(xrK36D-O9P z<c^}Wh4slbb%_wP?p5q=+iLT&ZG~NzgwZlr{=&f*UWAI|S*vW#Q!|sn)yS=`=Gbg> z+n3PpQk;&p<K#cC)IU$>s#i919$S;q>sjhz<#8?kKqp13N|<y>ysWd_nd~=T{Va+^ z`P6BO=@MOW*zM-IHNkg-Rzl3J_BA1FuGX`1nS>8tAUs}pD+jNQuH}ue*tsXc30Y`< zc%*8l7dGx8Pqdp9d2;5cL4FV})kFRXR}}ov=CjWx65Je5L0y3KlapR`=!$L8l4VvV zlOUiwKqXiQ?l?%gdvBeZjQg0UYblvPGE%8qt8U$gMseb*FJ{z8n{cigYh&|)Id_@> zk|)w}_i{^vO8Sw7)+KsZbCci=YD0^b2ih5bihHv6*^u4q;_do)iZY843snAuUPok# zG4n(2N%08z%xL**R%BO;*j@;kd2HLh6*Aw0Go}=NTNkj?b-m9Ep5=}*_>Ahx>*(&R z95bWWghbrC^@|vC4@~IFsnvO(OpiL2r-^~Zo@RyOGHL$Ph<r52HHy9k(!)Jj2=O2a zlE70OH`4Uf`+8nOC;2<yyo>^((<&WZfMkJG&c*H?kYGOEOk`C@Zt1L$G&;|8Ti1J` zUx&uYyQ=H8qTUi;mj65OCx&F0gLVV-+pZNNzE51+`vjgfPY+3&Y4^F6ASuH57~#S% z0?My^_VYQ2Fa}eq(o5xw)LGE5cmgD}-@vq+&dMt6X&sWwwAlh4UFSr9xnE%5HrGu* zVk@dM_qlsN2SUR^fBRyuMES?PKJ>srjoaR-6WZ2*PWKL?&m+uH@fM5BVf}``+O<kC z_Zrqvk+aZNUh!AQHmuFdSZVUjEpv^sLyA(8n@*~(gKWq!jUO7yz=u>}xy37HdMxES zgNNL`hTV4UOgG6omnH03(Jqao{th$2o3$Y2T)WI`>q<sOy?ux*1|L!-Ooy<Suso#t z^EW8CKmi)OnYN)2{E0cX>B4H1Cf~u9|JUO->DIwkBiH;MlYEE7ZFtGZtsb@Pwf7+` z_ZXJjVU%FoK#;WQi6M>DF*amqVVv)PS=5z>8?2KtbczYf-PxGUh#vK#t2loVZW+9; z6@axkpkZ~tk*yBBGCdme4a_;`O~Av(Khl}hzU>y;-m7f>4Nm%QJ~)!QFa1kKWQb<l zSIX73IV^s0b$;{i=l-i9mha$^f2^87#&8_ueEUal4mCK{OPpvn{%6Sti%`M`1Z8|W zNcp9X_gC$S&&W*z_Ps5Fy36b);*s_q1>*(|#wb7L2oiX!%2^lEQK7oY+lsb4<SHSL z5;HKqi`=SMa#WVmx~BBIHgrd0v)8;My43lGUQ$zge#GqFUQlJN|40?2Rk2HUQbdl4 zxFvqu%nC*_$rViQ+tyVf8DXROjhvINu+W02mgNPTKdL24D(XiRf#1Z2?`|5;!c#Yt zf<M&;vSamJ+$gm!-Iw_7nr9B;?|>&fS>D{(BDT}ISc<&|E&o_D-vM3nxeIAleuIgR z>R^eOaQ<;vS;n_qM~uD5bB}|TGY%xUibU`doT9a8;4_hsNLgVwmZ2=wU`5FYe#uCk zs6%ju<ENAqW%LN4NP3KCwn=oY0r{O*0$cRe9*q^_Q|i!R(na#bE?Kk-MnhyIcyQ8+ zCIfuR?x7i8Yx$o7qEq6r9akj!G?$lEBNtq)0kgkgxyUPWlVQ-LAl!jpM21FHtKF** zP%xBXaF0n3?8PRXgZ%2*OvY9;H;N=F*Yp?;S~WFvt~an+y_qc?73kZ+E!6l2vTUwy z$uaESK8!^Wlb_Kpty;S|(I2xdQ+H~Aj#Dk-1mCaYsCT|4>01ftQ%NPFn8@lTnF@Hn zSfkvH?2_2#s0@oyg1xQmHcN}8YprD)jbZ;Ioi>EMa$Ff~V<q<^xvs8EpV}{=JDUpm zF!g!<aSYZ;W%x?Gx;iq}J6H^lD^&PiY`hS(9to7d9HZ)-nb+@KnKn21Q25+&kwGfo zi$$SG7|lgyLti|O-*^Ncf*d-GBT+q@$&Pkut|>TYkF49gy3|2OxiKqK-SB<HYV@d6 zC-_q;jyaoaUc=h?0Few_8Ft(ZVkibgJSlBcMYQtGN>htq+`ZqYGf%|F5&$0zoZ?1X zBpIvsqH4J1VD*R^W#4&I;otwDn7g=frM&!_t&XPdi%pd4Dk-TIN)alrzfJG3NCRKe zb|;&QSphx#Bz}|Mkorx1V%t?>SG|L7$bQHHH2?Tf(y@a#;7prDr|Czd8fnOiFtWF> zQU%Qj<sV3`Z0S&q&BI*WV5_byuM>^UC?b3!thTj%KCk{Jq*k<1>EM}AMk0Je`g{k1 zRtHbC#g|La;0*7wTVtk%vp!cG!@yxtNPa2m8PQokssB>IKGHPBV$+6(o&@daD(y;N zvrfY+yIbp<?e32CQiV;q;Oybg0LYlSPaM5lR-6SrNeT;7h;(tXd(s_=q)XK0d+*(l zo$#`dtg<x)yQ1v{II~zmO!5nnZ;@8?kCwFNSDv}8*QO43^t-Z!jIu?3jv|s-6x6Hh zKDpJOdgFk)_&SKND?Y_LgQzgSlL+4hi>-IvEZB9djyvErd275qHREeGm(x65d6Rrx z!<vGV_%;{hGxlx|;ufbUrUiz;h&|mVC*9Ph_;v~O`8j1{??-^L|CWH3;>YKfrkd@l z0V*Fj^<3!xk;!A#;{PM~fn3>AGXK&3f$&%V^GEAnju6M!{h1OD=LgH%Wd6g)o1-?4 zy*mo!fv#c`&FnJOyyT|%ZPeQfPT6v#Q6*m&ZA!Su>pgD)@czo{5Mm2b2LEup+$ycM zspv~!ASFG0`;0z1$pCGr%tXt+bP_MEDPbFx#X@|xHfdN^X^`?p?^bkFhU5Rc?r24^ z3sZK%!^h{dTfwriu{pgO)6vm+B`G;`xQOYKltl8OBl^$q@bFB=-7^JV_MxQEr|{X` zS5Q#sh+_>?-bf{%H25{QzV56L2F21aW6`baO5im9u9)$;wh6I=z7J0`&|KEEwX{ej zz7SNd%0w2i!U@2Szg{b3-f1N#Ho?9iyzoV8sEOr6F*_eyIwG51X<Mc{>9o^~l14v1 zxZD}HzrX*dtt}vu=CyK_z3HZ{xOk(sKu;{Q=H9`<?~(1r#g|S_PNADJFj%JEpU>rF zZCm5Te4aNo4(BndI`eD&S>@Vk|Fqf3f#_`3dn>Sp`M!*o5MO`)h57kE;m=-LGGvuX znuSCSrYz@$JbhtsyfN&k(w34a<jP%FR~OBsj^_pTY3v30KUrrPcSJw_XMeFRSErWW z{qm$`bTn@8o5Ji+RI&ZKvdhU9MuXo2LZ_Sa)&0Z6rrFuF>1s#gOJ1wGb6W7Va+dn* zlS#Mz7Q(B;UJ)+KDI#56-J053^?HwM=1a@*-+tT{6KZjnC)=Hkeh-kGPNyAn-+T)_ zCM_9Z(ku&p8GzGY=k972rtWheJ1=Mfd?!~a>;CXhRpX`hh=zJ0H7d#AbffOXp`WT@ z^|v<yXsXKp&TwkK?}#3IiYxr(D((k$mQvYIJ8ur4>rK8!_?C>Rx}MiD;2|GAc_OK- ztn9z6<9Y4ik4+*eDhg3jQYta&|E%kAz8q^iKR<tVcBU4mTBsuzfI~*aZg8*G_4NMS zW??<8pkT7w`N1!v?x%u6Lg$ye_0Ai)-%LR8ml=94hVT#xxo~Ni@qgNC&yh<qnXMCw zqLni^So+J;g4DX@V^x364Ia9wv-4|s_`{JxU4>$!?!eGcS~j+DcEeUSr#(HR-qh~E zM^wMbzWzJV%J~eLXi_;iEav;0Z}PFrW#;3ygYLp$Y0Ir4BukxfyE(S&*tLwhb%Ng% z(pJD$CG*+&BO>XC3KS0yk4V^!SHN+n`S0H#a4>f3190=%v=WEScfyxjoC^yJ753|R zrDmfm<Hl*-MOR@WH`0r(AyADHdI*`or}tp7TxKJ|;EB~w^R=tF1;B&7!}^zZOF03w zN*$KH3Lh1eU!4X{J-Bb}=vXf7XlpBOW}#h{GNNJDohszo9!1w{LAL5gsH4~N<?$;C ziT;e2XpoiOGzEKmE;Jm{hL#pTjt?DE95H2IzdnFMq2<j4BqW_)NGQD4a}fCJxRvel z*&f@cmXmg`J5OqoQ&Kp$wf`Z~f=+~MG^tlq6uuwk<At$bhS}NKMIVP5Hp{^7=Ex=( zXv^2G(pB@@uQd$7U#nNz(y-R-Aw&B6`w3WeNC^oE>n?W$dcYbxJ(fFS7TY7JsHv%~ zk2l`d-QKuDET<~G!KEd>K4~%dRb<eDxhb5QnySVWtGR)Rj!p>zp)-y(DmuCuTpI%m ztE=DnA2!;s%49B43ZF0GC%!O~w6<mgIP<F@jpGAm^{4H|$;qT2Z+~(awg%guD%46r zk0TPzhx62<z7n!3XNaSIA!Nl7jbqV1o4vgWNK2ytA^QRx${F+V+wY3rAZrw}B(bYL zZGR~&WYz0h8qL?_`Jq}UKUrpxt65&)kfy5R><1obhU3~ff#ZYIZtW>LCT1hR7B4SI zB9E2FDxuuJOwr2ZAbH{-0<w1y9CEd(_WSqL3c}~_LpLflU+ywJc>tc(Q6->)({xhg z`SZ`|>6DkK)B`mC3&SJ0ZDa>nLfiT$UO`KB&9>v-RtBt)!?!xNU8DXpib56qXAlk) zh?iGS2ePRDecVnaCU&M(eV;Emyz7y4SmeJr7tekc^uPV6tRc4Y^51^$_eH*f#yLAV zy{|SmF`+kX3+*nwusS7L5Bl=OV1J>-Q7i1<B|@d~Xlyj8mGJK36PH6KdP{G*%3&y9 zGft!Q<0CvgkQ{`0lO7lAbWeFKyB5PldV+~L^EO35CTtAl`jnUR?ABdcRvjCutTf?@ zWW!<@e0_bbkJkF_Pp<)vVc_7jg5#T;)00o(M-@HYnO3iJt1Q*}h&uu@7K9&~u&{72 zg-Ghs(tCd_VsQYodnYGG1KBbV^XaM>um&Y?crHh4Vs37N5CHoKGy@QZD<UF-L&_^U zm?M{~l8dLWub+@Q2x_S5Oby=)vyp6<;|+j{OqYbZ|BlYw$teeo0{y-5yT&07v2prM z6xnuXdhDlMdSFTP@OVBu+BA;~Xqx8@A0z;m!U%k-Rqv4k?%!YIYzGjIFqBN76+}s& z#^8^)jAd4{@=gBO`3{!ge$yN~J3CC;Rnb0ZxRKG(z97s1I@HnRAfepvD>YNCa@cGI z#mD*jcvQXC#le4-&8Um0HI%IL;&>A&p5K9iP9b$^?vGDJMTPZp$7296YcsV1n&p;o z+vN`X?THwG^BmT5qL7YQ=1yFZtA=zjAH+96YCLCQ3H><yqrcp07OQuCq2+5d!`m;Q zpxpObTU$%!`FwZC?b=YN^$F8Ci*A`Cb@}o<z{Yk^lMzU}+LJ={?3p*_V+OVIQp@Q? z09p~Oy24Lid~62KI#y{%m&9Y0^DbWl(%jr^y*2hr6AymWp~m!NqRis;&DA-Q$?%W2 zRqWS$O}Kelm3Uq(+Er}kV@0GXgP;(vO_sB=u(ZDZVLjh?bu_4;0<y6qh7qL?Bp?E5 z<f4@g5jBdPo!!aBWnq0i2oQ|X0`1Pd<W!FfQxFb~d-F}E{h6o=BG>kz29NJzv~sH% z!|C`fuLmg|E^dVl%E5B6qYB@_9yM%y`y7MgR&q(62y%Pg>q#W&#Fnp7`W$3pU!US8 zH+)F$LyWRXzVl{&`5M4=e+MHKqefqh@}UH>+)J?e;gOLBLXzU*;{I(4uB7=6Ic@Dp zJgg9TdHIpm+)f!8nS|8So9oN*B7GFA+T$m3iCp?a-<8Hi`0mm*LO@wrZ-Clqles+# zjX`y#Dv1Pjx0o7ZiJYbyl&c*3^#Mp%63=dqh1p2nGjMJI3Gp925=-HCFqtTU7901{ z($e1d0>2-e&U((4=t_Qg%5B~bfUm-4@&1#qeh!->aFRFI7su*V_E5;zC(M~*KKH$B zSo^`6@_*6L(jo)e6$Eg1XEs{~zp=4V8U{n20~;>5-;57xh|SfR4de-vny8+hURmKA z$<?D#UC#&+PY-^_oi4z3K<N-I+a&n6$xElR8Tv1YcppCH@u!lSi;$Y*t}Ai8hpP}4 znbO?as+=QBym<g(76Tg_u3h~pnngPiprw4Opy~9^?ykb&N;jXw2ElI4Ar7d*nJT%; zfI})5>IgN&E9%cT`hi+9Riz8+`~dUf=H_dFrhv|6XjR%0<Ge}YwRtY&ax_=mE1aeF z%K*?vG%uZ6m;NdTv#aZC1fWb$lR>PkthBVWzN;700v5F@a(j-8AT={HGZj@;13y(+ z?_&`)fU0gXT0jO)ZYcLnK%M)g(dEPkd-=973gflD3|>CI`HhVZ@K?p!-|iBnqBAl| zzww^arG>SfkMm*rYeK~@=`ZoYJ{o+hHLSsA_&Kk1`T!tLt<`K@(ujnl<iS#u!b)By z<)Kw`N{itywY{UGnqpWpnat$PqeqYKp`wnnQbw@+Z%n)-$T0F#W!rPA3@O~PS`v-Y z&qZumgntQC_QE6RTh7MW+moR16SMqcENTB4_+znxnY4c;pxK=jiXnV{@8d9s{}i*v zy`QSH(bUts@7GfP0r~SwkMou_iHT~$R8R7{D?C_qk)w)Z$`MfacO~R^Y&<%J2YOwd z^#L`L=Kan%k#HHj|5-_%GX~(kJl(P0qb#wql10+VQyaNFKYM7mtx*sVNAf=<OhldU zJtCo}A4mO*jrChF)vCB$Wd_{kU7`nIDKs?C8&j43l^=awG@J&;LZVuk6#hSix}p)! zPeM0R{|=MWz*RWmLrTENhYtnXmz}<aUFSvfXGc%uM*sL&z*-nxrC%VD9gW%9&1)AG z5YQ&qX}8+*p}`C3(-&Gtu$>W~KAvm=xijZ^dzt3I$HWwTez-cD-}kRx%D1$U)CVo? z;u5kpCcY@Lo_`rbEyi*}4}~XtLmN07i1iAUKjx2Is3sYFEgjJ}I)B%|o1Rd)?K?6- zSH6HB`t130WL#X_jnP8f@GOe#e|Y0KK2s~nIuJqCmroK*f$N7kF2GRT-c3&9Iae`q zft&AuTtr}Ep($#19oC&Gu%~x*VZrUNJCg!xm1f)<*EE1X=vY`w@Hm}J0O!F(?4JQU zng=-oN*%Aw!ad05NPd>(bk)$0w+MpEqE!JA1tl9~0MK-SUmi1Z*eo>Lht)eD8f^^! z3;@Mtd!m$zmexOngy&%3HLH5(t5>i3et&ok0p$cie*hvcPCL%ZmCH|(mw;6a0v?WK z81m)IbFf`Noh&XcHi2S>j*a~R06K(}-#!qeE>Ie#lV!|+BcleB=gl_-EP^EhhByAp zP%5;r_AbbZ9ucBZA(%g4BC~ENcB?Zn)KHq`o~Gh}sT!$VF6#-Sb1X$3i)U~ZPd&D9 zG!ygU+|SAzlzX^)Wg{0o!q~W^=m9t%v=JJ^qkp^&jaIh3q#ZoR-u`*H;TC|Z62L?| ze|Q46@tleZs#U@EnDJe<ac?Rpp8>3OXP;%FXxTxAKIJlL*qN?Yg0b7J$O>N{y%D~> zvV(YBZu2xYHT_a!0(j%+aeV>O`(yqspqg%bf6&awf1^4&IwCkG5CLs~xULU=!yPTu zZJVA>`Oq1QP)`uytG$<)ge<bQwj6){{2>)~BeJsE%`3!zPh>V*=f1zUr`I0-48cr> zs}w+`O5ifZ^Y-=*e){4|f0h*IpPCtfHHfuhlW?=S9GL*&5t+~XADOFmB&n6IzrJ5s zhnePyqod=fwVf&?*`{Kiho<49?D%ZNm7WJ5e#FwkEF`J132h*Nt4PgRq?1_VIH{Pq zt3%(CsO3lhh|NL6gsWJk^N0rF(F96!BKgF{5kC2f>Q#e*!AnDDOk7gTEiT(5IUenM zZ=w5Q5GF6*YVa$ZRktq5Meqr;Mzc2xT9FzPH7%{}Vk@>;Fa%VVu`x9_cf`|C0xoc{ z+&P#oh631Z48z-n>fO2~gI|EpDM^Ns{sml6T3R|C;548B3yX^w7#PpMKdEs(R4y@5 zl27Ip16nD+?fm9)m(O+y9q45ga7iRjPfs8W!~m_=bw7S=F;Suqs#wioj{vv|5H-D1 zm3Ba;FI=4;Zq3%G0WuPvoZJP-T>fgr#VI%}uvjDFpWv56+R!qmaSuXnfCYntuGwpR zV81zn{k26L99ehbi(*=D&#V15xly*aT3S<bg+cN0@tQhRjW-Az<PLmo1n)c&n#<&c z#auR5?hmo7baf_5p&kbqs@K;c&<3kFFwCtPZQl=_9kyrIV#&!|eh=t=f9Pb<(%von zV_2C$pMume!4!vd(~*6ptjFLr!cQK^leVi0OMx(;@N^TUm!{&#qU`~dAZF^~4FY-p z=!ok{-4%zcQj$Z(`$OzlI-lbwUt3(v&9J-x<#9e(`ZG8fh2UO1Rysf;_iIFjhkJed zMhC!+&hzGK<XTHx8>;gCA<!2i85ZFG2pIX}gNC4@2z<fDZUGkn#{i5Ao534POG};> z1dmJPGHnF1)-tFTz^H5jhaboVL|*4A!+D(#sH5l<jCN;g2^drYK{jPYHx3Ts8yg!> zO;3XrmlU8V!axQke#pxmg;bc1m$3kBOioVDYkOTw4$3tUj#KuQWusMq9*!&r2BHtt zN%~&@UyZBR+}jhV?iUTa^)J(eE8H)jFCGw7Y;P<qhMbcN-;#ntXs%AggYzy=5ircd zE>3Sp_A^&1o?WGh2Z9CBKhmQ+Q0yTi6HgRjLYBp2q`XE2tVZ(py_J7F-{akrVrl(I zh!6$0H`kCn^<sZ;4bp82GBS&88lc>CLQk;K(e*&0l8ShcdVw(axV?64s6bn5@J8v1 zXE#J)dig(Q0h;)?b^!bT1Goh%D=R?Z1`v3I`Q@*I@Bnp*jErmqOzd~?@Zccl^b95V z3JBBp+aa1odPv^hr?Vuoh|1TPp;d1=6?t$p*lI;>F^;USZ=EDFF#L0GzfG}D@MsIe z`2aM9g7Dc)9#%}XiAYA9WtinhMJuCtSs@wg0gMb(-VoAD8*yP~6NNrTrbbp}_n$`M zx;OI%MuYTMR2LZ5Q(uO4fVhzWRb&73l#Z8|$kFi>JoD41FrWwMwX3+0kdTrEojE2i zpD?})uC!Y{IOt@>r=Y-XK%;OI1&D6*=~E6UL0u^VqlrU9Kt>}(R=&myhIe`GZxn=L zENg+#&H&$tX4Z@aB?liLKgu+ZS+i`Zg;4iB$T8VOuJxR%mF^@dfQdmNA#j71FMy@d zNsUU~mH)A^vhE7B^=6E<S&G(RZ!VD!QQDq2rm}%Nb~zEQFHDgiJQ20tyLMz%mW&=b z9aZ}ie0F}mUQ)k|PfYwbN<lcG_{+`!ZqEcxE&fSF*)^PT=Kp4gzUDVD2qxank@bef z=#4N{bVu-`;Wiql{ZZ8=#!w2tVSA50l$YRfo=#cuY5Qpa&f}Wvvt17OkVk&0?z`ok z#hxOq=RCJ})F=?GWhB2fzCz@d%YVv!4{6DoAZnz@xj2H-Vj43wRr0M>jsDcvqx8uC z%-cY;ZjsxDB7HWCr-C=UTVqJXQ~VJTzW3Cs2wFq^(mef@;d4<6>5f+P@!dF?D5~{z z{fG2@tgEYf#)wu6q8RK`j@OK@N$|Ul5D}ivxB_r4bG%)ph!>tdtL!T_&d_)f&xywW ziHp{({Sy%#H~yhHT?veq`xnW%_Tg;n-!TQt9v8a1s^VLrnwb@HFW2;qq0@AMcB@mR zIjxLw@6!~;51oyD8H$x0=3{zCv<|ze*VIs9XzHI?oSgN>oV88%?-DdS)zldOgW3gN z&iZ46U9ejX4kDRxC!Cu4UAoyTLejMPgq7QatxQ`Wi>iaQa~;R>c(X-!y&{uJMEfl0 z#^Itky;Fg@Z8j~cO(rwCRXg!W{-5BUay<UA?;~-zLTtG7F8?#X!|y3MGjv=Y{$y^8 z&sXR3rK7<zPZ?C&oryHea<<c2)2-0vBiei%SPQex7rPVO7iIA9v#b`Iw}2nA{QGdV zcMw=$3~ztD0`$gtr*bt<WGnFvKCLVzH}^?F^W(>lTY&n_?*vL>@px3Xp3z|v6BG0K zcFFdgo>^c~s~(XKeZt~fKI?ydSu6_@TJJAjRyjQ{5e_LEZKHtu)4H>TlgRAXzv4`) z^O&#e)}@+kvH7M>*-EF(fK~axa*7u=Q}YBAGMgkiQ;|se<>&b?EGEln087KCliveI z=Rv;|g$+<QlRsFCUqSi!_@o@*a?w{;SMh-8S+vmH9obGsXIzGzvB~t)FOPkMT<5M& zpIOadIR*u><7KpwbJBjO@R*J-n(q~vufO$c^s{1(X7)7y<NAY#B+Tl)R+NqTT7|b< zCl4ZH0rWd<{c8IT43KkMwglg-@K;bmzkq<njSUz`&HPO_H#et?^>6(eoc3#q2+s>} zPPH;~;=SFl?Ao)1uLxymzcGZ7{{lS0Qepi~CU9H0J`SNn0Mtu{Je2@e(D{4-1;P^p zRw@o~lfOCc&Sc-j?*SqSs(%JBl+P|MY!{j_B!h|m09v`XzpsCFwvXVXVACK4T9x8S z+!nyop{1nsY6`$bc?ggyj9ds<Y?%Nz_~i3qnbZ-s&v#&&gTF5?NPA)SB!*Fy7VImK zee8M-UX%4}cc+N^JBBetC;LMuB^SZT4yx`f*4H!<D{ApD;g48988x4b<az6Q`svjE zb|)ER#*4%!s&c09WpeWWY>9gQYc;HdaWeEtw`O0K6z<27yuX0sLIGUDawi1>Q-ruq z>9PMecG@@I))vprPE~((@Bo-O@{W^$o$}eQJrub<!UtYsCa|-(%*P&j0nf*Fsr?b~ zy;=ZxwiIYrI{}}En8%V7IN}7%8U$XOqlIsP?K9)LD+KxRF2CcuQWj)w0R8}c{tfU> zu>V1is3iN!EHr`hBP}DN4=PhInLsQcKq!)*V>bYohl3KEr&F7_TYsAh?qJ(q!v>lK zB;XE!LH$t46$d>6YX^t!0}XI*T`UUW<m=1RH{TVXAqW6~a8M~$uTN)JLD>UN%Rq&V z;YXvR!JdDc`tvK{yvQv(UbaT*+@#gBs9xFnYa`h{P}rzx#V5;JWj`SyIg)o+#d%~c zehDQN^bD^nz2qqSs}{?w)e5XAgggd*UCqga8IaUK_Sy`tc3u8`8AZ>Rm?GeaC_jr^ zTe5(z0v+@o!8hm?A%GHgL_<-CgcLy+fy<<CE|wp-)XwvMgn6CdvD`q^0-FH{rpKV{ zN-8Qo1R?+qvJF!4VbRP7T=q9GmmvsC5|sa-P;SdcGvLHIAFj|?&C~#QA^8Czi<)6~ z*G#P|28cA^BR~)vy**iu@{ou~TEDoy9M~4+?znLXWz&ozWp;L9M#Kgw(B`zHf69$D zaGt4QHdZ+ppRPa6pH;p#tQt~DPVRYS>6@8gqjw*L2b;Ry%;R0TZb)G@D{GlYgj^E$ zBO;=9Ktez|4x~_YAqjE?DI0;-`_4+9BLFQ!(63v!d`<QwF13bx@pVc{3gEo3@?<~& zdwO~x%`Gka6J~|KtY(FQ&G#B8K+t|mAg7~R-;SF2kT^Z|`;D>DrXOOp<Sv9PL~r`@ zwM@I}_O4GAYcH5vBBMh7?tuD3;pzKaB6$4I<tdM)eiaEzn@-MXl}_G;#p7p>U&c?m zuq4&ZygL3f4DO9+u^erV;?jLXTkT0jTa_hM1Z|9<urTA+VB!%6*VCO3z#<1h9uA^3 z0x<HHuY}`u?gBSAHwh!FcUF^(qbBI%K>$|(_ET$O`eS-UFVL4LaykA80rCKFgYJ?7 z&@K9H(*L}HC{h)O1WW?@a8q+2u986)t!W#WT8O)7RoMpt2N(ebdU}-L4(5|(AwN|M zft~t(`|q7O?POwVarIqk_{Uy151SFz)m{^`jIueC+c}L&uEEtwKm0Y@2h3#t4^wsa z<&oLD3LXmGMTvR0?m}rohs2yud(x$<$&a?i@j+M3<L2D>;&k^`ltzX!NEr+z{sOWS z(bquKm(q{JfKS7Lge<X`d;)AHfE6-eW6ptt30437KIiy&XFAC^&3%MF!6*MS>H~z^ z^l|9B7=XF&hMX^!z()Y@p93pus8BZzRIbJC?GVtW0k-sefQ&rDkDos60A>`z=WY&s z1Uy03!3xk@<Mp_za5&R)A$MMSBz$vb2u#@bDJq#@hY;>s1eKI>xurI6C%<cyGJvKm zBu~3~#HBapE`DFmPw|-y-sgAt+z~TBCq^Vps&zw#{%Jom0zHP&_~_|lX3WmGrv5BR zG?kkxN4jX=rF;IKJjvnb&zzR_=K@qc)8`6N_Y3B`0lLJ4t_#9^2I%a#>J=(!b}cIS zakL<R@B(0qm3mxEgXp5oH_*jQ6DV8~-UlZCCNLtWPi~%kl`zY9Ffhop?9cSmskB|z z4q~*p3<wCAjd5w2{=c+APA#glvrUAoQb$l9eB55iIUf6^K}R#KvNXn?e|hqP+h>GX z^JA@h^{>t8Pe%hv+O8TFa`aWF6Epk=YS|tu3C3LMBriT@-<~aonU5};SRii=j<>Ut zC%Q)e-V{!WZYluft_L`$maezJ{RKi?97HOxY%@TjI<oWM@h~*U6Q-jbpw%1RDE!$P zm$ZsBJ+(Ca?Em&>Fdu1^y*JOSFI`&AWrj(9g1a?$p_L064<XOH63svGl(@a!B?TA^ z6Er_*+%Jxt=lsXvQg}4_j-b_2>WF@atf#3XY{ocP<X9LOty_jDz}w}7LW?|VBPh40 zFi;;fYFZI<`WoAmw^~%&E@IY>9vew4VLnwg>5{6W*gqk$D*n*<1c7h>Q|NW;+;&K( zkYvCl)ZKyCe%grc|9Z4t-dFUjD-ktJNK%WGDIPlw2yHu+g5(I1+6x9JrzIWUM@o<E z)rb8K*;k421^toh2`IC5&>^5L3Rg%IKHbJ`n<+r6@4Ztm;^<NtFJ#j!yY$NK=wwr| z=I6DbS46-xT<#<}kE#}6Qb%qJYa+2)(us_YPi}9|r!o~RWIxwB`1N}oRu(+dXm+iG zaI&sI1N&%u@-*Xhq^JuRH%4qm1y5#Xy0OAo)ni~NCvft~ptj<2@kbjNW~g%#@e@3K z@p-C8E>xFKzU?vD_~odM%h^%GWeE?Nj{q{F^$e;8MaMm83^mO3UP3)D$+Keqe>AiD z84YS<quv;swJmT`PeymTjjf<{Hxp{Zzo@W?kzagV^5E4lTe;>6Ln669x3Sd`eep(( z-3Ya~K21(q8XcGk*}%=HqzLo@vk{eBz=E(}>jR>KL8<iP+f>&bKA;#+wL~mmy}HM& zQPMta2#j<kp%mSK9#djO3<aW%1mQm<#k#)C+7xMNm1#4r$;0(<ARys+T0EK}h;g_w zokYF95%SYst>0U9q(*!@vXpp(KU&`+;FsgBPL4ua4-ir`G8{5t$}9sKgMbAf+C@O8 zBk=;ZLCB(&{<}Lm>@J=bkfI`yqiFxMM^N*w8tyYr5>>C7hT5w}vsiQ)js7Hba-OaZ zFT1Tw>0uPGV_6}6nM%}HXL@;Nb>`^|5(d%Z3KPCqt9`H{OeqAbq!$z<RaI5JIN3JS zUIm`upn`~;tSlCQX29r_LDy|0PaS1y0)_L_mYVp>mq-Xud;9ZU3ux!zknux`jC;v} zQ>p-3EZ=qOg{8vCySZ|J+#JY}Bhe@`mjUhNcpyUoa%KVca_`<fL~pA>dJP#F86aN{ zsO4I<E|0wsM5WkB4v>_#Xy}`~V_G^o1X=yBw+PyMo&BX671qx{O#t%+ecu!)BBP>^ z_V)JXx_M@s!Gr~9Ewbp;#AmtO)yADl!!}B`@HOwOvyv@phNb!jM!TmAOWE-v6gOv0 zL`IH<k=e~luV&6~$ewna`Tn&15PnFRQ^y~3eR;y^eqmpCeWEE7IdC@;LCPBrrYi16 zA~tGa3BdBu2kjza%iHBR-S2=sR83AzO{tZBe2j`oFb7TyJYyeVE3#ocpuY!NAu=;H z&XquZLKFn|?@g9lwSlfZkkM?mOVaQ1)FMoU5abdKmz)|jgWAYlgF!3V7tl!#lRip> zD+b8g`a~%sXp%e!qYi+WvjazwRyH0O>oo@2B4CruQotxgBN&VT4lf=BMK2(r65#8< z9Z>W@XSy?%*$`MCpdWI8AQqqmgC2MXV3qsF$IAe<S8Gpa3_+t-HdT<XlmEZnTY4YQ z<~?|eZHR2e)?~pLo8^p-<3E0wE)zACmi{asUsb-(^aGuT;3XBS-~lorq3%+#MOr`T zHyL%sKf_R_B~N_yx8Ee6n9r6P@x)+)0yMO2fhLkY-3O-*aHqs{&>!^VArHyO<jO6l zc|UCt!JuH`s95k*mShNMpfm#)3ivA^hA>1C9=Y2Y8<;-Os{Rzx&>#u{*&zvx4ome} z_-jIL%PI5*kUxCjJD{Cb-s%7xZF6k)sVWD?%hTO&fTTl!Uh@Ic5M^#@=@n3iNNZD- zoV_BqZn4LAVtmT3{<>9x)xCWzEvZOFA~Pk~d7Y*u{Mp>5>uyuOM)BMp@`cq}Sk$LX zDFfVCY#smNVon5VfOy9}4*oR0-$xBgIKCRIN-CZK+0mWIn_UXF8iZs!=*!tSIKY9g z2gu$0!h$#q_N5dwt&)$=d1l?3PPQl2t3NRVPA@DKN;;q7IFkVmIZvbX%lGf!&5wPT zyOTyQrvCo@TeSt2ju^hVG|lI9duf`Fu$@5}t2K33QBjHAH_2Zg$tR)kyt0Y?u#C-& z09>g|{HU=BE55XDmPVsm$Z1Uw*4k!QgBYf3chEyJLb-aYi(gA|G-s9P^EEvQ<JCrk zC8lq{5sHof{;-Wd<}SIT)FA<kd0JuNRANpewbAYA>Nt?HkHDdU@d5ByG+>rP<n{{R z3y%i22O5@k=La7E<pa}7LJ%;Jk}T|=2n6K*`nNRO?THr#1_uB2K)q~k`={rYmnAa9 z{SfVc$b%<LlpwwVYg$-dZs|!8K%yFdJq(tUBcJkdyZ-{{mP+8|%N>J;bnM*RoMtE? zDQOpQsS$%jNENorUyfaX6{!~04frW=u6?R)L+{|y@j3gWC+@cQXFt<98NEZpS>0dE zDrZU-UhO!;IC&lUDP=+eFhr(HXX5Tc?$yy#51NBjX`p9YfbmBo)8QSEBlVX&S{ZR5 zz%%CnIStYs6k<W(I-~>7ti*gA5A*^N8has#4g&Po2ha{iOim!$>7#UXbc2<4#+g}J zKz@Ui#(cumUZmf&2964Wi8hO^j?5=Ouz=pZu7ROpuG+8Xb}L;-dOgW}ASr!7C7K;_ z9V#|f$jr>#J3f{$llx`RqE_p2Ea#9a;D|#Qr>ScT0&dv{R~Td`E!cuN(9HxGO0QZ# z3I-BL`D}eBO3fC*rULVNXMztCQLmPwTaY=w(QwZD5Xno#&C9H2b!}9~$uC~FZyMD{ zu*yJXYU;P$g~#@h;8C!}+VLbSk1Kz$DPYnH3tZf=d~8P*W@fQVw1fG7>w|tzt$uOT z^Kbf3%0bYCRw1=3D@-_XIs0*$prBx2P*7$5BHZFOFfh;@TaMr~7ECq%HxVNRMjn^n zRbL$w$|j@h>(b&|*yKE$B%09U>1E#aeiLNic<sbzbFd-9pTE_N`^_W0XPlo@-S!@+ zU#(#j3Se4e+hg-{R;_BZ@@46Whk8sDIh<>!wN~c2JIZ~mqW=gP-@#@f+b1R_t?x4O z1A@ID{huUy-v;aKHCnp{v}HDZb+TwO%hrO;2L;lNReQ4b3STmTIe|ExYys+^NNbbw z$)r2>Wm8?^zdad3;di}4(!LrizKg8OzINc5JH!s5W%>MEV(Y1)y%yIs&yjJz!q@NC zdC05p(iXK+?SMxb0O-+pE#bNt<^LGm5mm;^(=t7x+@5~W^2Jn==PGsd)2D0`F*-F) zY+LIGVwUIgN4WM{;}IgaXHimA<jYI*QG%yacCu;0)BJzqD(rBt@*HtHgw&oJXHO$Q zJVJZ4uxaTpu>MM{a7PQo#x#|#)Q7^9CSTG|R1%Z&8Jto>p)^6KWwla1>ezvyfwa9x zg0F6gyFnKQWN$6CjN>@Ubk@?!N-L1oQ044EdlBJRB_mpOZp1u1Jgx!H5dedBayrXq ziU-t}RweTB#-CLRy1orj`kpioOq$n?7sq`ym9;NvHZ%xQR6iMwW@r;kDhGd!AViGk zfSMk44;lxCJe9$?6)zYxC1lm9S#1mb`ZWr7;}f_sEe{(aSaA~&_HB2-%K#46)63nx z^Hnx0a%yTKGKrS~jc<CYK?^-FnCr&lhL3>BNx`7EYd|-4z}3PE?-R{j)o@I+TToY; zNE$$t*T$kOF6sC*AX*qyzU##qO1*le`12ieHL2zui=5i<yyc`dQ7gWGu;gtyt+%K5 z{a_87=mlnLh|d6Ae~`B5yjI%vSF<KjkqzXqyr<1Bif+Gc5iywp9wrM&#S@%e?^98_ zf3v^~&urHolFP_6)Qdz!C1aV5KE)Wo6%n0p+?%~^^g>e1yjNsKShAsS&w0FKLBOQg zVEHY4qm5JK;NT!GXoA4+b;X08^AtGYI(gK8p0l8}<&@X?VMxDSTd3IiK`U<S$r{qm zj;J{k)&;BEKC0jaz4<uupFbx!NlVf1TenD?zAtB4tFL|z9T1#6PzPg`tyE!x2D^LY z4F7r1foPJMpH{9<Lu8(^=-d+#Q7gj&a|2q+BIlN~mhWZh<QvQi|HQM;t(%TkAjwOl zWgdR%*-|S*Sw%NKs9rTbX&krT8dGwK*b)Wr^&tYnX7+1{-y#ppjwOT5Rq~HrFEKvX zz5AbEv;_uvm(OslAQ!4VYHSK2rX+1pm8#2J-AdKEz2HywU&&9zfAWO3R{9gjF>oCq z6$(>?9^`8_jr(R2I97I@27FP@*GLqf^~4o&6;~ms*}w00mce(wx6T01fT+j=a@e?% z(fC*=RYz8x%P&sXLmjM2_J6MGVqeN+uyu{;N9-*%>M(GV7%!}lzM}eL`xLP`UD+6p zY5Uwic`(*GQ|#(&v+*@K(Gjypv~z?x;R$yLXq`<6a3S%I3qbCk@tI{?rbKHWKM#+g zWOZi2?Ua_@q0x68vK%=dAQfK*kUp1z$;+%X1>$0?J!;5RkXNG2fq)@JqvIdLk<@$- z*Z&){JB^7ZF#NL1ZW#Q^^xT&I<6zJ$`;rKv?nG1tL47cNQJ6ZtQ0l;c!PTqaoa(N- z<5S#M^TEzYJ`IWyiPG`^F-1|l&1_en1%qDRF5G!rzC{9GQ76h?L}u&M2Fp`TQbQ?C z<NCjH0cA>ogNDm58+kN5U-<pN_VGz=HE!4@ITK*h4rU`VkxS{e`BE~_Wh_~wRHPn= zYmBm4=}7$qfo5JQ4rgaMaw}4Imv1hLA~rp$Ie6=0M1yYiUCmwTZTtnKPrioO`|SNB zX_Wh8T_%p}cvJ>b{Y*Aw1m7_k-+9&7YcI+@j(YgAe0^Gt&xj`3kCr)+&2z;K7EQ0e z+xLpr)^06D#9GVj8qG`jBed^n5iLx^Y|=Y>$BR3y{C@1m{6+65Sni^cyU3Eke>WAg zn8jhOfyl@d*-!}{23G=UXw>TuCdgv#V=4e?5wM0FtdyG7<a!7mQ+1<ptseMyF4^_A z1-Ednjfr^>u6u+hz1)SNd;_nb#cx_>MsI+3K#|-qYf_`!@91%}k5wxc;KRUSQ{Tyx z8Bh=*j^aGpKpp-ewms1-bP)KGS_aDR$3s{rQ+sh-QM1E=on|UM^oyRqc1k8P`_gwn z!&rOc6T`b7WPK`T(}P+&$Y*Bxw^3r}p+@JHuv};ZuEwU{N|}1Y{ruxET$e}pT~MOw zl`>C&xUgH+vXlbyjGUbO1n1>g_`gX~MBTjWxJFIICFh+Tbi(qq)cyG#3fMjl6*@Ul z&y$k8KIgNeFSex#N=;2(n~ZxPm$blX@(|F<D?!sp?L}b<*VI36(CjQ1`LqrzIrc)l z1qlz5wGDsMNx2q+R)9(U$OP+8+e*Hp9W2EWqe`qjRodk^<TrM|3rAe|*~l7tdlk_5 z+F2P<faO0Yy^n5+FZF-2dj4vw7K&e<>`gneSyQ^5sOxJbr*Y&|knle2N%5Jf{d?Fi zC8%D(rhrVq)DE2XtqB(0yz9?Am-R9S;1y)F(Ul~LS;3>z=hKC|F;k>2<%CXJ(6?gH z7&Jp$|I#wlXyvd;CT_IQgx*nPvS?*z@CKJxo3~IU(a$?Dv3@8OCN2tj^{SyOfz3m( z;uTqdahhM8&gX@e5DIzB2R@B{+hi<|{$KrPj{C-QhbT&;1o%esdb6?axbBhmBAun= z;Ejt&<&Tg(<~gjc5e*6@SS{Mtphh9;eR{aK*Q+^(zV4}0(6?m_4x)(ky5U&78^{8o za%e<FXzSpYuQ|WYZ^L$he|BaFCIjovkab+KwMbW2MeA{H6IrIK9(wYpGI+lotFmW= zzwX#RKCRYr_cP7sfshR3k$gD33Xwgzet5=qn)z>lJ5=1vuw(a+Plz+|NP*u$y_Nsd z>-jUAwLT<Jt)$3*Ieve)kFj5Ju0X=wJ>mOCm`+lTyk+esYnv>#;x#GVW5T-(#fAIc zTbrFFG8(OV!F0C7Dj0z6TUhVk5fefZBQCy0wjx)yGXtB9n=}aetyraFTE;RCi?MyX z1upW{_K^G^=0D?b*w192J_TEA`wEjWjXdm|?qjuboEc9F9EwlhsiExb5j`jZ_yd&p zIwc;s3$Hh=Yk#AWae>JEH^E%=74%Er<p*PIJ*mAEAX6>n#LEK5^EWEPK*BY^DT?Cs zR{HA+bA|l^9_lsbZ~giE8*g)scZ*)JMEth|o8Elw2gjQ)uR;jQc&@`kvwk+jFcul0 zx*c|J)5tt}M4HGpU(l8qA1{5Ye~s~-qyc^yXL2mh*mG;G6Pb;c{NH@sRoXYv4e0-v z1*omY8T_F!%X>4;iS;bRS2_#*{xdkalBl9MDpV|+M8=f*zJJd%cy{(n<#4?F5)xJL zY5}AB@f!6aPgbuKgOFB2yf5vvb!2OHXL^&}6)jUsQ)w&>v5vMMr0^3Te5h*w{8K`v z{5@-lDay^woCI1FviWpbi~^%)NAC5vz*{4?oZtlU7Uai5+OZYh{4mhwd%p0b+*0g# z19;zx=jUnX%O;WowGpIcmVQVmH4Na5wt&F`JAs4c-Zn5R+<xoe5qj&Q^=zFuGc*#g z?ZAqu1kSzjZxQBWTdx(qJ(ztJ(wMNvJd}qaJag=L3WWN%E5c>It5JP7+w(pvJ&_3l zE1yN)R2I1@X)zg)*RQlb4oWr|(^%Oaf6*r&rdMTsd^C>ME3&&ja6=2G%DhsMj@G9G zzMm<*w~SAq5sKZ@_%SM|o#^EC`QQD!^7M^!j~#54rL^bDRVN}{ZC$~Xr9#{>D=`1F zV5JOOleM_EVv8&x7*|Z;PBsh9Rb2ZIcQ@?7tY2XJn`av<7FAEq{TP^aDC>(8LWE+Y zTu<!_AIN~Y@3YIxC{|D56S7IE0S%e+^?<aqvW0R?nO<IpXvET~B~e*5<U)Qt>cTw_ zoKPQO`#8+l+<8HPxH-b+)(H8yHC~El`zJt7`29xQ8<`Zg(r>TvS=0Y*U32i@H@*|o zH<&SUe;UILuq-R$_5;4)v6}HKsGjhE`y&Rlkx?HMosQ`&sDv~H+EA(Kcvgx>UWNTT zxr6u5pX)72du*OjEnCSizpKe+N+6T@%fTn8Jzfun()_?155LVuS=zDrek|+Bhw#-z zTwp82(dtN&(ST;!BWJhG(U;!HvL7pBGRtElso&U+ScNG3<**Ub9-qA`|Ef}?Cw7uL z_CQzkP`G=1!uF?l<W$suw_an>^$#TrA{9tI36f+Blq9%pU~?^d`Gp{rWoMV$YDN}} z5{`o*Z(*y8@T=k_*&726cyY{$z3D;=!N1MB2=)fqXrWo49lG?jOW=Hc?I)K7rVpCH z*|~F7!>!}xi3MUfA2A3LMUA84hX>j)zqVctP{S7251Kon^g-YNrH{5IP(w(XsvJn& zit*BDZ&H2e7C2qFxXjnq7j7&8haM`>P6CeFBN0!x=OSO;n<Qj#F^*xi*$8T<HX~!+ zWx#>npFe%I0{8BV|9+omSseXk@$~{P4x_4g#Pd{^J_hA%^f*@C6<}h*b?ZHv6`oN1 z5Fc?Y=E!QqvW5R$UdN+(qNIoi_A|nj^ZrV2z!T=VC7JK4VOF{r+0JdR-uL2sC44!O zm&$T*I}IEo6f~T^YDcTc`lw{aUEPeomvTgV^ANl<nmv1GyiSvi6hvBGP0ly%{iRdP zK+cvHJDZq2@3113o1n>5fu1em?qbM*seFXvg*ark#=W2O0akpvPe#?d0tcuFBA0%B z&!R@8_U-P81?W7w9DnAu0n&rzt%W3<b)m=zyTlBw*43x5@Y{pZ9brP~%+LJ_?G^5p zS^A#r-%;QVzx;2VQEIaP5;PA0X<^;x>&pyf&}Mz#TWariK~a6MbGe)0;-Eli>gVUz z5BgMy$)N>;AQ?5rXBoue&NioCuZC9X+(?;|Bk8iz5z9Hq6R^9lQSML7IR}rM`<9me zUM7~skKyfH<timT`iyhipq~Z;Fn}juK3kVk;x}NsGR;ZQp%b_(d>zVJ-9t|;6Wn+E z6_I+WZy!BkbK_lVM><>)E4KuyC+C&SeVh`_XdMq?Zp)+4Z~}62c`#23=G<1>|57#o zd=j<^FW}6)LLV8?czqH*E~K3)C^4jjI5+1f7Gsc*r+-HB_xh#S4DP+}Y~7yhD=HIu zQ)VC$&xL_Udu0Es$Zl00(c2%%*OWPb2V;3sCmobbLv;9;h=ZncY5iacnthkn?ZrzS zk4eI3JV*cu886l!=V*@&0h2c-N+gk04nFF|f)tTpGuDQG5`wm^;cfqQ^Z9d}h~?)A zM=jJI7YB5H)HcNb@Ff+sb<7mYVzP0$v+p-t?xjp5r0kbU8Ix8GI(RqGGV<H@Ol=ad zi+-67(nc;Tv<_#gLeuI6sa}UI`MqLwsuFbW_?IPu+n;v*TSMkYb+?VOl(HxtcW&J; z11QoZv85xBNAi7YoQ2dF%f5nUIVIv{CM#rJH{sJ~I^IrQ%tCRPg>U!FZ4SEn1_Tf> z{_U+aI*|X)2V+HCmdSGBj^dH*4<G7POI6yAXJDt|$bjxHTroo&(d=+4Y*{qAPExte z<abTnQj*3iSC&G6{*tL77LyiwcT!UjzT!8WqfIpEo10ylj10x<vgu5ftoy;lDEo`9 z1xxMi(#R+%>%do)*Fs|u|9wksc=D|ndTuMz`<S+u2^9fj5#RoT3F<sz&_m+0n<$Q$ zaX+<U<#Qg`k(#J_d~q7UZP8#OsKQ$0dFuh*XK4Xurr2j5JnQ0SxkR@<U*VREa9$k) z#O1jDyWF4cNianRM(Tux*{svI>Cexvw?6=+thD{~b|zEeB#&AF@vhTYkv<Tr5#M>0 z6v+o3%eVRd#&=>JbWLTHz4z}zV^+r>&o&sx%6lz&F|mA))^Cr0L*Jx(xJ$?3fVrhn z-BZzgM^ZtjaDImk#EcK#?y%D<H&U@nyzPC~Ed}KId*E72IM{X%!BYn1_oVu<*83W? zPzsX9vXmCr-ad*1BaSc8stMOq9OrsPga{*npNDwC5cEe4u2+uth-(J69&@|Zde^mF zGEfJND&B2Aby-kw300kd!)ML%bTic?U%V@U_fr-6#X}1%pyh`}aZ@<#WNCM{rw=+M zO~B{d@7zKAklscoWO8fidgUgh65Z}je}}%!v?M&@S&~H`9uTnNP)Rj17ET?)!MJ|{ zN0B3IFp<9Ms<VN~OBEFY#MqzQB)6}GpBQobrKt{WbV`F+u8y6j*z^AMJ8-}w(W*2M zkj|27dcX<@HE?83<%G>f#r-fJK1S_~n;dpdMT`n>jO2IzA8dVPSe0M&rG%iQlypi; zmo$igbR!_$Atl}2(jg!Xf{1j-r5h;;>ArM#$DHf$Kl98p&wSz&_rCYM=j^lh+H0*1 zW1S3bL@b&6pwWx?nLSNg*@f<Y%N5TR{THyh(g+b$3uXxy@mXi30l_4ey5D<=!-a{< z5}vi$BzfL+V57(5kgbOe(5}GY=`QKhK4QQvRZ6ip?TO=dSHHxkJ_-Bpj%xawDdf^T zKU;HjF;~l-NH^lGPlg3oqBY|!1?u-#iSaa!#?7vP0h$ha2bG}H?^Stoq|?3mte8Y< zfoFHs?WB!1PV&DWxN7t6UA82qCyUBz7a$o-6q%1mHpVb&?8!8JD6-bvSt9pZXsR3{ z=nQ&}V=-F!l&90Kqxa}InVfS6s+=bqKiu3MCP?{jXJOe@TEyw<x$Y56{4&K+{H2EJ zHL%$1Vgb7Fpb(iTgeJ*6ZmjhuOq6IO;|*vmo482n(eN$#Tr+32J~T8+VKe?07Tf~A zOWM5EY9d&4L-4tN3TQ+*cG@i@uQfvI?e`n1f>9b;CLn~ySAcVEIorfQS@$j*SFKPr z*f2jd?xZ2{fcZT&(stWNusg97LA@jFy<9V8Jx0jZ7X9EOCB=ahg62P#PpL{Pz&*b} zxqY@hp7@Z*1xOH7yzXp;+689EvE6cIyt<UqMneAuJVDbTB7tJVLp^%^McOPhLb99M za<<#rW9UlNh{11Msl-0?^F_l*!`W&}F59t`*fdHdY$7h(w~sM530yuZmv~gG@BX{e z4_pq?NiT(*Uz_y9%O*`vDsiQY*o{bP)nV|vh8!%A^Fk?mG63q|c)nYC)|(#-$H6tw zw$_-ykedJV_R9-<gye@>2a<w3DDN#vFW(lgLa3)#>sKhRCrR(j3h(epG}NSV*E22} zY7IFZq0*RS03m(#WnA3ReqF4Pz+kFr!tlYuD2B9v%iH#Va?1qL`-ShJw;)u4+t2Li zcTrin(~L?wHU_g~ok`iFUNE)$>xSa*YrN5{Y}i*Xc%NH4k(kG^n~mtQ&Y`UF^aSxo zj}vTRs<oUpr}d=VlH*dqzK=oTOYG*(hv{18o5Pvv=R`cUtuGmoUP;cj;mV`pcO>h- z8_RPU1{q$A@})7q?}MN-(S%`t2Td%7p6vyPDzV&p$(db4*)uF2$Mq#qTto~aV+>;B z4!>`2XCV3pkspmCpEsXwdr&l^?!w-&eQS|Mjx^333cveUZGd`dqzib*9+$PAaeAIZ z7&f2HrC{=P)=jr>G$JhRn_}dRat9r@j|(W$ClikAWcf~Q;Sgbw=Ym_VYP!n>5aF0Z z-eFn__${l*k1tMXVCi^$7(3v;R@<WEv%VYu;ZmYAwuLEB?>?T%Dd5eoR)VtRjr<(D zzI+3s)8rP%kG@;(wrJ#rrDu1{&q*{yVV;_P!0@)Klf*dEie-=Ys~>hxiifLk83ry_ z4;Q4@st8WrzoRE*&b8$tmwlre%KOp(?^|}`!5rVFGPplaC;)}y+H5#|J3edO9uXNi zp)Uh!zLs+)*OZVMaXHF)tl+`2NTWEA1W4PJAUt~dJc5pJ-y0|T{yN)rk7$y;#~Z5v zefRaa1N&nmKs#~|Z1zl0DqA%Cr7jc=8MXmgDDyq?B^?(v?h;kYM2ULx2&Z>+8FV)j zKGV;q%#Ga6lNRuu7OW%tAIqm2D!)5n*L${@dMuxb=&$iA*k|Lo22(#V9^4jaC37L6 zd*+67rLDx#6Zy0Uer+Uc370{I+RQhA?gcJx5YOLN9<+-xBi*-K-`wbg@L3a>2!a0Q z{*v=KIuIlqF29vZdGS7mR=U|^?b5s2ufqQOLX6Ws5tHT<(*d)ml|7o*mq46O^NFW; zXqEh>m{#8uEjedPs%Y(IRm0sPyF{x-lcKdZZRz~?YOKBuUWJ#v_N(w8{95J997#6i z4bYT&2pk_u%jjH5=oT|#RN)WdT`~P(_t-H@1pb`7xcAMpv%~F$XlKY#7^UTgoZF-K z(P`k4Z)l|{`9o$3o9}~HWm9}`_bEP3otw`4LE`q1VPc~XQrO|rET}R)DbMyC8rR$O z+pLWTZF}wENqQL^H%$@z#M{z+BjJ4Urq_6fT@27&V&eZ*iEdfOy?c2;*KUn(xvvE> zI+X&Sya92E8Os%YFT+r7>-lGZsqteCqTApQT$z;&Ypl*6LE0fgi|fntfn4s8=fcs% zm=@T_94tbgCkd)>HE&|doSS!{tC#Lehkh<7u-$w4<x7CiJq1OZ&te(5*L{u6Q=!~t zgP(c}ELBC?Q)D%`Jho_4o|vdFS+d_R5Y5*+1YUJRIe#6}f7&Pshn5a0QRxll|GUE0 z3UTnB;<LtIEsJjbX?IBgfmH4r*{(xx^o$v(XD&E~(x4|f=-`d!zwabs%4{Z3=?wK2 zHu;oLn5S@Mq01Im@a^9ZmvRaUYFq1nGep8`pe-DM-$|DxctJB&5_qys$%F>7Z)_T) z^2J-tE9kple@ovVts7v!l<n(k$0<xKir=+k0`<sBA^2&1f$75N8T_I>kr&I;CjHBQ zH5%ex_2LBQJ;zxN#N1ndxEnvG1e5|RFO_v1;oCFLfDD7*XRMv!-E_F|;s;{?{VKg$ zo4{0VN=Gw+{!%HdIry7XMS-6y>{GoG;%|%8U079CIxZY$s(LNfA1goizZ)}`9f_Zj zmC|Bj5J9@{>zG89&ZKCt0#6lTxecq5`g|oM+7(6Gm)pxdYBG$b>MIs_&&FgGy{@gM zvSsizYX|il{!oNLJ4B*jh1YBJU*%34DpJq0FmKY2<$Dt7OD{<t7*<REyX@bI8UDt7 zhE}~vo-b=&F#Wd-v)}l~uEVk)=`0X0f{YZMsH@NP(CT6ATCMCuMl3329(_^(-_r0( zpoZ}0eR+vYs(*LS$sWJw%lFYi%HNmAX!_Fd0faB}mCS1J^1fK>DUfFg3tvDxf{pja z9<fPC<noceYQ8Zh6vX5XnKT&GFb*T9YuUAZeS)h3D=Fj5M}{+MJ-KX%f<oui6^qo5 z7CqVd)8+^~X;mU##=Z(AjZdbLjnsY6-(XIYJWu`mT!>uemr<c6n;G1r`?g3aB&SbR zu9F0obI%w=E|8p!O2#tc52imq-<ipGL4DbFd)R9sg@Oqhkg0EghG*q+Nf$ppATaRy z=Z>Tr{RjU)VM;rgWg~^_1>i+y`u(f^Pn;mms6P~HNb`g|DQvX17Kn-71mQC1I1I=p zXB$a8L#Z?$1C}H$Ei4UqB22gbMBG*{JcJXgyT?wTSLFR^3}sffv?pl)isrb2@#|BU z!_mID&nxh2{Rp5J^ObR~(<tk0oQ)WG#|8^REp?uCy8W&@i5Zy6C9^mSJ1qfX0Swx$ zOhx9UJ<=P0tW7vWxX1!xzCRVCV*f7(%w+Mrm_8UyWcYkrD}-D7fzcB~MUJ^-AR%<Q zNaOK*9dKEHeb`q!uCZDvsWaMedE~O1Vfr-nYiP)kM_QjrXn>X(dVW?0*)XFTp}+qc z2p*)%r>E`rSEXOLO%IK_pEMwE?#`1lvX!bWA`e6wr}mN2$}{q;XAGe4r-Jf`DS7Dc zBn*EgmUfiP)maEMGWTkbX-Hw)!~M&1s4p75iGL{8k>+IxP|6c+jUoV&S|Y=ON=J$I zg<Kwk>fW=XaGaHfO``{4)ntWypM{%we$R-(ZjLIi69+x%OPRqXDe))&eb$>sw^5{A zxo_DDq_;KTzoyx@=4WguxA#8I6{m7Mg@@mxXimY9o)RlPwf*Z__#o}vVH-T^Zf%ZH zCRiLxy=t@rOXa2ZDqL9st1W?UPF<l;#pO}C!iYsz%at`Jrv;b(Niu8ad;=)z2A7Oi z<HNarO@)<L88+$MnW}rW1~6Iby1hsUyNmfR*76t|3=t6s5+pJCyB&iP(_#i2<Olof z^DQ=Xv!wiqVQ1SbbxV71n^T;wdrW1x>AOQd5+BL0%3j(pY-^QS4K9j{ll=z{HmPc+ z=nlMbW3yhuC{zJ;{sr#TMB##-f?K_f$y3C(aGY3rWkh10n>bqe!A0}4)zNB;>40)h zLlf4_3_MkhSa$iIl;-d-!NmU_EqNf>aF75{SclUqbiW_A1cHL<>KJ^UNnQs2XbCZi zuyw%<jUvX2cd1<cMtj1WWmyF#f$`QERd`F{EoX#Fp%~8mUDM|hYoit^uub6>ih!Ig zjnfwk2aFLMHh{3tV2b6Z_S8Nl!)p}KA>vsqXS|Q6uGpl$KMqBgVQ--MwAGQ5=gCc~ zZEmw(lUrtQ{m33njfJWDuQU_vCAeD0hcww98-d&K)8D;^@9BI(>SLfV%SYXtHYC<^ z+<e#Iu#D5`+wFC;V=2S+y1kSS5|%)Zfk20r=e$43?umot&h#%1t@^C2)ar7A#hWqe zb$2~L)AxSL+O!-OAL)<BX#IA!9!t+>CR1BGALZ(%=d2m+e)F<G^;AJT^9!|kMLJVf zOL}$Tc+Xyx_*%t(<-#rK$3uJC%MD$ebfQUIL{!dqVk!K4e``S|H-Lo=h4Fg=kwuoe z2xx!^18K8YqKf`kqr>#(E@^_$wqyV5;&F}*J8CLL@qd?r&fy<Qz|N$V^NW4qc`!O% zp;T!ySZ3~txH~n6G4|`j(P{*nL*4=g9;@Eq(g1<jWy8Yu=r3ety6=7WqP9u$`aP(Y zg5#n%amcFwu(v6;9x@ItH#R0sgE`I*MIBT6Vh8hN%r?8~#IZ?C6{@|+m?7_@bfzX| zeGNtOQ<GMYFhh@JmnE04-lk4j9;Bv)OGPUE3%MzHScV1UXk^wrw|P>A1=B!PW+?<g zHovqzx(p@vDNoq-xCFcv3gui$h=S4!#HTh0Uj&bw<CNpPICqJWs>%KM4Be`>(wH(@ z67dDAF=fSb761KYqn;Y8i>B{}oy%ADeM#so_mj34(kXww=acdpjEJVPcZN{;`p!+u zq)s?r&fA+IXH{PX;hZWgC%474Ly^bxTyWA;(ivH(SpI|46gT>?h@)F>F#-Z}q_7Cs z;e{Wjzu(3@i6#ps6EZk4fgJwS6|k6lnd!Uee2Er;_I)VwP2`ms;zkgqew-ImW=l#n z*};$SzVH9V;oj3;au@f7CigclJ`@_wak-y*G;%0pR1WO)L{;T;TOpD1zfI*TZ9dGR zd&tu%a!CL98L8FH2kqMSS=26<I=(dZ%m1#dt%$JlKtd$+%2&{Mnkwd0uvEGL(eAxI z{Zm(_dyG#A?jF$sg;?Qct3yxDJKCWF?oEj8QagK}KCcLB0V_-k=(Hat(PjGYUS3-% z)vx>B9Ewr1JEQ0EJOndTtA@-QI{;Ou1q}gt_QZA}AeDPx4Z`$M$M-P%m8jY$jqnIm z*453;-q;E;3mrvW>bPlze=p$R@X8+YXfe-AoV4hP36HQcuGl^`HU8KBzLDAd$e`Z7 zv-IKgGIVc7*K>&~;mhak-!u;7zlW+b$Cv4G>2>_vRX5`n|L!wl*`xle!>{YmiLGx^ z1f~G%e-ngEfB4Lj-RRgC0<5{<MasX{Cu?*K<yriE-yFrR^Q@(9G3&C@s+(o?rkm!o z6Gas9&j{)hu5cG62NJp*cG|A5-5{cbAxpgP$d!0QQKF439Y6hfqL|QRaBF+#38dKe z%wlW2_dxQsE)hIDg}(6Ryl-bAIv2@QtPsvc+jIIOJ-7{p4B7Xr*GrP(M#Ex(@lf7J zxE2I#I6~6iesnIb9<TMCRgemFp$7ySu8I?IAYzb*41U}1b>4Zq+Lc*~;aAQEk@#h< zC@@;8$u4klo8da|`1ndA`p+jH#+Q*gPqf>4a#$@z6bG_6AJy=s*BJ0JI?>_%vD;`s zS>m$nt?`lu)TOq-2Ld33gdA^AH-L!RrEsA=@K0{AMo?bZv$T~;^U$6sn-J}0BJ~mn zMX5%IQ<RdVTB^C^8O=W?aKdxm7GuTF@fCGUWS|Tv(o~8S7R=3@J?U4yt<R`*RinWQ z)z5DXft|WH1CSxS*C2BQ=uBqmo^Nh0&}#~$thB*Fs%<Ce>6PK<<K#Q2Itgm*aWi_I zY2B3Bbb>m%Q8+(c(d&7if0)9jpd!Q1$aY#CJ`sTOD(GbM9VJ^0z|t-PJiMnO4;Bbx zvo*EaK<>FuZ92TSz4OpZ0NB2bF2M^BN^=EIYt?TY2hXK?2sVH#lsc!Dz1M~PG$vuC z$?{zI(#dfzc~Kzs30k;<(kDc;r(<w*{&;>Dbl|e>LZYN(bFW-*bOOocZ-6yUl%Pr{ zcr-RXvLpH2^k;fkn?~q<;&G%^`-LbxIz#^gVKPfcaUhua+Oa2#cb62qOVQ6)-xo%O zZgM-GR}Bhti`qiW-|I<XJ$wj&@*cvsHvFIl#g@BKf#Tft3;@->GAfm4>kg>52zDKp zj*F_7g$!q`#E9&{RV2`f{rz>oczX1;(@As2pO156`Lqgi-tQCluhB9)5x}|L&7>0V z+7;i_7wz<K8of$|-Fv{K2fTv8Z!Yt$02X~56*#On-=BS@SvTww8xTO@?Loka^l1u7 zMC5Y*@nmS=>?R*yY!kiv&SV*JjX5?Mt5fo5QroVf;2GAj)+M@3G_(of4q0lQSD^^f z@)hyuPI(?|BqIrl8E30N<hcvEjvyCt9gy*I7ZnuUCd;Q;ztyTm8_V-I>;!mf82OUW zWh<$DnjMdi>?JwG(Wak!8l!ML@5f`_gIbv$DY<LOISy9YMRv4`&fbi)y&q&VP!IWa zV<kOUr0|eGN+}>wLNHtso=e(ZTKW-f(l4mH&<ZZxP%Z#dkBHdG+KeG)dJYR+^7OE| zj_Ay?+Kt3zMK42!lX>IpE&i6`0ofRB1%9L$KGvcAQnpFtN7Q0x67zWWjTB-l*oH#p zgVhApr<JU_l~q**ilJZd7V2#GvGx{F0d0?2MLOZ#TR$5Y8tK&*A|H`sfs*7pv-_R% zE?qo)mbZn9GVH*M4sb0uTHc9MPlgSX<tz2tBRwfYc(nRLY%Kiw;|H)@Cw2m^vj?Nq zmM_RKOb2G~C4*7i7am>#X=IM4YYIOeHnpEZMz*t+ROY-lH%X&c7>0<e!NF`pmo^^e zg=o^=M}m|47cxmq+yA}<Y}-_%L3rWzXq2+&I$^`zq`eH`q|67XUgnY8w=sux@H=o= zuB9J0TNfC6?LWb195z)Ku$wtJ9RMusM2#KEVRK{Ql_Ul4bg62QKDkzHP_q7olk=t1 zDk6Z^acHOeo%Mau_vgfZsT~xp!1l;pK3%6TA%<1Ec{AoQcF*^bWnnIxSzHm;y{7Om zSMWR@iv*mD_USKOnR~Tw%X#>sp{S9F!d;oI)uZ<55<MwGuFckru}cIvJG=_U*&<3a z_UX8OBC+IbZ5slI%_kNjnIO?+GDR!aGUYknn-8~3=lxTF$z}0`LB*}H(Uae?CyCcA zlDSp+)zt>^=gpw~IjlOu2778aQ8*oa-wZb^sQvAY4S=9!%k-M1GWct5zhK2_GV_Zv z+zpqRlk{E_@S^9%^xUGrBS*1^!jbfTd!G380Y5R4-Ri*O-XnW9BgR#*>ev6~0?0mL zjABndY;vVh!cM`8x&;_Qm#x+0v|qI?sY&0HnM!*hAFp`lt>x|C2ivO>0x5=F&z_-H z0qEW}MDE+XMj(3#pXbIO!w<;Od%W-B|4Oq-qF*l#^#Z5K{$$oH*uxbB7)QDvp^|Lk zENf68T-@bRzjZYp%nfZSqf#0pP(2*p{OeyA$u56*dV|&W(O6Eg*M9cNaTL4Ip;sB| z=WzngBl1JbCtOdY0QbKI7<&otZ92mo*8nqnZJT3_1%OP_|A9;jW26Fog7#GXbv96! z--#r*C$htdEK%XaQ;b=%pFfkBjVJ&!j_n5Lf#lWh5#_24_OX1(_9VZH-dz7rvF}&A zYx>kEGU7**2EYJH8W^B4s23ANM_kysLpia8@a@)YM)H8KV_FpZHTgv&vP<FtQ`Uf4 z<TX}360Ua;(ZRW0zUL2)Ui)8$$uoF9iI+siJ@CeGCz~U7UvL>to~<{i1EuGpS`5I$ z7=`c;znibZ`Q8}{NENBKgNDPOoGz<Bej2O2n_mT3kAG}BKtqIXEtcQbd*HqPP^r4F z=ehrM`Dxu>`=b+4{^FfBOaUK?<D{-GU7Y04I10e(Z2M0R0@&0}+xN}e-})ZM9gl@8 z&c6w=(Gwa|frEp9DBM${XarGu{7MF~KC}aP6^0W$3bC>6()l9Qqnq6y;|T!it~S51 z2KrUclTSMn7j4t;qxQmhS#gOz(ZyfxTP4qZWiT$7UGIl3^0Nf%<@T})5mXo=+Fx{2 zUZ<|<@Hqwp<~k>E+Nw0^UtJ6kUn|7T5Rz$K`uLIu_1X0yeiXYl*-1;(+c&-Tl}`%% zUcdbd(O>2rPHQ9B!)`ux^|s>sGiRUvi1Fh7*%m>RmV~%?(^3-i8;biY=wnvX&0me> zRg69;s9XUVNUwPhOM%=QQOE<p+Xp33^)BZ3)&!y>`W_DVYtDK)msAC{S*z<)`ewt4 ze7KD2gUwIF`&7Y6*%op2L9gGnLULQ?gTZ*c_Nhi<F|2Iu1XbY6pBRj12r2x7@dS25 zV~CA^6Bx4yM2{m7*FJ%N5SSJPoQuiXmW5Jf?eaD<+6f2`U<`!gcs5pgqF{#hC+x#j z0D9@|Vdvfq07?!@Ite<97pk_d93`VOg=K!&e0%o5m-2@?2PR_%5&|qb1*Zq8S5(;E znD=#G*f*3fXzov&W&QIXue7Eh!YmJdmkLj41rM5GYtd7x>k>6P-w?}HC{H$&HW$;Z zWI_!jZJZ0BQ$Go-+l{*CeM|StdVTVTe!sEit?+lc9gj0{$5zl005~W5bKp`5yeAKs zrNlD{Z+7v))uS;3nL^6@SVf^swKdkA*^(-F-MO?2r>y*Dz<C$R_ull9j9Cwj+;{K6 zuljM!2e$L>nop(Og=q-Y&6d0TaRBBUlp_`zw2`I4GyganqC#-+F{`|T6SXW1eH zz0;Et?YVm?y*>isFrYgm6@c|<3|?zsczMlh4|M;DKrBW#nE0XG)r^(Q^QNV}G+WnX zFeMK7vVwB|X>!!<ORR=8SoJI=$LBSzzz1&1)t;J_pElZ3Uw@B(T}WUrcgPnaae=;f zyEX-v%r7-Kef`Tx2gcQxoew1M%k(|5fTkiXbjjrMZh^!BW3<`R73S~<&zgZmPo-E8 zibT_EpNXJ_Kp4e-4$@R4lUB!C7_)~&07=NRBTxDTUG#$QM2k?KG!(=^t9`9G(VKIP zz7(vUm{1~a>+1tt)7+E>D_T<DgTCXU-hNLS)&gJNp$*lvLY)Q<paG);&Bp^~8S$Vk z=R{igG=J9vFCXj_1Xu^NuWG;Rxj=*Mof{;4v#4y315#}XxG&x%`gRDQ2CW^8dzE9W z8-_n}UsEj9nDmBmu6+B9wldV5ZtAy=^-Os%AhvT_-7qcsK6+o`(@;4`It7f$_N4rd zhI+vnL^f<&*q4We2@WV^g$R2a>}f)LN_@Pxrm@BfE}cv-Yn&OK_CLkg%6$D@Wj=QR zsgJoRnyvc0^lt1XFMq2vw>YCN33Tx|fi?@YJVVPMQxD-`cVbQfDk)Ij=jG;fpb;h8 zW|OQAlJ3<g&>r@=H#oBh3-jZ5UQV;4P^DGWaM6dj&Q;m?UadUF*nXNE#8`2xL#4#u zYN-|Y&J#uJuLv*PaQA$-MZcGo$0x^f{0DG6idxg-$5Il{6dHXl^U%gY0q9!eey;vn zrA#uQbSMHQV)wUm&Yuhom8yPZ_{GvhXxr-NJ=1AU4Yireeau8a-ZMGb9=D-CxvWd* z7qWL6A391yyLY5-_T87aaHG%nmaX#L@$s3zeFaoC=D_r->EUMgfK^U>4UUWeg!PI! z)I{V(B$Di4_KjTPPr%6VxL7vXVEHY;ZEP2VSX--!y(&#l!2&v;{UmMT0g1HhL}><T z(`I=8nlkN|ZGnQ*p^>G}t2fWT&@dt~8XS*x18<qHPf=eg0dGOrjxIZE134OdG?a<0 zXAL2#zK|9i#*s#cZrfEt4n#mwY}zZ;rIf^gEntDdjHxrUXQnC!SU@?_2y(lzZdtr2 z(Wo{X_{O{@of&#L+}b<8=m@M^zXJmcFJP0<6+^zn*&QAxF6NZ92wMCFe(Yx72a3RV z9Oqe0S@RMJ5|rwP%6#2R<!04;>GB{5=zB{(sBv*hWn@k}YYh$9zPeWtu+8B1Xf#Hr zp!llwJ=0EIm`y<)%$ozqDrFm;wgpww!}?x@DJZ>0;c_C`BzO^^>ti0t-k_uP4ICfH zd_7!e$c(8ApvYdIyrEb>S$v$(ZLuC8eKS~!Qmowhrg^^FW=DTGG`&DuiKoYwOtz!` zxn*i8197jN$=S^)XenjEEPjRs4h8StQBmnp@rxEF4iteV&T-JPfk3ul+Y<<Rp&a4X zB>JM)I0yw(=esWmEYkFNY^Oi?KRm<=LCkj=2z?UT&i&7Hr;`61DSc{DOVDPtWq0^3 zrIIhxeRT{i{801~*tBLcD2cDJOVH61CTjqzyj6vq9JWu1r03o%@IZo!paLrE(!Ca{ zS2hh`@7V%>a+hBV#CC2!GU;);CrDMds~d6X%ChnX2Tc3y>5;#;63GLX10WyGl}%=$ zKJQ8q0wvvxjO=Pe;v^CZ;n=6s$Zm%LHXu}bHn@+IVb2v{rVAjGdz*~+%-Mn4<n~Ks zbs$kRnf$v@j5p&?5#P3WWfobU$NjDTI2ux7UKjt^ea9uc82Ma?w%lTg3TS#IfVaSm z(BD;TtZ+(9ba1n!yZRpRD(GeB47>*Uf4F6xU8n2POvUE{#ZF}MHUOsnj4fdF%nn4( zQD?rj$`y}e(m&|*eSkK2T<A=TLB8&5Iv70v7H?*x)FOH(cw;`xYN-gM=9-lz&w&Z^ zg^oWJ6+1mYX?`nvkF`BXujdpkc<FZ<ngl@Q1mb3Y0=NL#Y*K~V|3-i+iopdW+Vk}; zuifYCDepE#`UO=+8kQZekgqvy2Y9i2<>lH0;B-FP2V?B>zYy{90v4B`cpnNU<|&oj z!NIZ*{uidT7S0PXWAW>kE5E=fSZZ#(UXRT}?&s6&ZkwdUDPQmqSViW~rrCe0B7*`m zp2p_Y-T>=9o3JY?I;QCndEoY?wur67e6Dm0t%<<5C_Qcu`-6EtU;rQwMA$Hcj(Pp` zu&@Y;g71k}r7^F{J(GMs%kzQCMv;Q5!zB_Pe)-5yAl>lHf?l~}7a^XV%@7{6+3wx; zG(BnK>3&B?elhtS&ETZB@J*FRLHXhDiJG)lFq|$Dn-}!+qR*|(OIAHOI94(rN~)8* z+$zaJhyV&WlkV1Wacqu1NC!WIYW%R-jos_6VhWkMeD252RA{~|jJTD;VSXXUT!c}U zyZ^h^S^yFS&-&89EoWtroIPu#z)Jz}5rEzZ1!(5}*4tsZ?=0}p^F>#sAV(tc^d#C# zOMss+3J?WA+8SN-yqrZa+8hCmPGgC;97sPDL(PVkCz(CntP^OL!_g{l?`&sFtp^m5 zeW@HP2fZG*FVl5=;&;f^=zuH|xZs=saWX)?sV?#9s8-=Hcj(cbwDG_f#8AEdjg$){ zMpG<q_s#;{r8;~gd6B)J9|XB<(M~sJnAJd~Uu%6(2DLu=*jT##`>F&gO~S)|A8|>y zdtF@p*dzqZ)pG%(5RHf{ELqQ^{~m-ew?E#2@$6<L0;sT+qBk}er2;7E{@gxq{Ws1W zm3&Q{*tQTLu3etx_6)P$om}4CT_k$f@s8lEm*VDeGON6gEfvrD{rbe$?a2yaM)hLQ zI@C7>&f{KJE1?I>a^hXG^Ovo!qoIQ>r@IQh_AYm)<d<LRsi;N-je(0&UlzIWEgI;| z?WoPk|I*=`49Xiw-baL>-~qIGy7K94jia5^7x3O!C&QaKR`Kov?_lJxNeykxf#v3a z!{f~?Uk;PL7r<1xG#2DX)yT}vR`#1yiu20gxb(FWATX-Gohk*kyC(fcy<QqcNcLpc z^lxLd8YdJgAfMZZ)4^?hcb9v)m`(8vWflq7J(ozGOiMcLtIf2%Ei$M%A_&*b%3as> zWN?|<!NG*-)rCASs6YHtQ*<H+1z3Av(qcx#=`Q=_*H^$U7+tDJW6tmF_OSMz!<Gbq zd-qN&G~hB&FEO}tbAzIT&fcl~<z)Hp9Sdw1R0a<8#WSH+y&k68U$3tI`6r-6yG{kT z?*QkMp0ooNuznFjP9*^Iu@i`{0#&d<uYCteZ#cLQ8U?=Kfd1j1*&3z1XMmms{1tvG zyR5l3dsMJc-`{br4O*rdkn*?vkUv0|Hn&aBdC0w4Bg;rTr<>y3`Yu{bUlnjIw0R1+ zKaR(%5`Y)c&)RyI3l{MNbM)hc5d0N9?-S}LJ8+%49}_{26X<h`{spg!a=Q(VKzROP z_9s?X)b92UnY7e1E}KtPdUsbBlDp%`tKE*{_nq&y$R;w9Lt6*e_7g0R)lpskE=lzL zdg0I-mj-TWn6dT6!GbKzP|m2G-WdzaHDVIp&UjF?*WN3NJ+4i>*WSm~UKhqF)ofi< zsL-x}2T)MkTZ`!z*wjZ(rZMZFzl72*7Mg7;yY(0KA8-Q;4r8^_P9MjEIor*Do@vo| z`2I=T7oB5BECWIgGMFa`8UdT%U?%^lx;S+bxK~k}N$6P0hwRfI+6XCfV8CEp!Qv13 zHx$geC=99{ZT=Sql&<+-2wZkwI&H%TB8hGcx;znE={SHqo&*k9R#l=yh7VUW&JNiw zPaCLPQd5w=5|x8V1r8g7{UD(OuKs{(1TKv3+^VzEn~W*$r|<mG-ah>YqAFIDXaoB~ zdZjj(gqw@tSCV^%?<%;cZRVf3pUxIfW%~=Q_Ulqw_BN0vrf3DkkIP^ak^N4Wanw|E z!5Y6&c%_&r2;<NKYZrhTy#yVmILXgT(EtzzX?E{ns)sA;)<I?^=n5BBInp`pnkj0_ zC!u*<1Oc#K8XM5hr#m_TSq<_?Z=<EzLLz+ACv++74dv2RcQstC4X2LCifqI7pBPci zl7`a7HCwrq>NU#%?J=yz0mCj17-YoP7*4YDT~Ym-o<u|M3?h~B0r8V;AyepLIeVt+ zUv`-08cze#I7O3QjGxM#E-{}bgDA!3PhUL^eag992ZwfNOaUxLsyzzuG8T8cYR~7~ z3YG=-<{J`nB_cS0M*&#J?VA8_5vgFJ$hgL|_3!Mw1HXu&%8ncnu`QA?mW|SB#{?7i z%lbl8*fStWdDE+s=NF8cBS$#3#4{$&VSCEkSiIfQ5bLPs)6CHvao)3;ig{i%wF%lh z6skYufRAA^sHv^uGs60CJd~6;F0VDg7d&8)Rqu|1{&!WyTutB`o4vLWP1{4gIicBd zIKZ95dZqJdOlaK4&5w`FO17px!Mr$h#De;ZiNgFO9k?RJ0Ppr?C{zqMm02t_az8iP zu6~P!Wp|pLop?LkUWpOATq<Tp+D2e(beQV^QU`a*=xJ|B(3lN0Y<-vw$(twyB??YN zBq;oBRGAFlrEsGPKhB?D-k(pGIcY6~>u$PYP0_K4cs(FwnLb9&RGF(5+Ry;gh<<#1 zFHvCU1yb(7T~ur=_mFuWfKPZWd<3zuOQknvt}}pE?uov>=h&y)3zx=r)#X2wKXr+H z?*Fn>5OX5wxwY3^&U<-qW=uJm&9s~5$tNaRGgM-UPzisuHO-NVqq@7<Eo-{oNCP%w zfq=Q$P)h(JkXkiHIvy6*b#emTetn%iw9P(S`4!L<jpc)v&)z`*T%Tuag8@N(j9Q?n z{j0X`L*o&?ZeSw^09sY3r9>ZB?=4lzpHpgx!F=MbwKk!^AIKcIF#vmQWPSbnj2~fP zMgOX~?|hCunciGxXyOv03yna~a)ir#&+jw;pjo6oW4{FL6}verg)GG}O2P^tRTnwR z9Q}89sJEx*bNV<Ae29;BcVKb^H3vsLu$W&3W~P;z!t6@o)Nf#o!MI0_yl3vEdcihx z5BI?Ibg#b7t~L1RGlZ-}m98&+X5X~&3wy2OL}mU$GM7iS(A&umx_O*D!+%bbGb86X zF!agwwVD^cTm;WLZg<gW@z@LjK|NUbY~Vx&lz5<tW!3ltB-hvYuo~XIJOUpi*aEBj zlgvN{3M%(xy%VrpJA;J8UwrPcfDVdQA*h&zp9HG1MRRjM8G}Xq{skGHLNm|q==J?@ z`mE=dkiWznfJX%!DkOm^t|i!Oz+;LMO!MIejix>!SW~yJS+@l(5DD~jUtq(3D0(+l zdi0wyvy|yQq4B@QXHL!w0zlIaj8Pn1+U?mVMl8iN`9mI9Z-0yQ*Wp8FYq<zA4_V%g z`QMLKX6XI#G~a<H0XCszLb1K;EmqvL46N_=&=Ves=<AzC5D>UeV(se-EcO+XUqV@Q z{D7>W!Et53Zod+;H)H%D3^=bR`#pBsx7zwFA$oZ_(GFLwn<M(IcM{!3cr&#&#J~gC z_)oSd%>Ak>9H-X{3)}%xur^^AzuOB8QmW%`oG)HH!FxUJm&jRAz~~tM6gAsWtlps; z<IrlnN1-l4dL?c}ZkpfUPamEa#53~dGpvlIgTd0T5c)?wcMNi2xr@D-Zy>RRxi0}D zg{T>LaN;W(3=G>J9seIb=%aV9eJyV^&I+$Wx33rLn0>m9>%+&j-~1BdnSd0_=G#KL zpTta@E+{RYD_-tgWK$&=Ou79VPXO>2`2_mCPR#`V3et+Hn5a>!y2{b?_K|RDjfD;N zb5zyO8=;W1%5}Rko`7^I?)8V)FxM8~QUSbSYTp5LB-#F>WWPO$z5(?S<!9{aE#6@& z<H1abo(sv(r_~L;G`2*>C-uLC!Rea?mB51Q1zO&C!T#Q^-xJNo#6M{~;c1)OcT<Oz zrY?Jz4UV-RCkt_|uDj>Yqu80|>tctC1gdU3Y)_hELk}aoM=qYuUFUY=14^VS7-BP9 zXEy@uF=C*<#lC^139on9))igOX5V1*gYt6vSGGL{fVRh0#-T(*IR+LMoae^q@2_m1 zaGCV13kZM$SA<n}wpPvOfzWpG%qgG!pa<PzVRi%b>q8|XDD+!WAT8`6A3`-oEuHD! zWG?nGj<mirXnE^0yd>ScaSl5#pxUaonu-R{OYeM?gm{;!4q+l_t{vRmQ6EjdY7%LI z@}~Jc%PwO#6P0^OM|Cn-5AwK1GEOAW>{Khv))n}vzvO&c)-0tID|E6w&3<d_dWZo$ zC+E+7LE|Mu-IWT|_k;;%d5)9Adzr0i>Zn@xR$X-<M3P0b_i*F8q|3a0ZY<X<kfni) zLS&q}0If;zBadQtJiM8W=t&s|)ZnM;2;GtFp%2F`NN*ARxGcxk()b*I$oeGp0x(Q2 zS3F!$H)LL7q)TAC0Z?A47a9`q@tLXqvbHYckPZKxZ{XAYfrgKQ*D-G{BA1!O93B~I zvU#*(%fh>{(74`NZ~yTd53A7jSnya*r{1C))FV>&(cnmwmgHL-dGaI0$8?h>-+S-q z65gH*n>p!3dMuDheFt7t)F3N(e^9W*xG4GWyZ?WT)4tDBo7?{5quy2Q8)q5%m;%u_ zh)vH)ZhEc$Z#>-uuQwaaplK>31H4#u4;J>lS#E#~zK;n3ol#2_i-~7M+*C7GWpR6k zhfB5lg>JO1kG7aGLZ90*!zT(x90f0R76}?I9%OH~8-FlXxr|U1>Z|-pdA;|oDpX<) zzrm^Na{Ndq^UeSC7rG|RSAS>!57TrRSLx|bq6{AX=me5y+&%Mv3QKdu@@L8P>zA-D zmo%Qa&s^S(LfqWGJ_I6U;64s|E~J|=H{WO)%7sSqjF6*k=PzJw4eH!p)j(n3C&&uB zIFISw^Qk@Y_f0qAzJW0?Vy{}jA?EmxY6>uF_yIV5g8+83Iw&t(8?EsmRj)nDlT-h- zwt{G=6HiYQMiWY81Ls;hGDOmH#M_pJ>ckoaJ@^}^4UA?3`fk5I*dQ}JifP~qI=`_C zN#(YA1%N<eAh~lt+08^1mORw=<n%bT7?khSE?6{r9J^<Nlt<PrdPKCf`-5u&iJUw+ zvmO8=wi{yz=27hb2cljK(~Z9zxxB{^^bU0eJ2XhhbI%|I0O2Z-DZN0@9QAOPy7<%W zteA218DzpB!Q-+t*jAzcu+v}WxxRsi^dKBd>5H*4xvt%0e}#@wBG`4<-U{38eVlFo zxTr=_ngoMs<`7A%so757*Xlt%Q8`MKZtow<TO14ascaTLIj;W6Im)ZT3Fr(Uyx3$z zx)b&*qAQC(FDp*JT1SLXxmy1FI2i4xD~*&7-nbW7U4gO`F!Q}{XWgd?RXrQ|V}K?_ zcDK=`=JfT(P@uzl=3Z(Yl`Xs3IDtpm?$EXOrZnUg^VAzXs8iE8kSV?W_kP%6Jf}rk z4s1a1S@>=`U=4<^DB4_Zbz-g%E}>TWw(e7v=wpK0;M74i-{WpqLR^B)ea@uusWWtK zGJ$$75$&R5$b@Hmq7VmoPro|nB#{Ac{lmXcT^%I6IuHQ%;R@+~)s{K3_yXT3?ptde zg&hIS;OaA=<qnsm2$TL&bHDo#3Q)%xi21nb2YifDfj&p#%s`x2Hr;oPXgjO%SW8q? z*q*Tb#7#vFxA>#+92F}5JMo}>B6LC{h?I{{X6YYB;GLpDT&jzj<z=Mt>WBQT+Z0Dn z`C1z`Kg(`kDIVnLb{v!CT@MMNB~MPqd#{MFXE064Dq%9qOri64$vIW!EMGFvVGTiF zSx*ML9gv~kOl#FtGGfrl`2o62Yee-%AJHtcZSRlZw4;SBR33^$ZTD@q(m>dU^)11k zu0Dd@#dzqaGVraRZ$Uq7v7*CPD}Dx4SdH(>98RbwijW7A#g11m?&c#2$q%)N6>PH4 z=O>HPnla3)5b9Ps<H^T>7%A%NB>>f6L?HVbVjhE8F5+01J-@DS0He<d{r);I{@0z< z7)UuR7UwhLfXCnk+CpzXhrq~w-ugsRab_)%iyx-2+Ap>6Xj1-9u%Ig#3u`_USufdk z!aCa|Xh3)tXjG&g3=5(e8o=m!qgNtgx%tvyRorbmU$S+$eE`{#zm#Esjycr(MK3Gh z4Nd(phC~w`GXoSR7pxn00)UbE907%(b&;i@NTs`09Ob2#8D>aSG@s)h;@PqR0oOCF z>L>b3l8~NoD>@6_JW4<a?IhvuQY6Wu-B0~f`a$5|50(7)aX1%;bql%D3Cky@eVL^2 z2>bpb{Rv=Cm$__X1JO~HnW#U!OHX%EneZ(4u#SLObIbXa<(OhhRY=eXU7q~mn`+xx zE!c)$tAM=-!P2A80%M*N^qS2?t6gAdg3aYmDJ<uhT*FZ+i$85<1A5Ki61x>KcFJgW zNaA1EE#JE}O<@el+fEp>6sOagu*-q%xf5|%UPSiy80unn4xmSQ?r$73BI{Fy2!I5* zy<-#%3=z1_q!TDyZ3Siyl+75^`F+1MX6#lP^`OX=Q%cn0I+2fMl>PF~|F?r*!9Feb z701|vrO%m#W@T5j+3l6_oY3o!C!;*$f}QHc<zkP+>HfnR;H-q%o^JLXzna+9jNuk3 zZl8aX_dDau;zM)c?MK~z3rCO--opvS=J1TFLT_~NcS#rxb{cDEsxE^%ymr~ZVs6rG zNJBr^{d6xgZ)>{QoF}T)a<EL~0Yy1>r$p`S@=&oPzD7r@3TzMv?8zSb34jgvL-@nv zG~{sWXT-%l^icX09DL3z(!5t=`OiaW;i>3J@lbP*er`=g8`;s{F^#-ZZbM4(!xdHA zBT_>|#LbgZWq=dc@<Wu$SRzkIc>#}TSe3SS&QC{|ws7C&nUP?^YPOMyDg4<p4rqw* z^@D`HPlWF&A2q9=**5l@4&5FE7Gw?2T{p@mv8)_O9&Qwr`3AhDpUNS@A<JqzPu49X z1e}~>dXV17$pK6GYKoDDqyNnXuw<dInFiKE3-+M`(*=4$b{ZNKqyk8oB4}WyN6n{p z*QNIS<je;mD`wanF-+lOidL3eymvX)mz7OdeG&815AUCXPw&SE!E1G?ICy<Pmp7Gf zyt&G5yvLak3|s2xXwo(Gud)8N8{K06-Rkka168Sbx-cs%HT5?bX5_ZF-8<dn!x<#D zEu8QE;J-<@XvXUgH;YV5MRhF+Lie4j5mi@Lz2DjC$N}kHxuNaF&ySpT8k^j4aWBZ1 z5<e6@++Rw`1khzUwf~gC1G2}hvGs`&5n#awo76PYd_*EpcNkQu<e(&-Np{awSJM&| z`<B@m7c1_r0PKYa(|s-cXaI%+vWmTN*p~pSGN4Up($)399ALG5X*onRHFJ=ktZ?6Y z4n{)(r_AFqMpk=+CAgpP-Jy7!qgXKxlDh)*L^@o)5umf${~kOtN^2f<3TN-rJaQjD zDhY$OC%|@Tw)Ss(`KG80ir{0D)tFK#2>^R{Gc(iv$4&aQCyz%;PAZ81g^M%6C1yjG z=iGv9I2B4U=t+2krB!jee-MyMMLcXm0OFPXSvJFfv=e&m$vNP>yF1zNn9ryIyz!4( zAHlQ|IuSe2^@R<f1Jhs<Qj<{dMWsStyw~SWMP~Jmt(4#fOS>unHgDc%X?f>y!m`!_ zg*WJEPRz}cQ4Y*42=L&A<-{dzBuz$<?j}tQeM7jv$+&9*j>*RzsH`xB416F$#Sk;x zK0LvwJEE~bbiPCQ?`!=gP}~uMKq9qL?nu{kO)K|p)mEc$l^<o^0afkS+Wrno#!%Wy z5AjMb`N~ew!ml1M=8SB_`WWm8))&OYvYKuL?HK{mwsC{!Hf5XPeRMxR{7RbI0jtV~ z1NJUM{n)s!Yz@fQV}u>_T@MdZIRT$X^ajthCBLAvEBt6V(6(sG^RQvv<=b47imK{2 zm?#VkdIX-!KTI0paUqoi;ZZmZjs1TG7q%^lzS^xV;DgjA9@zu@c{;M#Y`X+pACG#; zOFi4XFWXD%8dc@HUjaXgG`kQ`agzznuj#HwesKK8+(HK|E5Uh??k2(uC%_f;%5Y;T zbLAUx@(5A?s_kCm0~$P4Ibe4!;t)!YU%8z)S;W+oyH%tKrE((2C*&AQx@{2FZxHb` zQ<51nH=Vz{TY7Bx_MK<R$-h6P_~lYr%gt+;n)#x;rtq`u(}!PY`1?h5n=`{B4j-ci zn(nbd7i2gU+)r1vVxjXlrGV;bPVtp#8zY#M51Z)CnTvDq;&28KlzZJUfW98>$uEtO zPsc)*W7J?0sKsIqUw0{UPg1<Lg@>r>;=$b;p--1>KhGP(!f=&f$2iUBVJ7%{3W1bd zP!jWkTF-L3QgKRM5#w2L@RmjWse&uo-^T}JFrLhMw%UKCQ#a!9?97Q}*O|~W^<ZVw zFRM`F2U!*WP_BNb4<dmxJ~(Ot^59r_^^Sf&dbqW9UpQHR@p6OzX(Y*ZK>S)nBCc4g z53oT4-T;R!sK^*h-+g_jRv`e^(Q)4Y(8c`)n$~6aQ@xVNPXFS~6i-8D_LF;1=Eil1 z`i_cs-TK@Pahm}Gz$$bhzVYz^zqFN%imFLBV@XQde*pq?C7svzu5QN?vYjDWj=LqL z-L7C%41xXSvxnkKI>*OU*{83MTFD-b#ZR$tpO2BTV_`AqfWy%xFg9jzsQ1NYZX-bX zGuzqWp;-*SQ{N5`Gg)#H5~o=kjv{OTjHV`sqA*{~mIZiXP#_APorzihY6<W6m7}E+ z4%mbUj$|ayOIN&L4g|~4Aq|${M8l!dYM9NI#ClQgtyCDqdt9C_Q}Z=ha^^wOl+Xo1 zu|8%L5h*pV+mqgy$2J5^YUNfR?;b^xk=YX~cl-N@p#5jY)}a;ia|e1<@3_b5sHlQr zJc+fK?~=NlA;(Zk7K~J$&=7P!Y+UiKKuiw^f2$EQU=zj&qqN=u_u%4O$IWms=T~0l zH#<ChhdZ4aHe;v8NgrzrK+wJWEqa^?#IB7{sz8t+hpj`^DwOgy3UD{L*mpE1Z@#A0 z@oCuQAtgWDN4fvav(z?SQEnoQz5aVB$7Mepba6l_&`}SJ^TR(*d`XN*KFJb!5L5Yt z&BFuvCMh5+^EduOvo6?bQZ2A#ZDhI%S<k&YI1hwh4OYP2oUOZbG4<K*CD(m>b1}Cc z6skxicqe~xaGw?y#@_@)RukJQp<6?vB+bh%&*bubn<)heuc@7XPaL~!gJzT-?9^>e z)!M)UB)5!AfIq@YPH48Js-4D0GN}D~qUATo6<cYkO{jXj#EqzQ+}FRNK}-qe2CU6b zSQBR0>=3YWu!5|~#Fu+ox&#-O=JF!|>+~yF;B<0es*TE8{~o;uj7m9bLr|(Ktz$fu z-JJxca>rh0qiXQ*xqk8hQj6BMb@!X});e9u#B4a2+U3pkNPqKT_Q*ENmGF<n6Cns5 zjj-+jB_Q{J^<A64yW<pm6dcSz&B^(EyZ`yHS?PnPR+Hht%lh5Yzf3v=Pn(cQ@=XV7 z=Q$iWq|f8stcJ8BZ@oym#lAQiClEK3tlMyv{G1U6Cn6p8d3zsGftG1R2pLGefN$Ze zn6|A^rBa>6Rz+*3A|vDQGtHa_<AEd-+h%8$B_9DSO*thc0x)2C{kI|Ls5FInPR@&U zTp*^ZS#%ILFB(`tbAs@nU%JeI)fJY7?cZUot20&n*q5v>n`BYM$lu?KhGQ?54zreM zRs<@4rv;XtxXX4jNyS6^-+PrCta!(H6wUkM>z<*bm>x+463!S=C#$s}e(&@G3os1R z+YB=?4>6YjV``9i{`wFI3P=!f%h|vs?^;|lnDvN`Da;!;l!pIgTdl~2=F$D=lgpH* z{6wmKmoKs6edW1({w*V#6-T6sVSbZtE!bNAu=KbfDIIOR078qN#v^urb94Y<bD~E? z_5{blaqAD|qMPw+Xs=|2@8kPyG<4!cvDVw2Q|~q>vRMz#_S?YisdDmH+L3w2=h3M` zppSl?3|m^0@bJ>+%b@2k@R6Cd>Iw5(yeTQ#=Kfx103UpSU*fofnIcjO3W!>c_Er5{ zt>+Y302vvdyHw%KrG+*|LVuX?D7R?3+a)tmQK>8g98@al$}NR=loS_YN3P>S2yOzW z-3=`t*%oO9g$>|>3OG}_noU=p6u1O3_ZtWd&gYU$@{lMns{Ri|&+dIKfpi@z1j}Gp z2n?2ZXTA4YDFPj2dX8i;A^@YGhX31Td8_?;k{DM+JvbI5ByFor6VE*)1M8mT5lyQC zk4kl{)>?DSraKOCiFV*+QG^fFhWm4#5RO(HeEeR(0fKdxeecil{rzkFo~v2Shks8N z>JO>ZP-?I+C9`|r?M%ZgkO_ai$nsHKJWuIF6Uc%Q;c@(J-;$Ki6I8WnL4@bVYY}+h zFW2j9xsG`MV3)W3j<mw`_@#%{T5SV{4<4FDfdQ3mPu#XBEq*yVpCr^If$7*u;W%_B zU`R`RW~PFLh2pYHhn4!K((UNpPj`_8D_3)qi0iXoa}n83n4iIDA=HWw`OS#aMkV(M zZ3LV+TL^bJiN!VAoMf^i_BO7|vR3>4k-e>mrBBS<%Jr}wkLT=4Ma7(|wN+d@(P0O< zAQ~KGFfNkZ3^deXIo_OID;Akv2sX__Od#^3nASJ(t*a-Z^6Ezhrz?>b?BBHVKe<Cp zKxevjr9WGZa5`>(mpA*IPe=P&@Gs43t9ohBW>zSsu-_l0dMHNyrQXlnb?s|Q;7lZ! z&Kn2I%7A%S27d{?Ydi7Yf;U3qEdtV_EQIVh@)LJ_%lRe_Ho@wCJUAYA(R6_-wgRpD z*G-cIj*Oof-vSHrFff9`(LOUNHg;L{Jd8Xhye1Klpms(_6ZI+rCXBknAP0cm>WI#O zg;j1EaeIXAOPD+{p#~df4MTImNF15ZpV^{V4tg$H-<P{P>eJT*Q{CHb{<eLt^C6%0 z?-%vJ<|F7L`DwGdFJVH!d+4es7j26)_=B>O;>JPW4fmnSTleX-^UJCC8})DAY$g=f zB>49~0Y2c>adB~cS*zR?6%|)1LaU+1u$yNKBmDkY@~09ob9-emLH{X{UKHJKDmkY- zW&jwO!gd&JXdCdmg$?eq3R&p99Js0aWU5VHk)hR@xw#_nnzMS_D(I=_<CCQhVcMr( zd%7<z<h&BVAKVG{V-qDUj0yIh2}Bq8K>r-~rVGbqK4ZBJ<&$It<6+-$s$eB8qQP&_ zr0Ehp^uI-rq$QpOM8id2oCD0_8YZpkFtF7)>=p&b#>clOn~9S#8p0Jt_J@(j`Hj9D zu8hr@9gn5lRR1c~w*vvNrN>ybUn}iXWCH@e2fTk>NzHB~yCNK8aSduDdx@X>TZZg9 z_6=z(n^#u*aK?k<_2o~G)Xa>LvG{^PNg%wyZ3(yofZb83YS{PU8ODW+v(E~c+W5$2 zt_e)0VMESmwaZNHu2sC)A)J<3x)KHzZl#3Hi9hLxlyfHD{tFyb1<Rukm6Nl<Z5<?+ zLP`4<4)c|b^QGRzZgUCe;kYQ_;b3TpT*?yx*LM*w*<4uw#|v)L=SgAu4DbpG1O72! zkAwN<f0`s5Lqzz}v&JylY;0XMc~X|kq4QpLBvA4ax&C;YCf!N^dZ+titiE9Qi9zNh zyQAm+^x`nIPYSr4ZA}i<+`WvE0h4{e#AI+{ut5GEM<uZ}T8At#`*LM`VfWhIM_bby zfs!)maXzi<yYUy5Mki&vWPpWGx#wk5tNhuUL11k~Q&#@G_Dsi}1{Qc`-9g|f_q?=) zxh#X=GgD)Q|JO>*yzdd+P<zN`aH%oUFQww>)H4VXk!?qzGle|_1+V%{8HAo}pe19V z2f6w&bfH+;fdc@pm_ms1scw+UcOzN@u1nsRijE=R6tL`i5ZXxAm?|GpneBm&!D$xV zRwyy0P}oW*dW;}wMP(jqgBw3A24pA4&S119v`5sbdd|@a8U>3KklH#%#<OS=z7EgB zW=UW$V>ML@o2zoxR7!`;!rzt~B!Nhs^kcY(N9u0%Q#1+cTH`KSj0i>zh!>!zip8e^ z66}^w-6&J5o{NH0lb&Z5^_yfr<E<WX_+lo@^dG@fzLJdoQ!j1ov9y%7o}XMrVF~wD zWoL}$z)F2E+60>O1PLREF4GSQy-BwL_J&wtpV*}ZKtorlJusM795Iq~_npd2<zi{6 zlB~S^I+$T@vf35yb-P~&n`3SnBP(tBtpn3iq&%s{spvDF5RXu&Bo6WMxt`eJ;?aca zpX$Q8B2ab3or0{r3ttm}gRAgk@ia;~0RotoYf^v&1<KA(5Z6O9V4n@F_P>E5RwZ8x zuW@NM<NWXBsr(L4A|~_5J-*PpV`tanp6N=j3RECoD#!|XvvUG=fQkjU``lE)xy;;8 zn!dkbR4Y4ZoLO-Du5C+4W>~Tg+TaG@iD7MU@XEBDttEzbKUH#BGuU^H7Ru1+S=>BI z>9})`M57q(s#`2A+TcY*o?S4)Y#tPWD)Ttx-(edfvYA<ZQzw^(6o@QVt|jd$^X^@T z$Pgiz0U_2O7GHfhmAUU+S0(tFFaMpaz4^F6L;g%j@pY|m3}!$S@d9B>Su4f@WH;<J z_*h?%SH@>y;{c_83LBiu0Vs@C0x`1{$)`pY1dTws4bA|&^Nt#<k+%@BGj?%NTg=oP zFX10yp`FjHSnU<?zZ(0>u&BB=++hGgy1PV>E>Y<QDGBKgY3T;(5)=e!lvKJwVrUR? z=<Wt->25e{-uL^ibH0CP{h13G_TFpl6;IsHecxd}I2gAw#oAhba>3cqbvm*+DvJb? zlpTm5=xTTf8jz0z7$wtt|IM+7fRoJLV_3*3Movk|;%6`_;!FZcHG~8NlJNsd{6iOz z)Q=AIO>+D&17A#7P17g%8rOO+*CQ7cc4Hh+RQD=MsECz&Xto?UiqcJ>G`%DK?g|r> z-R=r0$OSGmgJNV5>6%R>*7G^rF-5$^ug^Zz)$y}xmB|%v>sOZb2quy0Dp!5%PZ@I| zkfOxR^^$XLxu@ZzgaF%eyy&OCBO-O1vltDQv%iufs<bdrcQXY@qHBBLc1eUReG6au z6WMI2`^~)60<h~NhR14vN=*%<X!7t){o1DtEP2Bvad=k0Kbo63dZDNJHjL*z2p(;m za<v448l})h4j9l_UhqdK!u`Pn*4IG(>9*+{Kg@xRuFbvNX9=mma2E7H;lqay(z3F= z&VQu+Z%?(`6+=f0v>(@w&9pZVY+LJ;J-W9)G%j;=5dn66;H=Ndl-U6QfLRwkBs2k~ zdU|8MTra^G`F;$J>$<G)t+zb{`aM3Kev^hygCeT+KfrQN0Fn%HV5#r7Typ{&A@5!D z-?92ioK!Y@OTVdiSA08zT_lg|t7mdkqC`w6`PzYFc)j14U6|oNgRSmW=V^@CPcELI zGR6k<>giN>Q4?IRCF9{Q=dtcJjVft&c_)HUSSM{jAIL0U{w*#?$HB=v%dO$T#+vQ1 zUuhp9J$e&KT3@;KDS=IEFLN7ga`_p-h3fOe8fI`1sE{aBTkt__tADN$qm)zwlsP#O zP$6R0wn(madsuxThCn&UF8@k(Z0XLCk4H!pSg<AKo(0a>6}E&aEvIg(x8fqKUByyP z6cB&d7V>Pb8f;H>Y|#Adxd^OppqArvh$s@33qq^|?Lr_jTdV&DW{EvkunZQi8)4}C zca05_zx8?nzcfNr1tI;;$QbsO<E>heBFmZPysUMhYR20;B80)H=9NoWc6;sU8SSW% zK=}jzG0<YK#!y29HKM_5_`<;Wv)X2F{v5d1zut5EHEf%cQtg27QDR4jG(vR&oMGcd znnWB%39N=i6*U7|wMo+oF@hpwz_k$h3pA#eI*g6ca2w!=7-na5J;`E>$b;v$@3#K! zLS7bw3+uy&+!h~w&YJ;i`P(%IWA{Y;UdD}nz$%WAy7S&h_e4n55ObBtZ6W0fsBS=H z6{#&=Rq+7hFPH-VxpKo<7d~k;C?b~%2mFSU)!&SoeFMnBONdivc=pK=qqxbiYZ`1t z-2j&6Sujvs-Y}akSg#B*Y!H8m_FTXdXe#?2bu$Uy-yE0dR0d})(Q#V4BR#|>xG3&1 zb}JkI63g*&B;TJ_5-O$Ka5u#RYXYQUQ!w1C6K5q#H;qKZ#t*<p^j`qKUb6A~Nn_6{ z`DUL+5*z#3ci_l-EFzK)7=7>w34ehYYeY;86CHct)8?Lv);oWK9!4ka(Z;%(-=$-0 zsn-drARIAt(8uf0#o0PnbJemM=j+b{dIIeRG&jm7+O;u#<;hac`g1;~>BwLbi`|C; zUaVc%BgWsQ^Y4J!J~suHA;yFrki?O3b9)AqM9e{9QYZ;_?yKXc9g`7E&6a|vZ^z8c zBV$h-r!p&+Dhygx-WJWWo{gzj*i(W^5ne0F&gjb<0I8C`kq|uKV?xVJGv4oCn=x5} zW<6CUQd44;K;`xzYWgTMkbJs5-%y%DhK?0V=@^Pe6Nt%m;$aci4m3xU0hcrn50Bkc zMNnIoc+YbdS(9t==t)s!lX~$zTQAzv_-)>sp5^=-(XFk$&r_YW;r*%eT9tqdRG+Uj z6vSt!=rQ;FQ+&;Wyp(DEJ&+oMs;MR^vY@ID3oxqTVc!(UX}`dFAzx<eA1?!*bx9U4 z>R{r84l(JMBhN%>0JGj&?>xEO@rKm!cc*{$kH55jGzjTz08&A`3WNd@^K1pXgkP{+ zX|jSznE0NZ7gGo)h4gk$DGwaPKvTERe~^gY;L-RIO_aI&#E9Mul}2cY0|&JG_iOM> zPaSCo*JjkrQ8V7BQTekjOUBVYztL1BxHsXDc=*tP;!kmTmIlkD5UAW>R)>RA+8W5P zm;%inAR>H#Ky)M}y_Eih9$b$8Bv%3>C=ps;x@?d2_F2T)_)Mk~vz<9ZM<<_!W^KS_ z6$!w0q2>^?WjPqaIvm;{&nb!U@x>DBaW`M}F5#@X*pqSYXu$g+Ygl4mXzR;;#XKu3 zSUreirQdCeEeT*KsMXz`rRwX!d<A~TP=|C#!)Ui^XX%9Jz(eT(rf%P}X)Ca8SDE~T zM$?KZS04RF-@%j9`}HjNEsC>iNGkc5H6C@bCj&Pfx5}dDFg=+NiT}mV^o{EQA*XqF zaPnvXGlDF4<?JHu?K;!(%DzDvHa*+wGf0EWn}cpFDMly7_0^KC-Ebn&+1h%R2y$MN z)3<!sufL<n_9o?S<|*On9ZYmx1%t>X!Z8ApCZNg?aL3c+$bF!nvLvApS52pT@SLn8 zEAqi`z2!zcPN)cwRG-5d0qkbE3T1~tt4XS>+wdpw(tI<2_wS`~-t2Vr6XdSfO+eP1 zALU~>J*?*nVN;wCr8`7NWn`hcyQ8!m^jNk&eB)`H`eKhgCkWZ}z$9*Eg{A1Tn^s8; zLJTt{g$$us17zJKzDb}wLl4Zr8=(s=rZnu&dKt2*S8Q9hL7lGP@<WL3Y)~w6I1f94 z4UMZA<*}?}N`BrwBAzn-dY}o#fz*jT+4gZ4hR|uZAGv|d&0E^fT<WTE!P^I>DSU%r z*#Q4k{j6@2-s?;k#4WW-OE%!}AFMBGA!X60(Le&{I5XNEXn8WxaR+8KNDSdha$<Z_ zSrJ9dl)aipLW%^~LA@CoyW!W<N*6{3MhQ@aFetiR8%fNS(#Z~v3DeK*TZ70wHxXdA z_W6k?25KRu>&lD;>FFlh=VL(dijid2X|gOy8V$%Jnn%lCBh&cey~lEvkiSc8y}wHZ z;6Xxa>V9yVK+p?`q0MwT^61T}XO<?}K_?}n@!x;u-zx>|q+m);hYSy-?^O<|0=5@$ zoMKyux0%xT^S6(3sesKy^UO~?e;Wlx3Nz<yq%&yiPDA?pYOi-m;k%!B7)bD5w2Wy0 zk<7^i(*<FE7Zg?vCv0-Sc{Ncw&UIz1ASY*n@NQ&fkAXT?99TLBs6U6s!?H6<-#slD zrYkG)Vf-!SlDSt&0(7{-zA-A!ZHyPsR|E+qu|6Fs4YeDE*IW+F`BeJ~bZne)xq>~_ zJ2pBMbq2!@xmIdwnY->iAsD23T=Y57tUd>)(k}3>1gdenVt{q*sG#Dx-(dD;ZXvtb z=bO3w<l}c;c;^H9r9*d#tE=Xs_cyNKC`=Ix5bcbiWh&6Xv#}pVe@oD@w##Xynk{is zxEM|#qmbry8~gZRRE24PWOsIhhRukIv%VvJHkCXIq{KH!0o*-Imem1n#m0$l-|OMS zR)IVzD3rR?W-=9lDVW}ME3UDN949;^q;yC<(NG8$k-=oc?(BTo-9ob=|KDNck3@$a ziKuGt-U$Lph$n)AU%ymYx@;~zf__B(?EhL2i4<+<^2Y#{gK$dA>9rbbiAL?V$*=c> zQo}Pf4h0a3XHLIHYfCX@uqh=?76gNUog_}cxnqtiKJD0vWFt^kh^~RA2fYoXAUD=V zd)dDHIQ)Z7F5|q*9#KNab*-KAvNasbbMLh(9tcU>_6+663<wFLwccH^fm7gBOvXT2 zonZ=INU1H42sX8lr@37GBZJW;iXIXUOdv#dU}HD&v?0^qC4H+ceRwtx8-(~pja?o} zr>!i0o6?E+WQh8<>JhyfKQ(Ht>mPR2v%y9IXJb`}!$iKI6N~O6=403AOKu{eCo%3W zG~kVS0z&Bh*8TS3qqV)3XzJy%#w=qokfLimB{l)1+!jEAv`OgJ@WpLy_w8^!UfqKk zciYa->r$JG6=D{WY!x0HeHmY$>sQ;vU(+BVIdBbsex$3o`FCPmiyLhJ%iQ@H*fSq( zKYupFQza(#<=p6)&Z4Mu4XI{O_6-GTluTqalRX32J`n1H`4@Y;0ypIWb}*~vKiOBH zz=}|T5*l4F{r!V@Z=gtA#d^Awak8d9I@;pF5Bqsk_FKpUk)@-p;q1M_wcf@xSHAgG zQJD2Nt$ASJ4?@udyh)g^cS8iqSR}PJZF)XbNj!I=UVXOx7!};yOY03iyUtSk@J6PT z0tP^A#E9+XvHhJm^$0`Ndh>>!*8k#>qmp0bRJobFilXPdcY}C#bpNLBPmzR~#dxJ& zh2x%Lr*kb&LnrQMwhtb^H18+TEH9g;2k|wtpw@0bd4u(hP^w9y$7~nXE1=(h>y%yo z5-^2<Tc-tdcOOh!Iq1#@qdLrdcd>w#IDm!1X}I5WpO}z91Qf6_7rvg6WU^m`uC8>e zLaiwVP{+%@SuO?eH=Mqi5TopAh~gC2EN;;KKAdgH3~CkAEdXhBm;r?Y?ogp+NG(#Q zs{vsUrbtZ?XIhhN!81WFxtsUk#<Vsz4g&L0<RG8*Gek8H3yX5SeK<F{;S-n31PCSp z$m>HypTXH5>&1-!5k+G9WoQ`A<AWt90<9$TbA<?8*YNrU_hd|&QvJp#R(kpk-T#=5 zI#L)+wF3h;Y0d5)3emPb%TN`wB?V<HiE(GN{Er9-&PKZ)Y}f*hHJM_1?f|RIbu=c8 zZg6+qZdx@)=&w1pTt89I|Bct`$%TR<CC9{_O;^aYgZ0hD-g<O2?0c;}NOj+Gk>ayF zi!(z}&iyYIz=?XrMV}yfT2M%&^Le6E&<24C9g}Ai+xlUV3<fqTqkzx$q*cxF-K{73 z!=MZiL;i*%1>ix=5|ilIPC8iK-1{V7(kg8n+;P-Vm(K^<KI9xpU+0k8nyKWspQX@) zX}JPuE|ep-WXQE>VtN{NsiA!w!nv{<?X2nCPjsWpUh>gUCMP=m^Rc*u{E_AC3r}>r zS6DY!#riKN>v@H5xD8zU>uC#C!be8uD_<M?*Jpz521qdvGte5x9a`%{+tJj^EriOp zrUNDBi$^QI4V#wH)1!7jQWl}CCZ0-Ox%^qDoB3B9SJ{X}o4jU#q+1q4!R2khJ$98P zNWansxSiM7Am86|VUa<I+1|lgpq7iGfXpvlyV}c{9#r%#O;wUD@zN1X77?iB3&m>J zY_y~{jMkX4MSV3wxOkXP#@iH>so(zrGe$w{z~*N+^$Mpr^@_A_1eh=&>+tX4+v=f2 z!P$VG;e+!47hv+50Y2h$927|DQm;0+vDhu7L48r5P^6%pF^3W}RyzxnHIyO4&RfzI zi;WcmhmC;*L}o1X2FI@JVk+g(8#Un-$3u=P5x%sNC07<Eu1{>?g76PSbpK5PI8$;g zR8K_r9(v)MQ0y&go*{>T*!U-&=Yfk(t<jJqJzH6j2xtX>3E!g+n6jC^P<eSyJdum6 zSx>iNnT4{0G?|x@zP{>O-UUL#d-J+M*4+d;mF>5VsES)7Vgv>|O2Hp}#ovyYGDBrJ zIosF#0HScoT5x<v+9Ysd44}`(k(6<yC<Da;$Lt1+QO3}Ee(^-(zu;kKLzl^-V^E9m zVh6<l(4Y@>>6^}NE@pjD+ubWW6-pec>WPULaI6PLkOvmRXN@(rh53JveOOo=;LJ}D zboY;Cvm{aLc3+T2>%k^;W%EBLpa2cTKX$`syL*+N@vIl9%IYn#1MY5Fi~TeDgKoo@ zxl#DA@)XNC=ltg9-O4A^m&7@qk>Yo27uMxE*Q0*lxek*IY^WodL3a9CU<8-_5VavK zspd;y>i6p?+Xep+sxrWA2(_!6xC1rTUml(y{XokVZ6hRyZ9vM&?RyT=PTXLV;Mstg zmujhy<aYfD*b>U=s<1#p-R&zKb6lC$n?D0%sDPQXX6>%^9uTd;j=KMBTponfvl}+h zVxdgn<jfCw%=xX%pV*9qe{RFuZ=nOhC#Q%KyaW*}d!)E3k#b?q8v`XRvZ9z&>XA$- z{MHRb2EubpHxFbW3Ny?~m7c??pgrcoTBBsgm`-G5wxzcVAvGjM6YWKsV4LjwQelP` z8YZ#70P<l5&ZtC(=SJUk2?*zZ)bIS<EN`7NGc_G5BA)YuVak^3OF4Ck!j)(`FJP7x zw!54VXwieAo4oa?7Vl>vGg$P`n8zZ^<)m{yD|DvwB+Tv%8Bb@Bq8LPAiZ=^5dla~d zPO#CVMpsU}Tc@Ptg={*MHZ!hlZwD!s)OcF@3^YV-bXfS_3OPJsMPha+op+3~LFz-J z(6z<gxNw}qn8N@}0AVD+pFHWZz2pPX1!kkBy2-n1Q)lM{KzZ8}aE$%C){#ks`*R3~ z{*Qb`(leN&%Gb<vcenF-C3!`~m4JKw<3Ya(Ad^hCJ(+y5u@WQpF+OAO$@5|j0fk@h z!|yKvmMAuhuD8;xGv&75PW1YS*Q0zM+s34aq6k)|yua7HHC@5<EeJ!_du=z9Sl|o1 zgYR;?4uuAj!A_P;21c5@8U20l`0RV=?=bw7wCB6=1R3qaZ)FAaPB$NB#%K#hV+-Ez zyMML3G1QIU-T!z2xD|8{Em~eYNf&h2vnjRr&fD;IdC7v~d7_)g+E%76%rrnoh?0PU zqm#T42Pvsx<ArJ%n#i0*mj1sf78)<|du2O2_Ddtc(usgnoLT?IfOQrCT*-wg^y)PG z)%1`1SCf~i5$IE`_dpma_P&pZL;nF9PF<&Bf)lT_)cZP|P4ITVJe3LhE-nMYa$bHD z+ppeP5wzYOP`>Dv<R5GK{({difY9@-IsSltdBOJsYLd3U)@n6K1r@5sM521Q0A~J| z$_A+fkTDdBrKDa9&ctHepB5o3HVSHSahK|@C>@=hqzgPOZ5XG63P_r&ogMKKHUg@h zWa@<H+m77a&pKU6Abb$Tz`HiS2|e2=mT=5hHt-ZZacYA_@@|`Ze?V}yD|EFd#HTd! z9Tj9WK&4wE>q6O3F#(|=?0CHRk!TCbd}HIyR6(o|6HJNnd^jseNQ$o!_;d@`Cn84a zN36xIMoM~;6rqyiwVL$+lu#egb(_GM=S~T1aSyDiz7M9>$Q2J^Net@zoDdloNwV)R zme`7ao0)3vu+o1x@nEF?^N0phf!rs04<g!W|G{@wuW^9vn5d#%uMy&fnc@&N9c<et zz`t@7-KGvt(V)X7vndr>D%8VF3q{eXXba086bm2IDA2~G37Av*Fjl&~i_y#~GH(I5 z88sOE7>a_94cJrSBR)LL)nwxfabv~w*J-<uU(r3AeyVnsD~_jOtrc_^a>eU$p~L!e zGs_S^R{cjCjY}r=%-2J&yuWpju^>X^*D_<4`qE7U*&EEdwxm!@*ST|@+SyL$PkgRM ze55Jc-7^?zISdy&yudj63H6jyNn|an0^Bno(!U5hUik4lEPHFzbXyA@Hyk*nQ`}xV zJRtnVZ`iQf;%Plx9_h7rx^b}=zt0a!9LSi*D~Pn`{fT21u9!)+8n^?Dqaq^872)o& zy#hkj_>=CO>aPvZ--hT*#gV`NYcBkR{!g|rMZzjoZmxt~38pMylJpf$U_s`aTWWuO zea2KyddwS+^Rq;k+ntr&Xy?ZpPz%(@>vTH)dAf=ohIM&ND|XzMV|DT7j+DVc0VT_; z|IbNdBW=vW9kbF~zV1$K5c$kLi@n|%qOE&Q`-OD{I#gpG_U&CAb<f>xzJfFc06rR< zaon85W6A>i{GB=}*WSV@F8Lod@rnRijju@$jQzLThi@*OZurN_aR<e4Ck;KX>~$$U z9aq2bWiGGaiazmI63&sZ4pVJd97&gbDIyuZPJOf=29ErX8U_d5<nLcVuEEZXURI+< zICpsPC8&VY!8kTT?$P(GRkn#zSA?Ge<WqpvWYlcH|970t_H9Q@so{3gMDsb#&H{F> z;xABTVPjaVRX<3PJL}f6cp<X=r6XvStH9Vyj6uq&+eGkWzwH(_KbRP+{oOTMrh}^^ z-iK@knq%%`ggR%ZDyE!9T@;P;h8Vx~Th^+QKCD5?#Ow{=Lxn|^DUy;2P4v^rNP9I( zme0ZlZ}-0l5(6wua4=9Whh0@@m(LCM%)6T7#*2OJL!%97Yhc`#n@;-k0ykVdvW%l{ zJE@WE-MA_g`E=4q8spnD6UutD?;>EM58bBMrrrGY0j)Brr}LeRv~NPNn*VH7r+v{E z9^@o;=kpqS%=_E&ZDEi(^4vZ~0+xC=6DO75(FfbVlO^O$M;}v7*o^NwHu7`x54X57 zpIS^1`Cpu&;gpCh=?y`1Z4>iu56<T1?kzu}k>rC++vPn75e{hnYbFEs4U|bOAuF;O zX}EkSxx$L1D%X#8RlhlJ>AU7Qed*O|qJ*Pg-=q$HqJewf)@&Qk*YOCSQvvaM5DNxF zQAMIv=Jt;ZDXbBO0U~w)TI#$)nAz&SsP%pQ<>7F9%+$@O<;b0j(8mx(l+he1!mHE0 z&IqK(1v-z46Fu$h>_l7W@nc<0g0kC;40ywC@m%Oo_UPEicKgn5AXy}w5ciD^tyzoX zN(cN{Nok30DQH~W+#^u{9%~OPYxeB_%552yN@6qCHOqJv3MhF6XHauMcvG#R#c#eP zyO+yTaTgM&9{=U`)@~vFnzNULW2FoJ*g?dPPQy+$Ryjn-dAm)2YpUTflK;X(RcT*U ziZYgV(I4$9>l<@>vzSz3hx$ah%&$7bGC9-uh1?#sxZ)LqSqWyy!$j6$(?J?OSB*+~ z0K;n^W=y`g)s=<F#xyv%tLL|C8`s|}?autnk#{&XU7sj%7n(Q(<-Zp@RfAKtE|h0k zLb=@4zRdPzcE6TdLh1|ml@j>pw<>`Xqdzd6(c~-I^#QHak`yQ5SO1L$lyl(BeSM>I zS@r0VLK#P4h>nc((TCu;a0XdvRr3k<h$xij*ll_j%V?z0fV&nz!StSkgN)BdBOixK zNwh~Ov*lORCGW*rxH11#=W97M!Z!sI)f7M%Qy}|&)OX!qmJ9v@^lB+NNND_xORmC` z`>S_FNsMf(t0eDS76y7>4Jn$eluE`$$cd_{9)%h<>JU&Wnw#gq*bW=S?g8#KU&+;Q zFp@ar?iLJtG&M&rAJ@v(CUeW(k*!DR0_xtJc6)L7sJFG%`%_Bz5={t8oW73`fLjfC z)LPMUGNkv~shkZm9==NX5T;pK9KkSxyl5aT?E>ghHvmZ!w^eki2sp-IGZn5@AZ{Gd zbORYSR{qm6xl!RUr5CpnhlI{fA~&z)zBQlCcTavq`&P4bZ4K~|h%WmMoT0e9si;p; zN6V=CvI~;3k^n<E5Lx|fa>((oMhYKpG<8UW`|=knc1_BF{+s>my7R>SX}&kK49G~T z4GuOlF>a-e<$v80zj8+qdE|fH6)-&L-nJV=O%u3~&dRj~84D}m1Sta)Wmxw4f-Ch7 zJ$=?<)-6gxddJb}u<%{a%aJpS>OD@vSMg;^byq#b<j<Xm)_N1fetDAOXXZ`Q0K8-e zQNn7;?jkO)RYM?%cA=o;xH|X#PO#_xQYs|6+`NT0Pg!76;PqOD-Z9F2bt%@(ZUH~L zEP%d+jrxMJo$r04xNF{$Yu<E5pGkc3bVgiVRUjfKhX`xPD`5Cu6=KQ)&My|0Yi4z4 zQ47vAc#w#q&Z#;p#5D1j^=LVE$Q9Nbugv98Qp|IgHTt6%X%n=HTOwMaKyzz}NW${o zwB2s37oP<Dq(YvG7vv+(s|YI==57{UOkj|=zjkxOxIX84%zyIOZi-6oGUPTO=pnC$ zy-{Lsqv61=ltaGFeBJ`5eur2tvJbz&jU9-T1w`9IozmxukV*sn+t5Cze3h%*e8c47 zGHMqCP6cw{D|heB<56QfzM5&@*Ka{OW=Y`+%+6tu@LF@yJKOF!)ixfi(Kb+&bBcf| zlCazm@E_Z$0$=|l^0>3aW?a<Zv=}S$Pk}OTq@+$xrXPkmvPSPgTvY<3-yl?CI6S<# z$A1(vE1mn_EMb};Ly(pw#vBYIjYQr#cV-C{Xv&v1$_x}gTjElt4z67}L$)9d#1tG4 zoM?k6<49%*jsmgZ4qRsD%gPhC-hh1eKdt2)=G#|^QzyU02~bd8|7mw|+gylTMt(oK zF(UeQp2LNcfZq@O<I3uERvbt^)TU7dvwmA#0ufD`9I+~Y%gMz?U?Z^feQil;4k!yd znTMndv5wg-ytj3XSRDwu|K=O2=NY*wPf?LNiuMgeksdPGz9^t(3ePI415iDH+sw|= z=*rE@dwO16-z4Bl5h-TaS=s8j<l&dhz~4mNFNpJ}lE-gzdhcn?9!Yn<>D*oBjuQTl zfE^Sy;A=~Okknwe#3uA)RvYxJb4$hjQT1WWr&nnLu_`2-tAoTs74qG6pD;?9)tYEy zML11w;zexc#7i5059Ye8PiI|FO`;%aItAq;*AG5O><XU&q4bVyq6CZ}v(9Lq+w83- zzI_q@yE`ia&nFFNue>XyKy2fSk)NQ`;wA;aEq~=FXmySl4bMui%XOVjgrjCqh|7YZ zCU#cb05ds9Rb7=eu%zau`if~G<??~C-zBlo<W5JP4xlZd>!5!B=9OoIhiykcAL>Xx zZfKZy<J;I{cH*hug@af#(fTiv4e=b{`4mp%Ob@dDlE)Aa{`-I%EX>4sXe+o+Ee41z zxl;PeBLf&O#h*g*r1^jMoUCjvnC9fW=b7%lnR7xm@Zm6U3QCS7xrDKMr(!D%IvbK3 zY}Vs#c63)s5D(dX25Vv!?8z|-Dk>Yrv@LIrO1gc|`#pE&>n597u!0W0Y8Ghtaii5P zv@eI8qGJc8I)+m^1X}i2S1bF@@t6d_JGrfi7cm@GR_WXrI^7?c_djrda^5WQ`)CCf zTsuNc73}^(9(yJu*YPR$-M%mGs$<7cCKcEUT<}icJ<ET47`vnA$+102vgXBY;GK&p z3poDdB9bFX@8dt(`ZSBpb_NOi`t5W$sz<#!KvyM!-IQ_;CB}!Sde1#722+UsQe2`t zGA=&;%l&WPg)hfAif@vgtY;sci}NshIty?%mk@sHnd{|>)H|HcfB(q_IJr${6u=s= z=<$O2voNqbaH$xDD6j8I<zHq<)a9XDJQaNl;rQW~zFTQAn>^eQV9Wfj#W)4@rK>eR zD`9ZLQD=~Hzx8Lk3hB{Ck(j)SLO4iPkV{5x>vJCzfh3M43hlthrCWLKeL6s>dp?i$ z>pkG(TkuEyGaBuB#w(1*e@T_KL(k7MH@22j;W{$8To--f?ZkeT0?sP1jQ~<TTp^cL zbY8Kq-6yztRY%u}RJYd!K0pkqrTVF1qq~LqeXItCL%+{H`2r0lC0_%lySDLe(uDgK zG-xJp&-iI_O?p4ppue)-ghw#9GS&-H=f7F;m+mYl`jUuTYup0VyKQ7m(R;a{w9etg zeaE16G<}o+%hdhXrjrs{S@V_Nd!rW#fn!dh7ZCWugGFED3BXL{bbrfj0!bM9mWZ19 z`#B?jDtX3jns1klM^GA>T@iA>z%7=FjRAtw96wh0wdzq|ZSzdK5jQdRbDyys?HHrE ziSri}hC}GK*g#h&Tedw-;PYn)s5M%N`E@$kIQu92pV6_>o6w3Q{Pl`jS?rhk17?Yg z<QjzVVpnT+)+!R0baPv*l&qK6)UQy~#sK&t@L>RroXPA9;KN9S%#AcCa%n2=`zF5B zg4I?%6qQvu7U4~<v3URGWtul_OwvD>x?pcsIt~mg7ZLaM6+S=1G`nI4bp(Lq015^A zWL|p$o3o@J-y&aM#^daudLRc__zw7AV{SS%g$P+O(ZCou`9Oy)i=avZ$L#;PBoQly z!p4`HiU6^W-^96ZWI$!o18kEy{<=NE0)uG~Ddp~THf8d;=;pxM{n<~nMuen+0;Map zrU;sRkkJwp^zVbAgNvl|IM~b&XG=s;tm(aj*%juxGgZ{_dMQ7@j=$XwsW+ev6!JX@ zj*7{fb}$aaeEB7_s{iDM?D{c4U~b$a>eVCUz9B{mo1(4KEc|lu9@IoA+$kX6t@l-l zH9GUk2!zEEdr&~q1q5ykAPK)XVgcbDz|!J@Nr#T<s<?;o$!yjBY{PNR=v$gXEV0K- ztj|R~gah#WgO&+wNTkY2JjzClh!Ypad{gJ%nWLxIuFT2X$Uzu&73$>H@_WnqP=`D@ zFwvxQAg@(f?bMt<VGlgJJ|_J<TcS;-`)Gqci;^ik^P{+K^^FqZYZx4;xxw_Yqg(;K zP0h)3`o_sm*fz%)&ktOY@S>Ai5wAaDQC;=uNu*HMGp^pn=v5a#JO`UuRPpCa1TMH@ z#DVlQzSM}lfIciLIF2btJhoZJM8L}EE-9|}^f$<dDh0B2`Q59K8x-3ix`8iHPLv@0 zji_45&gbaXq8mdPyQ}$HUuN!z@1H*(QlK)bcu~K&`w{yt_7oV_sB|5@?*BZ8T!xq1 zauUxvhFRZBvpy2DKB;<PqYkoTfA~so6wmV?A}^k-+<k(l>}8Z3H#O3D7}rpiLG_R{ zffym;(k$Y_B!Hhcs7*QxZ3vI-O_WW_ip{T}kcpX@w%#^O^2rw{50F1O3AufL+LDRr zcSJ-dh!kxRm_*i`;o90i<tE&WUlH&NEJTDK4WoF#-M&oBFxc*9wk1XFgQ^hF{y1k~ zDI^9_Pq#$()^Sa4=-8?UN!1xSc-LzohFiMhvG8=?Bbb?@D^1wDqK(xxy(k_S6b98O zPz{=znyO+Sb_G#4-y)jflnd5Rk^A7|$^ZReDKPufokbLGYxcPiqhgzA@B=R#1&J{T z*}I9vcGukGsd#S^hrPM^>SfVw+HW}gkK$<ryhGc@z&8ej(f;p;iUc*G3TLzaKPcX3 z@X)2NyzE_vX{c@3<gjbxMIBpv_-zPp!=G`KzYsC+3ax+MOl*Lc-OK+#aWAOQQ5I?^ z%6Q?zs3jE>oR9@*9;I3Bl4aZjD+3U&;l<R!&4I%7ZAXPQi~ku)IS(2jr=-`2r<1bM z()nXv6bFm{cg-Ml@ZAqkM*&*woY%>}0&}2v=|6(O(hO(_h7`nKsQ}XIpXTz9bOZQR z_rLlt(*M6-GAljxz}^VsvE-`gpLI7^Cz;yVrC&v%AY9CGJ{0-i4-hUKFRfV{ILVPD zOaMewmSHuuxv=fe?Em|<|NMmN{;K*!`Jbozp9dDU`T@iI9RDBW^#6Vkb@2?-{I_q< z{?%}$j|&MN5qJtWFpZkFj+%ZG<;|SjDMVrB{{o&vVRq${{W2gvoTt8%tZISmxR__% z*6fwL<Jgwt5jW@KPdv6!JjGEwVq|6%@3NHxT=ICj&zkPwWFX4tL>-CoRrn@t4qP<# z(Dg?TnQJ89-xEIXOI;o~R^P?!4-f*4UwnR*DtuGYl(xHJ9?$b+fzloP9Hsc&tPciH zF@CxbetPmU-8(nebEA!n5Zw;ifCO>}CJ{9rezhB85CzCN5@tz_>rt!PeQYPs77BaS z1kH1J6qLTSCZtKNBC~6yE}>$AW}wcG_<+`Smw2IIl6KYN)zb`89A9WC#8bysd)2e_ zjy^_=i4V$ATI1=JD<_uF>0F512Nl$}#icOo(YL)nQ~2pmSKiwCL*!mL>r2hq`c3i3 z{pz8W#nS_@N>8H#@C>a>OP4>rJC@{C*jWFcwR`(;Vy1Lr#yH5$k!Umg=;@P1J=+*d z-+H2gxWVUF*-cTs%XY>j$S39e8SZeN?t^Cs^iINJk;m%Z)P&u}-sH*nZPK>85|A*4 z7@^tB#7AvWzJ-0QYZeCV4p5{lh6*;?Z6RB5j^sV9csx7lOn(01JZ(1x3r+OYS_bM( zMQYZ!3r|^ecI=bgP`AJP8)XKzpa&W?6aHzLVV9LncXxl2E6pvUdGg-gC9F>#J>_%{ zYJjKwhNtAh$@<^>Xl2|_Sh1IvKlF{qb-!!`k4xC*4o~4XdE{humvFYv%$!ac-|Kg! z?X=%>oI+++hO7r&5z&hkr|JByCp4_*^XPz%dtycN5;hwBf#(Uti@c6+ku|RACe0UR ztYX3l%NO<4sh4J4vhzdeUr21-bR^#=9(<az-pus=>++v%RJQhC(YEoKxK^H`cunf* zqi#NYHF)8(67O4E0j0<3x-0kAJUC>L7W<sf!vl9ir9mqDG4W&#balrrK+6*92c9L( z=2d%8WT1{&pH>!jg*Y~~@ZTsgriq!`X@4svB)wJeWp=LC)<1!`r8O)QGh#uX>XsNX zoL>Z}KghQ5ykrFTrh;YS+U^q25izH7jo)H|@wWUY!aYhx7<_GNu(bB|W}dv0!AxM7 z!9Z?A@aQHs*}3~J?>lLQ0PXg%Y(6!i?d~I6dtF=mPf?$06`jR+->xqScwY+C)6FJp zBekxX`Q5Q{1#E91r$eH6ESwb&@46;gZxu5Z0?5t&BIO1$UK(V!_Vm`-p*29jVp|Fx zS@11AVh6*IY-`WzgmxgX7c<UoyDMncr%rCz$PKUV(FqrTqyVLWjpmP-txZu69SRMd zO*~%Cs)hmb!j-zY*kLVCVkcaukmR0IOm8Z}Zdq@t_+fG}ref#o3x^Zsn!Cp_D@Otq zi)2+a7bJCydX0-h#H9XKhu5~~+@nRmU0cBFn!}9hx}bi6TsNHDDZ7h6NrC1v6ooKs zfoXyRu#5jR0R-~^qOJa`Rtn+~A)wd}(f<9Ci*gi?Hl<k!PoBT%9pC;7I8lH3{X(m0 z)Q4yA>SGUZ+8=?*1{kI4DWErjLI&KebJ$)YAfp(peC))4xTu;qKxY8E(K3n!ryA{j z{A2J(8g6(A54_|BJgT>@yq0IZIO-bgYX&LK_qXtrHL$~c;!&}j)BZ(P^^=VE`O2LD zJmot)WmueXNgwP$<b!_mWL5Ml+!IVy;}zp%$L8<=Tc!1qWS+b_p7r$m#f9cD9nIg) zRQGp83hk9?oKL<g4TW{k=cG=hn~F16#F+$hE6_7UvG06?ekh=MkMWM%uOi|{hn)$= zj}Od+Hc<+$4H8^I)9NAL^2ViZ-c4;UneuhwWIG4@XC_yj1(esE>G9%*-|KFdsJ}6b zbKp1>mCw$-OM2RRl_r*Ol9RLBb{ppqcT$*RXyH)Ba0)qx;wI46w&;y)#nmQx`#-Tc zJiK)T=l`KwwMsj94|m;aCaJrj*<1Dy2y{taT0&!=aW}qt=uBB&v8S2Mjy7q`@NX-I zu)UA!$TO3VIigF#OD^JVpL1*jMcPo?=4)jc>`}C4Xg*g{)GeHOZJp!KUNb16E+o5E z?pC@u&Yelhvjv3*61SPP`OlIf$$e$ndbadBYx3-oJT7u^P$yH$IZJK1eKl%XwY@xB z;PYDAgcImN@otcsBjG{GZVY38_SNYXX3XI}Ek6Ez9D@Q71!cbq+EBPWb!jHtL^Z1R zBg<moF>Irn4PiVJ(kSK^r>!VH;Z0|Co<Y8`_Q~lmM$$q;CX8BnA%CvgT;Bg+9r=^= zR{zlzs*@ti`A9X?@|skhFUjL^97GxNQoql~Ro$DjLU&|mWIde3{$0>zu45p1T!S60 z-D@#=dO_w70ImG$V~%<dWgu!C)+<zY8|?9(&)Z6R?x?~RK7OV584s@tj2~}N6(xS} zRcJpZ;4Urfp<O#wiEi4jp;+{(z1EMan*Nq|blk>U8_r;eR$@PFiBZvY=4gKcx=5Y0 z&kPu*%sG&aYW-?=X=bfnm*yFuVj+7zSI&zcv%iK^Xpf8#2vyDnz{b*z{<t!vzs}%M z8Tqc}Kt+M%gty7MMy~Op*I&LWkkLNMkF2iT`E~8!E`&r;5Z0j_=jKo8myUI#(bJpy zr{64X^GkB|u&1=Nn;b!IL_|u7zexqjEXJIJ4<$E>FXxtG5ixK!0yX2{fhvK#_PEHY zfv@F_ksO^EeqP|{82$A`-d6BMK8Vi2wcF2|sXfQ8z_+#=7y8N+_$96-sXF!VwXztp zC$v0qV;3?baOBHTAu}S|=B0kav9u01#nG63z{L?R>#OKKB?Wv^+3vepP7v#gh-TB@ zU#M-)`XvQ6i2H9PU_cOU%v=Vcc}q|K{RtbG28i}tKH;C=(7%oQ@0S=}BZM&{A`0Zc j1K28Puj8fv^Ka{1I+iJarQfVtK|qt2QI;-~GztDcxl7J_ literal 0 HcmV?d00001 -- GitLab