diff --git a/analysis_and_scripts/Analysis_07MAY2019_new.ipynb b/analysis_and_scripts/Analysis_07MAY2019_new.ipynb
index 7afcd08b0ad02a7134971d7ebc76ad0a1f9fd772..26d5bf830e24ad1846505b47262c3eb0cd404799 100644
--- a/analysis_and_scripts/Analysis_07MAY2019_new.ipynb
+++ b/analysis_and_scripts/Analysis_07MAY2019_new.ipynb
@@ -58,16 +58,7 @@
    "cell_type": "code",
    "execution_count": 1,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\ensemble\\weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.\n",
-      "  from numpy.core.umath_tests import inner1d\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "# Imports\n",
     "\n",
@@ -239,7 +230,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -266,13 +257,13 @@
     "    df = df.assign(probabilities_Y=sigmoid(df.X))\n",
     "\n",
     "    # Draw Y ~ Bernoulli(sigmoid(beta_X * x)) = Bin(1, p)\n",
-    "    results = npr.binomial(n=1, p=df.probabilities_Y,\n",
+    "    results = npr.binomial(n=1, p=1 - df.probabilities_Y,\n",
     "                           size=nJudges_M * nSubjects_N)\n",
     "\n",
     "    df = df.assign(result_Y=results)\n",
     "\n",
     "    # Invert the probabilities. P(Y=0 | X) = 1 - P(Y=1 | X)\n",
-    "    df.probabilities_Y = 1 - df.probabilities_Y\n",
+    "    #df.probabilities_Y = 1 - df.probabilities_Y\n",
     "\n",
     "    # Assign the prediction probabilities and add some Gaussian noise\n",
     "    # if sigma is set to != 0.\n",
@@ -678,7 +669,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHwCAYAAACYFJ/XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcTuX/x/HXNYt9bAmhspTKMsaYsSUzjFCWqERkDVHylRbyK8k3JUlSohRKWSK79C0ytsg6KUSqyb6baSyDmbl+f5x7pjFmlXvmNt7Px2Me7vuc61znc851T92fuZZjrLWIiIiIiIjIP7xyOgARERERERFPo0RJREREREQkBSVKIiIiIiIiKShREhERERERSUGJkoiIiIiISApKlERERERERFJQoiQi1wRjzMfGmCGu102MMZE5HJJItjHGVDTGnE5nv48xxhpjymdfVJ4bR3oyitEY09MYE56tQYmIR1KiJCLZyhgTaYw5Z4w5neynTEbHWWt7Wmtfz44Y/y1jzGvGmKk5HUdqXEmmNcYMzOE4bjPGXPMP8suuxMBa+4e1tlCy864xxnRz5zlFRK53SpREJCe0stYWSvZzMLtObIzxycnjPUBX4KTrX8lALmjvXMkY453TMYhI7qdESUQ8gjHGyxgzxxhz2BgTZYwJN8bclWz/58aYYakcd9lf9JOXTRymZ4wZYow5DExybW9tjPnJda41xphqacSVWP+Txpg9wK+u7e8bY/YbY/42xmw0xtR3bW8JvAB0cvWWbXZtL2qMmWKMOeQ6brgx5rL/BhtjbjbGnDXGFEm2LdgYc9QVS2VjzCpjTLQx5rgxZnoW7nEh4EGgL1DFGBOQYn9DY8x6V937jDGdXdsLGGPeMcbsde1bZYzJ69p3t+uYKGNMhDGmYbL61hhjRhhjNrmOm2eMKebavcpVJrFXMdgYc7sxZoUx5oTr2qaluA/7jTEDjTE/u+qbkRiHa/+Drhj+NsbsMcY0zcq9d5V9zRgzy1V3DPCYMaZesms8ZIwZZ4zxTX4dwHbXdTzkqiezn68Rxph3XK/zGmNijTGvJ7aX630Rk6wHzhjzJlAPmOg659hkVTZzXfspY8y41M7pquOS3yeTYjhrJu51H9d5Thhj5htjbkpxilbGmD9d7Tgy8X6n9/k1xlQxxiwzxpw0xvyaeC+TxTveGPONMeYM8KIx5kDydjTGtDPGbHG9Tq/N0o0xlXuVXlwtjTE7jTExrnv2TFr3XESuQdZa/ehHP/rJth8gEmiSynYvoBvgB+QD3gc2Jdv/OTDM9boJEOl67QNYoHw6ZeOA14E8QH4gGDji+tcb6AH8DuRJJa7E+r8BigH5Xds7A8Vd+wcBB4C8rn2vAVNT1LMY+AAoAJQGNgOPp3GPVgHdk71/B3jf9Xq263xervt0dxbufXdgv+vYpcCYZPsqADHAI65rKgEEuPZ9CCwHbnLdrwaAL3AzcAJo5qqzOXAcuMF13BpgH1AFKAjMT7wvwG3O/4Iuia8yEOZqp5LAWmB0sv37gfWu+3cDsBvo6dpXH4hyHe/liu2OK7j3rwEXgFauehI/L3Vc96Wi67z90vn8ZeXz1RTY6nrd0FVubbJ9m1O7X6572y2Vz+kCoAhQHqfn8LLftZS/Iyl/pzJxr5sCR4EAnM/gB8D3KeJYhvP7Uh7YkxgraXx+cX7vDwBdXHXUwvls3ZEs3lM4CaIXkBfnvyWNksU8D3guWRtk1GZpxdgTCM9kXMeA+q7XxYHAnP5vrH70o5+r96MeJRHJCfNdf+mNMsbMB7DWJlhrp1prY6y1scAwoJYxpuBVOF8czpfCC9bac0Bv4ANr7UZrbby1drKrXHA6dbxurT3lOh5r7TRr7UlrbRwwCiiM82X2MsaYsjhf4J+x1p611h4GxgId0jjXdOBR17FeQHvXNoCLOF/sbrLWxlpr12bmBrh0BWZaaxNc9XUy/wwtewz4xlr7pbU2zlp73FobYZwhTt2A/tbaQ677tcZaexHny+NCa+3/XO33DfATTsKU6FNr7Q5r7RlgKNDBGGNSC85au9tau9zVTkdxEsSQFMXGWmsPW2tP4CRAib1ijwOTXMcnWGv3WWt3XcG9B1hjrV3kquec63Pyo+u+/AF8lEpcyWXl87UWp3evKE6i9BFQwRhTwHWOlemcJzVvWGujrbWRQDj/3J8rkda97gR8bK2NcP2uDgZCjDHlkh070vX7EgmMw/V5Ju3Pb2tgt7X2M9d93oyTWD+crM551tp1rnY5D8zkn9+TojgJ+0yATLZZWjEml1FcF3Haz8/134MtGdxTEbmGKFESkZzQxlpb1PXTBpw5B8aYUcaYP4wxf+P8hRecno1/64i19kKy97cCg5Ila1E4vSVl06ljX/I3xpgXXMNwonH+0l0wnVhvxfkL+JFk5xsPlEqj/GzgHmNMKaAREGut/cG171mc3pxNrmFRmZprZJyhiQ2BL1yb5gGF+CepuRmnNyOlUjg9PKntuxV4NMV9rAskX5wj+X37C+c+FE8jxtLGmC9dQ6r+BqZy+T09nOz1Wdc1pBd/Vu99ypgxxtxpjFlinGGhfwPDU4kr5Tkz9flyJZBbcdqmIU5ysx6n5+RKEqW07s+VSKuuMjhtCYC19m+c34Hk15ey3RM/E2l9fm8F7k5xz9rj3LfU6gQn2X/INaTuIeBHa+1+yHSbpRVjchnF1RYnmdprnOHCdVKpQ0SuUZqkKiKeogtwP9AY50vLDTjDWlLtfUhkrY0zxpzHGVaVqDT/JFrgDLNJbh/wqrX2zSzEl1SHMaYRMBCnp2KHa3N0slhTO99ZoLirNyf9E1l7whjzPdAOqAnMSLbvEM7QIIwzH+g7Y8wqa+2fGVTbxRXf0mQdOnlc2xe7YvRP5bgjOEPRKgHbU7muKdbavumc9+Zkr28BzuMMCSuaStk3XfurW2tPGmMeBkanU3fKWCqlsT3T994lZft9iJO8tLfWnjbGPAe0TKNs4jmz8vlaiTP0rTrOsMCVwH04w7xWZzLGrDrD5b8zmXUQJ4EAwBjjhzOE7UCyMjcDu1yvb3Edk+bnF+eeLbfW3pfOeS+5ZmvtNmPMIZyepI780+sK6bdZujGmkG5c1tofgdauZO0/OD1aFdK5BhG5hqhHSUQ8hR/Ol+QTOF/gRmTh2J9whpF5G2Na4MyhSc9HwFPGWUDAGGfSfKssDPPzwxnOdxznr+PDcHqUEh0ByicOMbPW7sP58jvaGFPYOAtX3GaSLXyQiuk4Q+UeJNkXQGPMI67hZODMybFAfCZi7oIz9C0g2U97nC95xXDmgDQ3xjxknEUjShhjalhr43F6dsa6eny8jbOAgy8wDWhrjLnXtT2fMaaRuXS59y6uv+4XBF4FvrTWWpw5LtYYUzFZWT+cL/DRxpibgecycV2JPgF6us7vZYwpZ4y54wrvfUp+OInwGeMsMPJE4g7X/TmBMw8mUVY/Xytxhjducw3lDMcZvrfbWnsyjWOOpDhnVkUALYwxxYyzEEP/LBw7A3jcGONvnAUe3gBWJ/bmuLxgnEU0bnHVPQvS/fwuBKoaYzoaY3xdP7WNMXdkIpZncHrg5iTbnmabZRRjCmnGZYzJ79pe2DUUNYbM/S6KyDVCiZKIeIopOH/RPYjTc/FD+sUv0R9nCEwUTi/MwvQKu/4K3BeYgDNkaDfOHJ3M+hpnIvhvOBPK/wYOJds/C6e35qQxZoNr22M4ydQO1zlnk/5f8efjLIKw11qbvCenDrDROCt/zQWestbuBTDG7DLGtE9ZkTGmAc6wovGuOSeHXXN15rnib+/qkWqFM9H+JLAFp4cDnC+iO3F6O07iLIxhXHM72gIv4/T+7cUZWpX8/y3TcJKwQzgLGwwAsNbG4HzB/tE1pCkIeAWojfMFdyHwVTr35xKuoYm9cOaaRAMr+Kc3K6v3PqVncZLWGJyeipRfqF8Bpruu48Er+HytwfnjQOIKettw5r6sSvMIZ55V4rDHMVm4lkRTcdr0L5yFSmZm9kDXXLThOJ+fQzi9MZ1SFFuEk4xtdZWb6tqe6ufXWhuN0zP0mKvOwzifj7ykbzpOL/R31tpTybZn1GbpxZj8WjOKqyvwl2t43+M4i7yISC5hnD/siYiIXF3GmDU4k/6n5nQsIiIiWaUeJRERERERkRSUKImIiIiIiKSgoXciIiIiIiIpqEdJREREREQkBSVKIiIiIiIiKeSaB86WKFHCli9fPqfDSHLmzBkKFszsI1kkO6hNPJPaxfOoTTyT2sXzqE08k9rF83ham2zevPm4tfbGjMrlmkSpfPnybNq0KafDSBIeHk5oaGhOhyHJqE08k9rF86hNPJPaxfOoTTyT2sXzeFqbGGP+ykw5Db0TERERERFJQYmSiIiIiIhICkqUREREREREUsg1c5RSc/HiRfbv309sbGy2n7tIkSLs3Lkz288rjnz58lGuXDl8fX1zOhQRERERuQbl6kRp//79+Pn5Ub58eYwx2XrumJgY/Pz8svWc4rDWcuLECfbv30+FChVyOhwRERERuQbl6qF3sbGx3HDDDdmeJEnOMsZwww035EhPooiIiIjkDrk6UQKynCSFTg0ldGqoe4KRbKPkWERERET+jVyfKOWkEydOEBAQQEBAAKVLl6Zs2bJJ7y9cuHDVzrNs2TKKFCmSVHdAQAArVqzIcj1xcXEULVr0iuOYPHkyhw8fTnrfvXt3du3adcX1iYiIiIjklFw9Rymn3XDDDURERAAwbNgwChUqxHPPPXdJGWst1lq8vP5dztqoUSPmz5//r+r4tyZPnkxgYCClS5cGYMqUKTkaj4iIiIjIlVKPUg7Ys2cP1apVo0+fPgQGBrJv375LenJmzpxJz549AThy5AgPPvggQUFB1K5dm/Xr12f6PM8++ywfffRR0vuXXnqJd999l7///pvGjRsTGBiIv78/ixcvvuzYZcuW0aZNm6T3ffr04fPPPwfglVdeITg4OOkarLXMmjWLiIgI2rdvn9Rj1qBBg6RE8fPPP6d69epUq1aNIUOGAP/0YA0ePJgaNWpQr149jh49moU7KSIiIiLiHtdNj9KAbwYQcTgiw3KJZTIzTymgdABjm4+9onh27NjBlClTmDhxInFxcWmW69+/Py+88AJ169YlMjKSli1b8ssvv1xWbsWKFQQEBCS9nz9/Ph06dGDw4MH07t0bgNmzZ7NixQry58/PggUL8PPz4+jRo9x99920bNky07H/5z//4dVXX8VaS8eOHfnmm29o37497733Hu+///4lcYCz+uBLL73Epk2bKFKkCE2aNGHx4sU0b96c6OhoQkJCGDlyJAMHDmTy5MkMHjw407GIiIiIiLjDdZMoeZpKlSoRHBycYblly5ZdMs/n1KlTnDt3jvz5819SLrWhd+XLl2ffvn0cOXKE/fv3U7p0acqUKcOFCxcYNGgQa9aswcvLi3379nH8+PFMz09avnw5b731FrGxsRw/fpxatWpx3333pVn+xx9/pHHjxpQoUQKAjh07smrVKpo3b07+/PmTjq1VqxarV6/OVAwiIiIiIu503SRKme35SexJCu8W7r5ggIIFCya99vLywlqb9D75stbWWjZs2ECePHmu6DwPPfQQX331FZGRkXTo0AGAzz77jOjoaLZs2YKPjw/lypW7bCltHx8fEhISLovp7Nmz9OvXjy1btlC2bFleeumlDJfhTn5tKSW/Lm9v73R710REREREsovmKHkALy8vihUrxm+//UZCQgLz5s1L2tekSRPGjx+f9D5xzk9mdejQgZkzZzJ37lweeughAKKjoylZsiQ+Pj589913HDhw4LLjbr31VrZv386FCxc4deoU33//PQDnzp3Dy8uLEiVKEBMTw1dffZV0jJ+fHzExMZfVVbduXVasWMGJEyeIi4tj5syZhISEZOk6RERERESykxIlD/Hmm2/SvHlzwsLCKFeuXNL28ePHs3btWvz9/alSpQqTJk1K9fjEOUqJP4nJVo0aNTh27BgVKlSgZMmSAHTu3JkffviBoKAgZs+eze23335ZfRUqVKBNmzZUr16dLl26EBgYCDgr+XXt2pVq1arRtm1b6tSpk3RM9+7d6dmz52XLn5crV47hw4cTGhpKQEAAdevWpUWLFv/+pomIiIiIuIlJb1jUtSQoKMhu2rTpkm07d+7krrvuylI9V2voXUxMDH5+fv+qDvl3UrZ/eHg4oaGhOReQpErt4nnUJp5J7eJ51CaeSe3ieTytTYwxm621QRmVu27mKGWWu+cmiYiIiIiI59PQOxERERERkRTUoyQiIiIiIm4RGgpRUQFkcT0yj6BESURERERE3CMigkJxcUCGU4I8jobeiYiIiIiIpKBEKaVQ14+IiIiIiFy3lCi5WaFChTJddtiwYYwePdpt9V/pOVITGRnJ9OnT/3U9IiIiIpKLWUteG5vTUVwRJUpyRZQoiYiIiEi64uN5OnYU42L7wrlzOR1NlilRygGLFi2iTp061KxZkyZNmnDkyJGkfT/99BONGzfm9ttvZ9KkSUnb33rrLYKDg/H39+eVV15Jtd60yowYMYI77riDJk2asGvXrlSP/euvvwgLC8Pf35+wsDD27t0LQLdu3ZgzZ05SucQerMGDB7N69WoCAgJ45513iI+P57nnnqN69er4+/vz3nvvAbB8+XJq1qxJ9erV6dGjB+fPnwegfPnyDBkyhHr16hEUFMSWLVto1qwZlSpVYuLEiele05kzZ2jRogU1atSgWrVqzJo1K/M3X0RERETcLzYWHn2UBhe+5+Ni9SFv3pyOKMuun1XvBgCZWZYwsUxoJsoGAGOzHkqDBg1Yv349xhg+/vhjRo0axdtvvw3Atm3bWL9+PWfOnKFmzZq0aNGCX375hd9++40NGzZgraV169asWrWKhg0bJtX57bffplqmYMGCzJw5k61btxIXF0dgYCC1atW6LKZ+/frRpUsXunbtyuTJk+nfvz/z589P8xpGjhzJ6NGjWbx4MQATJkzgzz//ZOvWrfj4+HDy5EliY2Pp1q0by5cvp3LlynTp0oUJEyYwYMAAAG6++WbWrVvHM888Q7du3Vi7di2xsbFUrVqVPn36pHlNx44do0yZMixZsgSA6OjorDeCiIiIiLhHVBS0acPKlZYWeSI4c9aXIX+f48aiBXM6siy5fhIlD7J//37at2/PoUOHuHDhAhUqVEja98ADD5A/f37y589Po0aN2LBhA2vWrOHbb7+lZs2aAJw+fZrffvvtskQptTIxMTG0bduWAgUKANC6detUY1q3bh1z584FoHPnzrzwwgtZuqZly5bRp08ffHycj1Tx4sX56aefqFChApUrVwaga9eujB8/PilRSoylevXqnD59Gj8/P/z8/MiXLx9RUVFpXtM999zDc889x6BBg2jZsiX33HNPlmIVERERETc5cICE5vfzxo6WvMxwyL+X2xJ2cWPR0JyOLMuun0Qpsz0/oa5/w90TBsDTTz/NwIEDad26NeHh4QwbNixpnzHmkrLGGKy1vPjiizzxxBNp1plWmbFjx15WZ2YkHuPj40NCQkLSOS5cuJDm+VOex1qb7jnyurpgvby8kl4nvo+Li0v3ujdv3szXX3/Niy++SNOmTRk6dGjmL05ERERErr6dOzl+bwc6H3qDbxLup2y91dy8Kw/ecVlbfMxTaI5SDoiOjqZs2bIAfPrpp5fsW7BgAbGxsZw4cYLw8HCCg4Np1qwZkydP5vTp0wAcOHCAo0ePXnJcWmUaNmzIvHnzOHfuHDExMSxatCjVmOrXr8/MmTMB+OKLL2jQoAHgzCXavHlzUmwXL14EwM/Pj5iYmKTjmzZtysSJE4mLiwPg5MmT3HnnnURGRrJnzx4Apk2bRkhISKbvU1rXdPDgQQoUKMBjjz3Gc889x5YtWzJdp4iIiIi4wQ8/sK7Ofwg4uJj/EUZI3y+JXF2fvPHX3tykRNdPj1IOOXv2LOXKlUt6P3DgQIYNG0a7du0oW7YsdevW5c8//0zaX7t2bVq0aMHevXt5+eWXKVOmDGXKlGHnzp3Uq1cPcBZU+PzzzylZsmTScU2bNk21TGBgIO3btycgIIBbb701zWFq48aNo0ePHrz11lvceOONTJkyBYBevXrxwAMPULt2bcLCwihY0Blb6u/vj4+PDzVq1KBbt248/fTT7N69G39/f3x9fenVqxf9+vVjypQptGvXjri4OIKDg+nTp0+m711a17Rnzx6ef/55vLy88PX1ZcKECZmuU0RERESuLjt/Ae+0W8uguCVQeB/93/mSd7o/5ow2CgjgdFRUTod4RUxGw6OuFUFBQXbTpk2XbNu5cyd33XVX1ioKdf0b/u/iiYmJwc/P799VIv9KyvYPDw8nNDQ05wKSVKldPI/axDOpXTyP2sQzqV2yV9TYqfR4pgjzaEu+2xfy/pQ4Hr/7waT9oaEQFRVFRETRnAsyBWPMZmttUEbl1KOUUnhOByAiIiIi4uGsZUufj2j3URP+4hYKN/s/Fk5sRkj5hhkfe43QHCUREREREck0ezGOifd8Qb2PuhHlm4dS/R5h3bROuSpJAvUoiYiIiIhIJsUcOcsTtTYy48Bj3F5sKfmGjOJ/T0znJr+bUi0fHg7h4RFk7iGlnkWJkoiIiIiIZOjn1VG0axrNb7ENqF15CMVeimD2Iwvxy5s75+Vr6J2IiIiIiKRr6ujj1AnJS3RsHuqHhlH9raMs6rgg1yZJoETpcqGhzo+IiIiIyHXu7Fno0eYk3Z8vQbBZzy3ta3LvsMZMajUJX2/fnA7PrZQouVmhQpc+iXjq1Kn069cvh6Jxj9DQUFIuzZ5Z4eHh/PDDD0nvJ06cyGeffXa1QhMRERGRK7RrF9SpdpqpC4ryTL4RnOrTjL6DRzI0ZKjzjKRcTnOUJEeFh4dTqFAh6tevD5ClB9KKiIiIiHvMnAm9ul8kX+w5Pir6CG/3XsW7vRfTtFLTnA4t26hHKQd169aNOXPmJL1P7H0KDw8nJCSERx55hMqVKzN48GC++OILateuTfXq1fn9998BWLRoEXXq1KFmzZo0adKEI0eOADBs2DB69OhBaGgoFStWZNy4came/9tvv6VevXoEBgbSrl07Tp8+zdKlS3nkkUeSyoSHh9OqVSsA+vbtS1BQEFWrVuWVV15Jtc7kPWhz5syhW7duacYaGRnJxIkTeeeddwgICGD16tUMGzaM0aNHAxAREUHdunXx9/enbdu2nDp1CnB6sAYNGkTt2rWpXLkyq1evzvK9FxEREZHLxcbCk0/Co49Cjdgf+ahcEGOe3crMZ9ZeV0kSXE89SgMGQERExuUSy2RmnlJAAIwdm26Rc+fOERAQkPT+5MmTtG7dOsOqf/rpJ3bu3Enx4sWpWLEiPXv2ZMOGDbz77ru89957jB07lgYNGrB+/XqMMXz88ceMGjWKt99+G4Bff/2VFStWEBMTwx133EHfvn3x9f1nHOnx48d57bXXWLZsGQULFuTNN99kzJgxDBkyhCeeeIIzZ85QsGBBZs2aRfv27QEYMWIExYsXJz4+nrCwMLZt24a/v3/G9wnSjLVPnz4UKlSI5557DoDly5cnHdOlSxfee+89QkJCGDp0KK+++ipjXfc7Li6ODRs28PXXX/Pqq6+ybNmyTMUhIiIiIqn74w9o186yZYvheUZR+86XeO2J2/hf9zXcXOTmnA4v210/iVIOyZ8/PxHJErSpU6dmaj5PcHAwN93krEdfqVIlmjZ1Mvjq1auzYsUKAPbv30/79u05dOgQFy5coEKFCknHt2jRgrx585I3b15KlizJkSNHKFeuXNL+9evXs2PHDu6++24ALly4QL169fDx8aF58+YsWrSIhx9+mCVLljBq1CgAvvzySz766CPi4uI4dOgQO3bsyHSilF6sqYmOjiYqKoqQkBAAunbtSrt27ZL2P/jggwDUqlWLyMjITMUgIiIiIqmbNw+6d7eYc2dZwKPsC17ExL6hLH90HkXzFc3p8HLE9ZMoZdDzkySxJyk83F2RJPHx8SEhIQEAay0XLlxI2pc3b96k115eXknvvby8iIuLA+Dpp59m4MCBtG7dmvDwcIYNG5bq8d7e3knHJLLWcu+99zJjxozL4mrfvj3jx4+nePHiBAcH4+fnx59//sno0aPZuHEjxYoVo1u3bsTGxl52bPKJfcn3pxfrlUi8vtSuTUREREQy5+JFGDwYxoyBoMK7mX2hGZMa/8VfT3ZkyQOTyeuTN+NKcinNUcpB5cuXZ/PmzQAsWLCAixcvZun46OhoypYtC8Cnn36apWPr1q3L2rVr2bNnDwBnz55l9+7dgDMHaMuWLUyaNClp2N3ff/9NwYIFKVKkCEeOHGHp0qWp1luqVCl27txJQkIC8+bNyzBWPz8/YmJiLqunSJEiFCtWLGn+0bRp05J6l0RERETk39u7Fxo2dJKkfjfOYGVMDV594C/skBf57MFp13WSBEqUclSvXr1YuXIltWvX5scff6RgwYJZOn7YsGG0a9eOe+65hxIlSmTp2BtvvJGpU6fy6KOP4u/vT926dfn1118Bp5emZcuWLF26lJYtWwJQo0YNatasSdWqVenRo0fSkL2URo4cScuWLWncuHHS0MH0Ym3VqhXz5s1LWswhuU8//ZTnn38ef39/IiIiGDp0aJauUURERERS9/XXULMmbP85gRkln2RU9GO073iBOi9N4PWw1/EyShOMtTanY7gqgoKCbMq5Pzt37uSuu+7KWkVXaehdTEwMfn6590nF14KU7R8eHk6oHibscdQunkdt4pnULp5HbeKZ1C7pi4uDoUPhjTfA/7azzDgRSukLm2nb2ZfnBsym1R2trvo5Pa1NjDGbrbVBGZVza6pojGlujNlljNljjBmcyv4+xpifjTERxpg1xpgqyfa96DpulzGmmTvjvER4eLbMTxIRERERyU6HDkGTJk6S1LP5PtYeKEdBNnP/k0UY/dJqtyRJ1zK3JUrGGG9gPHAfUAV4NHki5DLdWlvdWhsAjALGuI6tAnQAqgLNgQ9c9YmIiIiISBZ9/73zZJuNG+HTXqv5cFkF9hSJ4tFnb+WLwRsJLhuc0yF6HHf2KNUG9lh8LeKZAAAgAElEQVRr/7DWXgBmAg8kL2Ct/TvZ24JA4jjAB4CZ1trz1to/gT2u+kREREREJJPi42H4cKcn6YYbLBt6f0yXSQ35/uZ4nvu/IBY+s4FKxSvldJgeyZ3Lg5cF9iV7vx+ok7KQMeYpYCCQB2ic7Nj1KY4t654wRURERERyn2PH4LHH4NtvoVPHBCYUfA6/se/wRXVYOLgNi9pNJ79v/pwO02O5bTEHY0w7oJm1tqfrfWegtrX26TTKd3SV72qMGQ+ss9Z+7tr3CfC1tfarFMf0BnoDlCpVqtbMmTMvqbNIkSLcdtttV/nKMic+Ph5vb40WzEl79uwhOjo66f3p06cpVKhQDkYkqVG7eB61iWdSu3getYlnUrs4fv65CMOHVyE62pf/PLmTgVv6ctPq1YyuBz92e5A+tz+JdzbNbPG0NmnUqFGmFnNwZ4/SfuDmZO/LAQfTKT8TmJCVY621HwEfgbPqXcrVNHbu3Jnlleeu1vNmtepdzsuXLx81a9ZMeu9pK66IQ+3iedQmnknt4nnUJp7pem+XhAR4+2148UWoUAG+mxtD1f/rje/qHxjYFG4eNobZ9Z7J1piu1TZx5xyljcDtxpgKxpg8OIszLExewBhze7K3LYDfXK8XAh2MMXmNMRWA24ENbozVbQ4fPkyHDh2oVKkSVapU4f777096sGtWjR07lrNnz16VuCIjI5k+fXrS+02bNtG/f/+rUndyoaGhpFy2XURERESuvpMnoU0beOEFaNsWNi08SJUngrA//ECXdj7UG/Mlz2RzknQtc1uiZK2NA/oB/wN2Al9aa7cbY4YbY1q7ivUzxmw3xkTgzFPq6jp2O/AlsAP4BnjKWhvvrljdxVpL27ZtCQ0N5ffff2fHjh28/vrrHDly5IrqSy9Rio/P2u1JmSgFBQUxbty4K4pLRERERHLWhg0QGAjffAPjxsGXr+4kX5NAzv/xG490L0Tv0StoV7VdTod5TXHrc5SstV9baytbaytZa0e4tg211i50vf6PtbaqtTbAWtvIlSAlHjvCddwd1tql7ozTXVasWIGvry99+vRJ2hYQEMA999yDtZbnn3+eatWqUb16dWbNmgX80zX58MMPc+edd9KpUyestYwbN46DBw/SqFEjGjVqBEChQoUYOnQoderUYd26dQwfPpzg4GCqVatG7969SZx/tmfPHpo0aUKNGjUIDAzk999/Z/DgwaxevZqAgADeeecdwsPDadmyJQAnT56kTZs2+Pv7U7duXbZt2wbAsGHD6NGjB6GhoVSsWDHLidWMGTOoXr061apVY9CgQUnbP/nkEypXrkxoaCi9evWiX79+V37TRURERK4j1sJ770GDBs77NWvg6cC1XKxfm6i/j9Dh6dKMfGMjDW5pkLOBXoPcOUfJowwYABERGZdLLJOZYZQBATB2bNr7f/nlF2rVqpXqvrlz5xIREcFPP/3E8ePHCQ4OpmHDhgBs3bqV7du3U6ZMGe6++27Wrl1L//79GTNmDCtWrKBEiRIAnDlzhmrVqjF8+HAAqlSpwtChQwHo3LkzixcvplWrVnTq1InBgwfTtm1bYmNjSUhIYOTIkYwePZrFixcDToKW6JVXXqFmzZrMnz+f77//ni5duhDhujG//vorK1asICYmhjvuuIO+ffvi6+ub4b06ePAggwYNYvPmzRQrVoymTZsyf/58ateuzX//+1+2bNmCn58fjRs3pkaNGhnWJyIiInK9i46Gnj1hzhxo2RI+/RSKr5pPXIdHiCx0kedeqMYn/b+jdKHSOR3qNcmtPUqStjVr1vDoo4/i7e1NqVKlCAkJYePGjQDUrl2bcuXK4eXlRUBAAJGRkanW4e3tzUMPPZT0fsWKFdSpU4fq1avz/fffs337dmJiYjhw4ABt27YFnAUOChQokGFsnTt3BqBx48acOHEiafW4Fi1akDdvXkqUKEHJkiUzPYxw48aNhIaGcuONN+Lj40OnTp1YtWoVGzZsICQkhOLFi+Pr60u7duoSFhEREclIRAQEBcG8eTBqFCxYAMW+nEjCQw+yqcRFXhnRhOnPrVOS9C9cNz1K6fX8JHe1Vr0DqFq1KnPmzEl1X3rLsufNmzfptbe3N3FxcamWy5cvX9IS5LGxsTz55JNs2rSJm2++mWHDhhEbG5vuedKS2jHGmCzFlpk609suIiIiIpezFj7+GJ5+Gm64wfnO2uBuS/zQl/F6bQRf3w5LR3Rj2kOT8PG6br7qu4V6lNyocePGnD9/nkmTJiVt27hxIytXrqRhw4bMmjWL+Ph4jh07xqpVq6hdu3a69fn5+RETE5PqvtjYWABKlCjB6dOnkxK0woULU65cOebPnw/A+fPnOXv2bLp1NWzYkC+++AJwhuSVKFGCwoULpxtbWFgYBw4cSHN/nTp1WLlyJcePHyc+Pp4ZM2YQEhJC7dq1WblyJadOnSIuLo6vvvoqzTpERERErmenT0OXLtC7NzRsCFu3QoO6cVx4vBver43gk5rw08RXee/hyUqSrgIlSm5kjGHevHl89913VKpUiapVqzJs2DDKlClD27Zt8ff3p0aNGjRu3JhRo0ZRunT6XaO9e/fmvvvuS1rMIbmiRYvSq1cvqlevTps2bQgODk7aN23aNMaNG4e/vz/169fn8OHD+Pv74+PjQ40aNXjnnXcuqWvYsGFs2rQJf39/Bg8ezKeffppuXAkJCezZs4fixYunWeamm27ijTfeoFGjRkmLSjzwwAOULVuWIUOGUKdOHZo0aUKVKlUoUqQIAAsXLkyacyUiIiJyPduxA2rXhi++gOHDYelSKFnoLOda3UeeKZ8xIsSQZ/KnDGk8NGkkkPw7JrcMfQoKCrIpn9ezc+dO7rrrrizVowfOZt0vv/zC5MmTGTNmzBUdn/i05ri4ONq2bUuPHj2S5lT9Gynb/1p92Flup3bxPGoTz6R28TxqE8+UG9tl2jTo0wcKFYLp0yEsDDh+nDPNw8i/ZRvPtspLi3cW06Rik5wONVWe1ibGmM3W2qCMyqlPLoWrMTfpelOtWrUrTpLA6cFatmwZsbGxNG3alDZt2lzF6ERERESuTefOQf/+zpykhg1hxgwoUwaIjORMWEO89+7jiS7FefrNFfiX8s/pcHMdJUqS40aPHp3TIYiIiIh4lN9+g3bt4Kef4MUXneF2Pj7ATz9xtkkIF05HM6B/BUa8sopyhcvldLi5khIlEREREREPMns2PP44+PrCkiVw//3Odrt8OecfaMEJ7/O88nJtxg38liL5iuRssLmYFnMQEREREfEA5887y34/8ghUreqsapeYJMXPmE5886bsKXCet0a3ZeKg1UqS3EyJkoiIiIhIDouMhHvugfffh2eegZUr4ZZbnH3nR7+Jd8dO/FAmgXkfPcO7Pb8ij3eeHI33eqChdykkrsgRrlUdRERERCQbLFwIXbs6D5OdOxeSFv9NSOD0wKcp9O4HzL0LTn38Pi/XfypHY72eqEfJzQ4fPkyHDh2oVKkSVapU4f7772f37t1uP294eDgtW7Z06zkiIyOpVq3avy4jIiIicj26eBFeeAEeeAAqVoTNm5MlSRcuEN2+DYXe/YAP6/iQ96sFPK4kKVupR8mNrLW0bduWrl27MnPmTAAiIiI4cuQIlStXzuHoRERERCSn7N8P7dvDDz9A374wZgzky+faGRPDqRZhFFu9kdebF6TpxysIKhuco/Fej9Sj5EYrVqzA19eXPn36JG0LCAjgnnvu4fTp04SFhREYGEj16tVZsGABcHkPzOjRoxk2bBgA48aNo0qVKvj7+9OhQwcANmzYQP369alZsyb169dn165d6cY0depU2rRpQ6tWrahQoQLvv/8+Y8aMoWbNmtStW5eTJ08CTkJXt25d/P39adu2LadOnQJg8+bN1KhRg3r16jF+/PikeuPj43n++ecJDg7G39+fDz/8MEv36vPPP6d27doEBATwxBNPEB8fD0ChQoV49tlnCQwMJCwsjGPHjmWpXhERERFP8+23ULOms/T39OnwwQfJkqQjRzhVtwZ+azfyYqdSdJi+TUlSDrluepQGDBhAREREhuUSy2Tm6cEBAQGMHTs2zf2//PILtWrVSnVfvnz5mDdvHoULF+b48ePUrVuX1q1bp3u+kSNH8ueff5I3b16ioqIAuPPOO1m1ahU+Pj4sW7aMIUOG8NVXX6Vbzy+//MLWrVuJjY3ltttu480332Tr1q0888wzfPbZZwwYMIAuXbrw3nvvERISwtChQ3n11VcZO3Ys3bt3T9r+/PPPJ9X5ySefUKRIETZu3Mj58+e5++67adq0KcaYdGMB2LlzJ7NmzWLt2rX4+vry5JNP8sUXX9ClSxfOnDlDYGAgb7/9NsOHD+fVV1/l/fffz7BOEREREU8THw+vvgqvveasajd7Ntx55z/77e7dRDeqT55jJxj89F28+PpqbihwQ84FfJ27bhIlT2OtZciQIaxatQovLy8OHDjAkSNH0j3G39+fTp060aZNG9q0aQNAdHQ0Xbt25bfffsMYw8WLFzM8d6NGjfDz88PPz48iRYrQqlUrAKpXr862bduIjo4mKiqKkJAQALp27Uq7du0u2965c2eWLl0KwLfffsu2bduYM2dOUly//fZbpoYYLl++nM2bNxMc7Py15Ny5c5QsWRIALy8v2rdvD8Bjjz3Ggw8+mGF9IiIiIp7m8GHo2BFWrIDu3Z3V7QoU+Gd//I/rOde0ERfjYhk5rBH/fX4J+X3z51zAcv0kSun1/CR3NVe9q1q1alLikNIXX3zBsWPH2Lx5M76+vpQvX57Y2Fh8fHxISEhIKhcbG5v0esmSJaxatYqFCxfy3//+l+3bt/Pyyy/TqFEj5s2bR2RkZKZ6wvLmzZv02svLK+m9l5cXcXFxaR5nrU2zh8hay3vvvUezZs0u2R4ZGZlhPNZaunbtyhtvvJFh2cz0UImIiIh4kvBwePRRiI6GyZOdRCm584vmY9s9zNH88cwa143Xe3yCl9EMmZymFnCjxo0bc/78eSZNmpS0bePGjaxcuZLo6GhKliyJr68vK1as4K+//gKgVKlSHD16lBMnTnD+/HkWL14MQEJCAvv27aNRo0aMGjWKqKgoTp8+TXR0NGXLlgWc+UdXQ5EiRShWrBirV68GYNq0aYSEhFC0aFGKFCnCmjVrACfZS9SsWTMmTJiQ1KO1e/duzpw5c0m9Bw4cICws7LLzhYWFMWfOHI4ePQrAyZMnk+5HQkJCUrI5ffp0GjRocFWuUURERMTdEhLg9dchLAyKFIEff7w8SYr56H2827RlR7F4ln3+Ki8+PkVJkoe4bnqUcoIxhnnz5jFgwABGjhxJvnz5KF++PGPHjqVq1aq0atWKoKAgAgICuNM1QNXX15ehQ4dSp04dKlSokLQ9Pj6exx57jOjoaKy1PPPMMxQtWpQXXniBrl27MmbMGBo3bnzVYv/000/p06cPZ8+epWLFikyZMgWAKVOm0KNHDwoUKHBJ71HPnj2JjIwkMDAQay033ngj8+fPv6TOQ4cO4eNz+UeuSpUqvPbaazRt2pSEhAR8fX0ZP348t956KwULFmT79u3UqlWLIkWKMGvWrKt2jSIiIiLucvw4dO4M33wDHTrARx+Bn1+yAtZyYujz3PDa2yyvZDg9/VN61+6cY/HK5Yy1NqdjuCqCgoLspk2bLtm2c+dO7rrrrizVc7WG3sXExOB3yW+DvP/++9xyyy0ZLlqRXKFChTh9+vQVnS9l+4eHh2dqaKJkL7WL51GbeCa1i+dRm3gmT2iXH35wlv4+ehTefReeeAIumT0QH8+RxztQ6tM5zA7IQ9nZ/6P+baE5Fa7beUKbJGeM2WytDcqonHqUUrgac5Mkdf369cvpEERERETcxlp45x0YNAhuvhnWrYPAwBSFYmM5+EAYZb79gUmNCtNw5nruKJm1P+xL9lCiJB7tSnuTRERERLJTVBR06wYLFkCbNjBlChQtenmhg42DKbN1D2PalaPT5E2UKlQqJ8KVTNBMMRERERGRf2HzZqfnaMkSp0dp7tzLk6SEfXs5XLMyJX7aw6h+NXni81+VJHm4XJ8o5ZY5WJI1ancRERFxN2vhgw+gfn24eBFWrYIBA1LMRwIubIvgZOBdFDh4jPHDWzDw3Q0UzFMwZ4KWTMvViVK+fPk4ceKEvjRfZ6y1nDhxgnz58uV0KCIiIpJLxcQ4z0Z66iln+e+tW6FevVTKff8NsfWDuRh7ltkT+jFgyCJ8vDT75VqQq1upXLly7N+/n2PHjmX7uWNjY/VFPQfly5ePcuXK5XQYIiIikgtt2wbt2sGePc5zkgYNAq9Uuh+OfTEJv+5PsLewZftnb/P4/QOzP1i5Yrk6UfL19aVChQo5cu7w8HBq1qyZI+cWERERuR6FhkJUVAAREe47x5Qp8OSTzhyk77+HkJDUy+178/8o8+LrbCnnTey82bSt1dZ9QYlb5OpESURERETkajhzxhlm9+mn0LgxTJ8OpVJbi8Fa/ujfmYrvf8GyKvkovSic4Ip1sj1e+feUKImIiIiIpGPnTmeo3Y4dMHSo8+PtnUrBuDh2t2tM5fmrmVe/GMGLtlCuePnsDleuEiVKIiIiIiJpmD4deveG/Pnhm2+gadPUy9kzZ/jt3kAqr9vNtAfK03rGVorkT/kgJbmW5OpV70RERERErkRsLPTtC506Qc2aEBGRdpJ08cgh/qhVgUrrdzP1iTq0/2qXkqRcQImSiIiIiEgyv//uPBtp4kR44QVn0YayZVMve3rXLxwJuI2ye44xa9jDdJ2wjjzeebI3YHELDb0TEREREXGZOxe6d3fmIC1cCK1apV322Nrv4P77KXghjm8/fJ6Oj4/KvkDF7dSjJCIiIiLXvQsXYMAAeOghuOMO2LIl/STpr7lTyBfWjFgTz89zJ9BaSVKuo0RJRERERK5re/dCw4bw7rvQvz+sWQPly6ddfud7r3DTIz3YX8ybU8sW0/C+PtkWq2QfDb0TERERkevWkiXQpQtcvAizZ8PDD6dffusLXaj51jQ23pafkt+t49byNbInUMl26lESERERketOXBy8+CK0bAk33wybN6efJNn4eDZ2DKXmW9MIr3UDlTbsUZKUy6lHSURERESuKwcPQocOsHq184yksWOd5ySlJT72HFvuCyA4fDffNKtE6IKfyJe3YPYFLDlCiZKIiIiIXDeWLYOOHeHMGZg2DR57LP3yZ08eYXdodYJ/PsaSbg2475NwvLy8sydYyVEaeiciIiIiuV58PLz6qvPQ2BIlYOPGjJOk43/8wr6aFan2yzG+e6kjLaasVpJ0HVGPkoiIiIjkakePQqdOTm9S584wYQIUzGDk3F8bl+F1332U+zuOHyf8H/c+8Vr2BCseQ4mSiIiIiORaq1dD+/Zw6hRMmgSPPw7GpH/ML4smU/rRngD8/tUk7m7VMxsiFU+joXciIiIikuskJMCbb0KjRk7v0fr10LNnxknSuo+GUuGhxzmbz5uY77/BX0nSdUs9SiIiIiKSq5w4AV27Os9IatcOPv4YChfO+LjlQzsTMuJz9pQrQIkVP1KiYjX3ByseS4mSiIiIiOQaZ854ExgIhw7Be+/BU09l3IuUkBDPtz0b0XzKarZWL0HlFT9T8IbS2ROweCwlSiIiIiJyzbMW9u+HP/4oxC23wNq1EByc8XHnz59l5QM1aP6/PWwIvZ1aS3/CO186D1WS64YSJRERERG5psXHw3/+A7//DoULx7F1qy/FimV83KlTh9h2rz9NNx/nxw4Nqf359xhvLf8tDi3mICIiIiLXrNhYZ1W78eOhXDkoX/5MppKkfZHb2FP7NkI2H2fz849RZ8ZKJUlyCSVKIiIiInJNioqCZs3gq6/g7behUqWM5yMBbN/yP87UrUWNP8+yY9zL1Bo1zf3ByjVHiZKIiIiIXHP274d77oF162D6dBg4MHPHrVn6IUUa30fZqHgOzvqEKk8Pd2+gcs3SHCURERERuaZs3w7Nm0N0NCxdCmFhmTtuyeQXqf/USOLy+HBu+RLK393UvYHKNc2tPUrGmObGmF3GmD3GmMGp7B9ojNlhjNlmjFlujLk12b54Y0yE62ehO+MUERERkWvDmjXQoAHExcGqVZlLkqy1zPxvexo/MZLTxQqQb8MWSipJkgy4rUfJGOMNjAfuBfYDG40xC621O5IV2woEWWvPGmP6AqOA9q5956y1Ae6KT0RERESuLfPmQceOcMst8M03UKFCxsdcjL/IjKdC6PTROiJvL8Etq7bhW+om9wcr1zx39ijVBvZYa/+w1l4AZgIPJC9grV1hrT3rerseKOfGeERERETkGjVxIjz8MNSo4TwjKTNJUkzs38x+6E66fLiOPXUrU3Hzn0qSJNPcmSiVBfYle7/ftS0tjwNLk73PZ4zZZIxZb4xp444ARURERMSzWQsvvwx9+8J998Hy5VCiRMbHHTy1l+VhFei44A92PdCAO1ZtxxQq5P6AJdcw1lr3VGxMO6CZtban631noLa19ulUyj4G9ANCrLXnXdvKWGsPGmMqAt8DYdba31Mc1xvoDVCqVKlaM2fOdMu1XInTp09TSL+MHkVt4pnULp5HbeKZ1C6eR23ifvHxhrffrszSpTdx332HePbZ3Xh7p/3d9aWWhbDW0uezzZT+v/9w764LrG0XxsW+/5e5dcPFLTztd6VRo0abrbVBGZVz56p3+4Gbk70vBxxMWcgY0wT4P5IlSQDW2oOuf/8wxoQDNYFLEiVr7UfARwBBQUE2NDT06l7BvxAeHo4nxSNqE0+ldvE8ahPPpHbxPGoT9zpzxnmQ7NKl8NJLMHz4TRiT/rA5H58I4m9czp3PDCJwfzx73xzC3S+MyKaIJS3X6u+KOxOljcDtxpgKwAGgA9AxeQFjTE3gQ6C5tfZosu3FgLPW2vPGmBLA3TgLPYiIiIhILnf8OLRsCRs3woQJ0KdP5o7zvXU6H+5/i1tjDCemfcgtnXq7N1DJ1dyWKFlr44wx/YD/Ad7AZGvtdmPMcGCTtXYh8BZQCJhtnO7Qvdba1sBdwIfGmASceVQjU6yWJyIiIiK50J9/Os9I+usvmDMH2rbN+JiL8ReZNLYL036fSZ6L3lz4ZhElG9/n/mAlV3PrA2ettV8DX6fYNjTZ6yZpHPcDUN2dsYmIiIiIZ4mIcBZsiI2FZcuc5yVl5ODfB5jXqwFPzI5kb4FCDPSdyHQlSXIVuPWBsyIiIiIimbF8OTRsCD4+/zxUNiPhPy0gon5FnvoykoNhwfTzXspe7nB/sHJdUKIkIiIiIjlqxgynJ+nWW2HdOqhaNf3yCTaBjyY/RbnGbbh35wWODB/ELd/+yFnjOSurybXPrUPvRERERETSM2YMPPus05u0YAEULZp++RNnT/DZgEb0mfIz5wrn5+LyBZQKvdfZGRDA6ago9wct1wUlSiIiIiKS7RIS4IUX4O234aGH4PPPIV++9I/Z8NtKfu/cgmd+PMP+oDsou3glplSp7AlYrjsaeiciIiIi2erCBejc2UmSnnoKZs1KP0my1vLZ3FfI0zCUR388w8H+PSi3fruSJHEr9SiJiIiISLb5+2+nB2nZMnj9dRg8GJynxKQu5nwME4feR6931+Lt40vMV9Mo82D77AtYrltKlEREREQkWxw+7Cza8PPPMGUKdOuWfvlfDkawrmsYzy87yaE7ylJq6Sq8KlTMllhFNPRORERERNxu926oX9/5d9GijJOk2cvf4+Tdtei17CQHOrXmpog9GSZJ4eEwdmzEVYtZrm/qURIRERERt/rxR2jZ0nm9YgXUrp122di4WN5/qx2dXl9MsQteRH04jrK9n86eQEWSUaIkIiIiIm7z9dfQrh2UKgX/+x/cfnvaZX8/sYfFvUIYMP8gp8oWx2fJcor6B2RfsCLJKFESEREREbeYMgV69QJ/fydhKl067bJLNnwB3bvxnx1xHGx+N2VmfQ2FC2dfsOIWoaGhREVFERFx7Q2J1BwlEREREbmqrIURI6BHD2jcGFauTDtJuhh/kXcmdOWO5o/R7Nc4Trz+MmW+Xq0kSXKcepRERERE5KqJj4f+/eGDD6BTJ5g8GfLkSb3swZiDfNY/hAHT9nCuaEESwpdwwz0h2RuwSBqUKImIiIjIVREb6yRHc+fC88/DyJHglcb4pRXbl3C4+8MM3hjLobrVuGnh93DjjdkbsLjdqVOnOHr0aE6HcUU09E5ERERE/rVTp6BpUydJeucdGDUq9SQpwSYwfvozFA9ryaMbYzk2sA83rYlQkpTLJCQkMGLECLZt20ZUVBRnz57N6ZCyTD1KIiIiIvKv7NvnPEh2926YMQM6dEi93ImzJ/hgyL30n7gVL988nFswgxtbP5i9wYrbnTp1is6dO7NkyRJKlixJyZIlKVCgQE6HlWXqURIRERGRK7Z9O9SrB3v3wjffpJ0kbfhzLbNbVODld7dyvtKtFPp5F/mVJOU6W7ZsITAwkG+//Zbx48dz55134u3tndNhXRElSiIiIiJyRVavhgYNICHBed248eVlrLVMWTKC843uoU94DEe7PkzJLbsw5ctnd7jiZp988gn169cnLi6O1atX8+STT2KMyemwrpiG3omIiIhIls2dCx07QvnyTk9SanlPzPkYxoxszRNvhVM0zpvTUyZQsluv7A5V3OzcuXP069ePyZMn06RJE6ZPn86Nrjln4eHhhIeH52yAV0iJkoiIiIhkyQcfQL9+UKcOLFoEJUpcXuaXw9v4X+8wXlp8nKibbyTPkuX8P3t3HZ9V+bhx/HMYOUBgdAooiKA0SEgM6RggJSIiXdJdboxOKZEupbu7pGt0g+QXlUZgbLDt/v1x5k++fBGGPM+exfV+vXixJ85zrnkAubjvc99xP/o4/MOKU/3666/UqFGDI0eO0Lt3b3x8fCLtVLsXqSiJiIiISGt3v3AAACAASURBVJgYA717w8CBULkyzJ8PL7tHf/6OCSRo1ppOZ0K4WdmTFHOWQ8KE4R9YnGrlypV8/fXXAKxatYpKlSq5OJFj6R4lEREREXmtZ8+gcWO7JDVuDEuX/m9JCggKoP+ozyng1ZKy5w0PhvYjxYrNKklRTHBwML169cLLy4tMmTLh5+cX5UoSaERJRERERF7j8WOoXRvWrIHvvgMfH3jxHv2Ldy4wp10pusy7RoBHQqxf1pCoyKcuySvOc+vWLerWrcvmzZtp0qQJY8eOJW7cuK6O5RQqSiIiIiLyj27dsqfZHTwIEyZA8+b/+56Vh+fzsEl9+vg941bR3CRfukEbyEZBe/fupVatWty6dYupU6fSqFEjV0dyKk29ExEREZGXunQJihaFY8dg8eL/LUnPgp8xZHoTMlT4gi8OP+Ne17Yk335QJSmKMcYwbtw4ihcvTqxYsdizZ0+UL0mgESUREREReYnDh6FCBXj6FDZtsgvT8248vMEPPT6j2+QzxIgTh6CVC0lSqYprworTPHr0iGbNmjF37lwqV67MrFmzSJIkiatjhQuNKImIiIjIf9m0CYoXh9ixYefO/y1JW86uZ3nl9xnwwxmeZn2PBCfOEVslKco5c+YMn3zyCfPnz2fAgAEsX7482pQkUFESERERkefMmQMVK0KmTLBnD2TP/vdrISaEUUu6EqtseVr+8oS7jeqS7OBJyJDBdYHFKRYtWkSBAgW4efMm69evp2fPnsSIEb2qQ/T6bkVERETkH40YAfXqQZEi8MsvkDbt36/d8b9Dz96Fqfv1MArcjEnArGl4TJ0DceK4LrA43LNnz+jUqRO1atXio48+4vDhw5QuXdrVsVxC9yiJiIiIRHMhIdClC4wcCTVrwk8/wfMrPu+7uoftLSswYO0DHmRMRZyVm7By5HBdYHGKGzduUKdOHXbu3EmbNm0YPnw4sWPHdnUsl9GIkoiIiEg0FhgIX31ll6Q2bWDevL9LkjGGyZuGcrtMUbquecB9r7J4HDuvkhQFbd++nbx58+Ln58ecOXMYM2ZMtC5JoKIkIiIiEm39+ad9P9LcuTB4MIweDW5u9msPAx/SY2hZStfqRtmL8HjEYJIuXQcJErg2tDiUMYZhw4bx2WefkThxYvbv30/dunVdHStC0NQ7ERERkWjot9/sknTiBMycCV9//fdrJ/44zoL2Zei78A8CkibCbeda4hcq7Lqw4hQPHjygYcOGLF26lJo1azJt2jQSJkzo6lgRhoqSiIiISDRz9iyULw+3bsHKlfbXf5mzdwqmZQt8jwRzt3gBPBavgWTJXBdWnOLYsWPUqFGDS5cuMXLkSNq3b49lWa6OFaFo6p2IiIhINLJvn70v0uPHsHXr3yUpICiA3hNq83HVptQ9GszDHp3w2LJHJSkK+umnnyhUqBCPHz9m69atdOjQQSXpJTSiJCIiIhJNrFoFtWtD6tSwfj28/779/MW7F5nQvTR9Zl7GLW48zOpFJKxQ0bVhxeECAwNp3749EyZMoESJEsybN49UqVK5OlaEpRElERERkWhg2jSoVs3eQHb37r9L0orji1nnlZ1hky8T/OEHxD9xFjeVpCjn6tWrFCtWjAkTJtC1a1c2bdqkkvQaKkoiIiIiUZgx0L8/NG4Mn31mT7dLmRKeBT+j/9yWJK1Uk9a7nvKgWQOS7D8G6dO7OrI42Pr168mbNy9nz55lyZIlDBkyhJgxNbHsdVSURERERKKo4GBo1Qr69LH3Slq5EhImhBsPb9Cle16aNZlA/lsxefbzLBJNnAHRfN+cqCYkJARfX18qVKhA6tSpOXjwINWrV3d1rEhDVVJEREQkCnryBOrVg6VLoWtXGDQIYsSAzRc2sr9NdUasf8zDzGmJs3IjfPihq+OKg925c4f69euzdu1avvrqKyZMmED8+PFdHStS0YiSiIiISBRz9y6UKQPLltmbyA4ZAlghjFjVi8CKZemx7jGPqlci8ZEzKklR0MGDB8mXLx+bN2/mxx9/ZNasWSpJ/4JGlERERESikGvX7CW/L1yAefPsVe7u+N/Bd4QXHUbsJu3jGASMGUGib9uBloSOUowxTJ48mTZt2pAqVSp27NhBwYIFXR0r0lJREhEREYkiTpywS9LDh7BuHXh6wr5re1nesSJDl97jaXIPYm5YSyz95TnK8ff3p3Xr1syYMYOyZcsye/ZskmkPrLeiqXciIiIiUcAvv8Cnn0JICOzYASVLGiZsH8GFKkUYuOgeASWKkPDEOSyVpCjnwoULFClShBkzZvDdd9+xZs0alSQH0IiSiIiISCS3eLG9cEPGjPZGsh6pHtJxTB0aD1hL9tvg/10PEnn3t1dzkChl+fLlNGjQgBgxYrB69WoqVtQeWI6i3y0iIiIikdi4cVCrFuTNC7t2wcN4J+jdKhu+XdeS+Wl8WL8e974DVZKimKCgIHr06EG1atV4//338fPzU0lyMP2OEREREYmEjIFevaBNG6hSBTZtgnWXprOtWm5GT7tByEc5cD9xhhhlyro6qjjYzZs3KVeuHIMHD6ZZs2bs3LmTjBkzujpWlKOiJCIiIhLJPHsGjRrBwIHQtCnMnh+Az/wvyVS9Ed/uCeZxyyYk2uMH6dK5Oqo42O7du8mTJw+7d+9m+vTpTJw4kbhx47o6VpSke5REREREIpHHj+2pdmvXgo8PfNXmVzp3L0u/yRd5x8QmeN5M4tf5wtUxxcGMMYwdO5ZOnTrx7rvvsnfvXnLlyuXqWFGaipKIiIhIJHHrFlSqBIcOwcSJkPLTpcyrU5fxmwN59H4G4qzcAB984OqY4mCPHj2iSZMmzJ8/Hy8vL2bOnEnixIldHSvK09Q7ERERkUjg11+hSBE4fhwWLg7iRtI2xKr6Ob02BeJfqxrvHD6lkhQFnT59moIFC7Jw4UIGDx7M0qVLVZLCiVOLkmVZ5S3LOmtZ1gXLsrq/5PWOlmWdsizrmGVZmy3Leve51xpYlnU+9EcDZ+YUERERicj8/KBwYbh7F+atvMVav/w0bDyOMpdj8GzcWBLMWwLx47s6pjjYggULKFCgAHfu3GHTpk1069aNGFq9MNw47b+0ZVluwA9ABSA7UNeyrOwvvO0wkN8YkxNYBAwNPdYD8AY+AQoC3pZlJXFWVhEREZGIauNGKFEC4saF4XP3sGt8ZsYNPErS+MmItWcfsVp/C5bl6pjiQE+fPqV9+/bUqVOHnDlz4ufnh6enp6tjRTvOrKQFgQvGmF+NMU+BeUDV599gjNlqjPEPfbgX+GtplnLARmPMXWPMPWAjUN6JWUVEREQinNmzoWJFyJTJUH/gMGJ3KcLQpY946lmcBMfPQv78ro4oDvaf//wHT09PRo8eTbt27di2bRtp06Z1daxoyZmLOaQFrj33+Dr2CNE/aQysfcWx+hUiIiIi0YIxMGIEdOkCRYs/4/1SVanbYS0f3rEI7NuHhL29tYFsFLRlyxbq1q3L48ePmTdvHnXq1HF1pGjNMsY454MtqxZQzhjTJPRxfaCgMabNS977FfAtUMIYE2hZVhcgjjGmf+jrfQB/Y8yIF45rBjQDSJkyZb558+Y55Xv5Nx49ekSCBAlcHUOeo2sSMem6RDy6JhGTrkvE46xrEhICP/74HosWpSdv0QvkSVuEUctuYeLG4+J3/bifL5/DzxmVRMbfK8YY5s2bx5QpU0iXLh2+vr68++67rz8wkoho18TT0/OQMea1w7HOHFG6DqR/7nE64MaLb7IsqzTQi9CS9NyxJV84dtuLxxpjJgGTAPLnz29Kliz54ltcZtu2bUSkPKJrElHpukQ8uiYRk65LxOOMaxIYCA0awKJFULLmYapfLUDbBcE8yp+ThMvWkFtTsF4rsv1euX//Pt988w3Lly+nTp06TJ48mYQJE7o6lkNFtmvyF2eO2R4AsliWlcmyrNjAF8CK599gWVYeYCLgZYy5+dxL64GylmUlCV3EoWzocyIiIiJR0oMHUKECzJ8PhavPYODuvLTdH0xAm5Yk2H0QVJKinKNHj5I/f35Wr17NqFGjmDt3bpQrSZGZ00aUjDFBlmV9i11w3IBpxpiTlmX5AgeNMSuAYUACYKFlr9Zy1RjjZYy5a1lWP+yyBeBrjLnrrKwiIiIirvTbb3ZJOnnSUPyz9ixeP4aExCFkwSzi1qrt6njiBDNnzqRFixZ4eHiwbds2ihYt6upI8gJnTr3DGLMGWPPCc98993XpVxw7DZjmvHQiIiIirnf2LJQrB7/ffMaXOaoyfcta/LNmIs6KdZA1q6vjiYMFBATQrl07Jk2ahKenJ3PnziVlypSujiUvoeVSRERERFxkzx4oUsRw694DhnoUZubRtQTUqUmCQ8dVkqKgy5cv8+mnnzJp0iS6d+/Ohg0bVJIiMKeOKImIiIjIy61aBbVqhxArzjXWhZSi8M0rBP84HvfmLbSBbBS0bt066tWrR3BwMMuWLaNq1aqvP0hcSiNKIiIiIuFsyhSoWtWQKPZhTv1ZgHyJHhFzzz7cWrRUSYpigoOD8fHxoWLFiqRLl46DBw+qJEUSKkoiIiIi4cQY8OkbTNOm8JH7ei48KIFH6Y9wP3YatD9SlHP79m0qVapE3759qV+/Pnv27OH99993dSwJIxUlERERkXAQHAxfN3lMXx83vOLMZP9jL+L274b72k3g4eHqeOJgBw4cIF++fGzdupWJEycyY8YM3N3dXR1L3oDuURIRERFxsidPoHTVW+zemJyOMQbRz30wcdasg1KlXB1NHMwYw6RJk2jbti2pU6dm165d5M+f39Wx5F9QURIRERFxott3Qshf/DpXT6VjDG1onH8X7ktOaQPZKMjf35+WLVsya9Ysypcvz88//0zSpEldHUv+JU29ExEREXGSo2fv8X6Oq9w4lZL51KF5O3DfuU8lKQo6f/48hQoV4qeffqJv376sXr1aJSmS04iSiIiIiBPM2XScJlWTEcs/MaviVqHMz82xatRwdSxxgmXLltGgQQNixozJ2rVrKVeunKsjiQNoRElERETEgYwxtB+/mMbl05PEP4SNmb6i7LEfVJKioKCgILp160b16tX54IMP8PPzU0mKQjSiJCIiIuIgDwMfUq39BHZMaMv7XGR59R/J8vMC0GpnUc7vv/9O3bp12bZtGy1btuT7778nTpw4ro4lDhTmomRZVnxjzGNnhhERERGJrE7cPMHXXyzkyFZvCll7WTHyPMnajdEGslHQzp07qV27Nvfv32fWrFnUr1/f1ZHECV479c6yrCKWZZ0CToc+zmVZ1ninJxMRERGJoEomPkLvygn+//Gsw7NoVGQNh7f2pVK8DWzeGY9k7RuoJEUxxhi+//57SpYsSfz48dm7d69KUhQWlnuUvgfKAXcAjDFHgeLODCUiIiISGQQEBdB6dhOmeBoOXOxKk/SrWXrlE+IVyePqaOJgDx8+pHbt2nTs2JEqVapw8OBBcubM6epY4kRhWszBGHPthaeCnZBFREREJNIISHSdL/oU5VjDGux40ACf0r8w6VIFYiZP4upo4mCnTp2iQIECLFmyhKFDh7JkyRISJUrk6ljiZGG5R+maZVlFAGNZVmygLaHT8ERERESio2uZVpInxSQuDVnCEZOXyZ3P0mSYJtxERXPnzqVp06YkSJCAzZs3U7JkSVdHknASlhGlFkBrIC1wHcgNtHJmKBEREZGI6Lb/bZpOq06zgJkc2bCV09bHLJvxgCbDPnB1NHGwp0+f0rZtW7788kvy5MmDn5+fSlI0E5YRpQ+MMfWef8KyrKLALudEEhEREYl4lp5awhbfb6iwrABNAvfzlNhs3haTwsU8XB1NHOz69evUqlWLvXv30qFDB4YMGUKsWLFcHUvCWVhGlMaG8TkRERGRKOeO/x06javCOxVrkGX+N9QOXI+J4cYH8S5RuJi2pIxqNm/eTJ48eThx4gQLFixg5MiRKknR1D/+7rYsqzBQBEhuWVbH5156B3BzdjARERERV1t1fDGnOn+D96antIsxjRk0xKuK4c72KxD81NXxxIFCQkIYPHgwffr0IVu2bCxevJhs2bK5Opa40KtGlGIDCbDLVMLnfvwJ1HR+NBERERHXuPfkHgP6l+O9UjVpsMGdMon9mBHUkN69Yekyi5hWiKsjigPdu3ePatWq0atXL+rUqcO+fftUkuSfR5SMMduB7ZZlzTDGXAnHTCIiIiIus2H/PO60aUyv/f5sTVqCssnWcudxPObPh9q1Q9+UOzeP7t93aU5xjCNHjlCjRg2uXbvG2LFjad26NZY2ChbCtpiDv2VZw4AcQNy/njTGlHJaKhEREZFw9uDJfeb3rEq1Sb/gEQATyvxAhx0tSZ7cYtcGyKM9ZKOc6dOn06pVK5ImTcr27dspXLiwqyNJBBKWxRxmA2eATEBf4DJwwImZRERERMLVjs3TOZo7Fc1G/YJ/+rT0anCDlhtbkT+/xcGD/1uStm2DUaOOuCSrvL2AgACaNm1Ko0aNKFKkCH5+fipJ8j/CUpSSGmOmAs+MMduNMY2AQk7OJSIiIuJ0fz68zbL6BShQrhF5rj7jeJ8+tHn/GkOnp6ZpU9i8GVKkcHVKcaRLly5RtGhRpkyZQs+ePdmwYQMpdJHlJcIy9e5Z6M+/WZZVCbgBpHNeJBERERHnO7BgFInadqXaH884VvwD3PptoE6LDJw7B+PGQatWoFtVopY1a9bw1VdfERISwooVK6hSpYqrI0kEFpai1N+yrERAJ+z9k94BOjg1lYiIiIiTPPz9Kke+KU+x9af5T5KYnJk+jJvpOlO7ml2MNmyAUroTO0oJDg6mb9++9OvXj9y5c7N48WIyZ87s6lgSwb1y6p1lWW5AFmPMA2PMCWOMpzEmnzFmRTjlExEREXEMYzg5ujeBWTJReMNpttXIR5ILN1j/oDPlykHatHDggEpSVHP79m0qVKhAv379aNiwIbt371ZJkjB5ZVEyxgQDXuGURURERMQp/M+c4FT+jORoP4AbHrE4sWoahWcf5NvOyWnfHry8YPdu0N+fo5Z9+/aRN29efvnlF6ZMmcK0adOIFy+eq2NJJBGWxRx2W5Y1zrKsYpZl5f3rh9OTiYiIiLytZ8+41L0FVs6cpD9xlcUtSvD+2VukytsQT0+YPh369IHFiyFhQleHFUcxxjB+/HiKFSuGm5sbu3fvpnHjxq6OJZFMWO5RKhL6s+9zzxlAA9MiIiISYQXs2Mrdr2uT6fJt1ud0J9HEmdQoVJNDh6BaNbh7FxYsgFq1XJ1UHOnJkyfUr1+f2bNnU6lSJWbNmoWHh4erY0kk9NqiZIzxDI8gIiIiIg5x/z6/tWlIytnLCE4Ik3pXpF6fBcSPHZ+5c6FRI3vJ7127IHduV4cVRzp37hytWrXiypUr9O/fnx49ehAjRlgmUIn8L/3KERERkajBGALnzubP99KRYvYyZhRLyKWdq2jWbzVx3eLTvTt8+SUUKGAv2qCSFHUEBAQwaNAgPvzwQ65du8b69evp1auXSpK8lbBMvRMRERGJ2C5f5l7jeiTZspsTqWHDiM/5ttUMEsZJyIMHUK8erF4NzZrB2LEQO7arA4sjGGNYsmQJXbp04dKlSyRNmpQUKVJQpkwZV0eTKEA1W0RERCKvoCCeDR3E0w+zEmvnbvpWTcy9rWvp0WExCeMk5Px5KFQI1q+H8eNh4kSVpKji6NGjlCpVipo1a5IgQQI2b97M7du3GT9+vKujSRTx2hEly7LcsTebzWCMaWpZVhbgA2PMKqenExEREfkn+/fj3/Ar3E+dZ0VW2NX1C3p9NZF34rwD2BvH1qkDbm6wcSOULOnauOIYt27donfv3kyZMoUkSZIwfvx4mjZtSsyYmigljhWWEaXpQCBQOPTxdaC/0xKJiIiIvMqffxL0bWtCCn3CvWvnadrAgzir1jKk8VzeifMOxsD330OFCpA+vX0/kkpS5Pf06VNGjhxJlixZmDZtGm3btuX8+fO0bNlSJUmcIiy/qt4zxtSxLKsugDHmiWVZlpNziYiIiPw3Y2DpUp62bkHMP27xQwE43b4ew6qPI3HcxAAEBkKLFjBjBlSvDrNmQYIEro0tb8cYw+rVq+nUqRPnzp2jQoUKjBw5kmzZsrk6mkRxYRlRempZVjzsvZOwLOs97BEmERERkfBx9SohVb2gRg1OcYvKbZKS+adVjK/78/+XpN9+s0eOZswAb29YtEglKbI7deoUFSpUoEqVKliWxZo1a1izZo1KkoSLsIwoeQPrgPSWZc0GigLfODOUiIiICABBQTBuHMG9evI0KJA+ZeBus6+YXWkMSeIl+f+3HThgjyDdu2cXpBo1XJhZ3trdu3fx8fFh/PjxJEyYkFGjRtGqVStixYrl6mgSjbyyKIVOsTsDfA4UAiygnTHmdjhkExERkejs0CFMs6ZYfofZkMXiu5pJ6dNgKl4feP3X2+bMgcaNIWVK2L0bcuVyUV55a0FBQUycOJHvvvuO+/fv07x5c3x9fUmWLJmro0k09MqiZIwxlmUtM8bkA1aHUyYRERGJzh4+hO++w4wZw50EMWhZC2LX+YJ1FcaS1D3p/78tOBh69oShQ6F4cXskKXlyF+aWt7Jx40Y6dOjAyZMnKVWqFKNGjeLjjz92dSyJxsJyj9Jey7IKOD2JiIiIyPLlmOzZMaNHMzEfFOqUiLp9FzO7xpz/KkkPHoCXl12SWrSwl/9WSYqczp8/j5eXF2XLliUgIIClS5eyadMmlSRxubDco+QJNLcs6wrwGHv6nTHG5HRqMhEREYk+rl+Htm1h6VIupolH/UaGDOVrsafCOJLH/+8GdO4cVK0KFy7Ym8i2bOmizPJWHjx4QL9+/RgzZgxx48ZlyJAhtGvXjjhx4rg6mggQtqJUwekpREREJHoKDobx4zG9ehEU+ASfMm5M9YzHGK8Z1M5R+3/evn69vYlszJiwaROUKOGCzPJWgoODmTZtGr169eL27ds0atSI/v37kypVKldHE/kvYSlKxukpREREJPo5cgSaNYMDB9iXIxFffhZEnqKfc7TieFImSPlfb/1rE9kuXeCjj2D5csiY0TWx5d/bvn077du358iRI3z66aesW7eOvHnzujqWyEuFpSitxi5LFhAXyAScBXI4MZeIiIhEVY8fg7c3ZtQo/N+JR6tasViVLwY/VJpLnRx1eHFf+4AAaN7c3jy2Rg17nyTtjxS5XL58mS5durBo0SIyZMjA/PnzqVWr1v9ca5GI5LVFyRjzX3fSWZaVF2jutEQiIiISda1eDa1awdWrrCiekm8K/0Hx3F6crDyRVAn+d+rVjRvw+eewbx/4+ECfPhAjLEtRSYTw6NEjBg0axIgRI3Bzc8PX15fOnTsTL148V0cTea2wjCj9F2OMn1bBExERkTdy4wa0aweLFnEnUypqN4mN3/uBjK3wE/U+rvfSkYUDB6BaNXuFu8WL7cIkkUNISAg///wz3bt357fffuOrr75i0KBBpEuXztXRRMLstUXJsqyOzz2MAeQFbjktkYiIiEQdwcEwcSL06EFIYABTP89I6+yXKfthJU5WmUSahGleetjPP0OTJpA6tb2JbE6ttRtp7Nmzh/bt27N//34KFizIkiVLKFSokKtjibyxsIwoJXzu6yDse5YWOyeOiIiIRBnHjtmLNezbx7UCH1Cx2BWuJr/LpPLTaZCrwUtHkYKDoUcPGDbMXtFu0SJIlswF2eWNXb9+nW7dujFnzhzSpEnDrFmzqFevHjE0V1IiqbDco9Q3PIKIiIhIFOHvD76+MGIEwYneYUizD+mV+jTls5RnbZXJpHvn5dOv7t+HL7+EtWvt25hGjYJYscI5u7wxf39/hg8fzuDBgwkJCaFXr150796dBFpxQyK5fyxKlmWt5BVLgxtjvF734ZZllQdGA27AFGPM4BdeLw6MAnICXxhjFj33WjBwPPTh1bCcT0RERFxs3Tp7B9jLlzntVYTyOY9yz/06U8pNoVGeRv+4ytm5c+DlBRcvwoQJ9ip3ErEZY5g/fz5du3bl2rVr1KpVi6FDh5JR67ZLFPGqEaXhb/PBlmW5AT8AZYDrwAHLslYYY04997arwDdA55d8xBNjTO63ySAiIiLh5PffoUMHmDePZ1ky071nPkbG3k3pzKWZ6jWVDIky/OOh69bBF1/Yo0ebN0Px4uGYW/6VQ4cO0a5dO3bt2kXu3Ln5+eefKa4LJ1HMPxYlY8z2t/zsgsAFY8yvAJZlzQOqAv9flIwxl0NfC3nLc4mIiIgrhITAlCnQrRvG3x+/5lUol3YrgTFvMqHMBJrla/aPo0jGwIgR0K2bNpGNLH7//Xd69uzJjBkzSJ48OZMnT6Zhw4a4ubm5OpqIw71q6t0CY0xty7KO85IpeMaY160/kxa49tzj68Anb5AtrmVZB7EXkBhsjFn2BseKiIiIs504Yc+R272bgGKF+baKG1P9V+KZwZNpVaeRMXHGfzw0IACaNrVXt6tRA2bOhPjxwy+6vJnAwEBGjRpF//79CQwMpHPnzvTq1YtEiRK5OpqI01jGvPw2JMuyUhtjfrMs692XvW6MufLKD7asWkA5Y0yT0Mf1gYLGmDYvee8MYNUL9yilMcbcsCwrM7AF+MwYc/GF45oBzQBSpkyZb968ea+KFK4ePXqkmxgjGF2TiEnXJeLRNYmYItJ1iREYyLs//UT6efMIjh+fpV8WpVGa7QQTQvPMzfFK40UM659XOrt9OzZ9+nzEmTPv8M03l6hf/0qk3EQ2Il0TZzHGsHPnTiZMmMCNGzcoWrQoLVu2JG3atK6O9o+iw3WJbCLaNfH09DxkjMn/uve9aurdb6E/v7IQvcJ1IP1zj9MBN8J6sDHmRujPv1qWtQ3IA1x84T2TgEkA+fPnNyVLlvyXUR1v27ZtRKQ8omsSUem6RDy6JhFThLkuGzdC69Zw8SL+X9aitY8HLwAAIABJREFUcbG7zPtjLcXTF2ea1zTe83jvlYfv2wdt28Kff8KSJVC9eiYgU/hkd7AIc02c5NixY7Rv356tW7eSI0cOZs6cSenSpV0d67Wi+nWJjCLrNXntv99YllXIsqwDlmU9sizrqWVZwZZl/RmGzz4AZLEsK5NlWbGBL4AVYQllWVYSy7LihH6dDCjKc/c2iYiISDi7eRO++grKlsXEiMHGSd1Jm3Mjy+/sZnT50WxtsPW1JWnWLHtvpLhxYc8eqF49nLLLG7l16xYtW7YkT548HD16lB9++IEjR45EipIk4khhGegeB9QFzgPxgCbA2NcdZIwJAr4F1gOngQXGmJOWZflaluUFYFlWAcuyrgO1gImWZZ0MPfxD4KBlWUeBrdj3KKkoiYiIhLeQEJg6FbJlgwULeNStA7V6Z6XsjcHkSJ6Doy2O0vaTtq+cahccDJ07Q4MGUKQI7N8PH38cjt+DhMmzZ88YNWoUWbJkYfLkyXz77becP3+eVq1aETPma7feFIlywvSr3hhzwbIsN2NMMDDdsqzdYTxuDbDmhee+e+7rA9hT8l48bjegP0JFRERc6fRpe7GGHTswxYqxppMXX58dhP81f0aUHUG7T9rhFuPVq53dvw9169pLgLduDd9/r01kI6I1a9bQsWNHzp49S7ly5fj+++/58MMPXR1LxKXCUpT8Q6fOHbEsayjwG6B1aURERKKqgAAYOBAGD4YECfjzh5E08tjB4iNdKJSuEDOqzuCDZB+89mPOnrU3kf31V5g4EZo1C4fs8kZOnz5Nx44dWbduHVmzZmXVqlVUrFjxH5d0F4lOwjL1rn7o+74FHmMv0FDDmaFERETERbZsgZw5oV8/qF2b5cuG8N7jgay6sIahpYeys+HOMJWktWuhYEG4d8/+SJWkiOXevXu0a9eOjz/+mD179jBy5EiOHz9OpUqVVJJEQv1jUbIsKwPYq94ZYwKMMX8aY/oaYzoaYy6EX0QRERFxutu37ZuIPvsMQkK4v2IBtas+pdrWZmRKnAm/5n50KdrltVPtjIFhw6BSJcicGQ4cgGLFwul7kNcKCgpi/PjxZMmShXHjxtGkSRPOnz9Phw4diB07tqvjiUQor5p6twzIC2BZ1mJjjEaRREREohpj7N1eO3eGBw+gZ0+W1fyIZptacz/gPgNLDaRL0S7EjPH62fpPntgjRz//DLVqwfTp2kQ2Itm0aRMdOnTgxIkTeHp6MmrUKHLmzOnqWCIR1qum3j0/7prZ2UFEREQknJ09C6VKQcOG8MEH3N+9lS/zXqL6ii9Jnyg9fs396FGsR5hK0n/+Yy/9/fPP9qy9+fNVkiKKCxcuUK1aNcqUKcPjx49ZvHgxmzdvVkkSeY1X/cln/uFrERERicwCA2HIEBgwAOLFgwkTWF4sBc3X1OTuk7v08+xHt6LdiOUWtuXp9u6Fzz+Hhw9h6VKoVs3J+SVM/vzzT/r378+oUaOIEycOgwYNon379sSNG9fV0UQihVeNKOWyLOtPy7IeAjlDv/7TsqyHYdxwVkRERCKa7dshVy7w9obPP+f+4b18nWIX1RZ+TuqEqTnQ9AC9i/cOc0maOfO/N5FVSXK94OBgpk6dSpYsWRg2bBj16tXj3LlzdO/eXSVJ5A3844iSMebVd2uKiIhI5HHnDnTtCtOmQcaMsGYNq94LptmSUtzyv4V3CW96FutJbLew3dAfFATdusHIkeDpCQsXQtKkzv0W5PV27NhBu3btOHz4MEWKFGH16tXkz5/f1bFEIqWwLA8uIiIikZUx9o1D2bLZwz9du3L/0C4aPl1AlblVSOaejH1N9uFT0ifMJenePXtVu5Ej4dtvYf16lSRXu3z5MrVr16Z48eLcvn2buXPnsnPnTpUkkbcQlg1nRUREJDI6fx5atoTNm+GTT2DSJNa536DJjIL8/uh3ehXrRZ/ifYgTM06YP/L0aahaFS5fhsmToUkT58WX13v06BFDhgxh2LBhxIgRg759+9K5c2fc3d1dHU0k0lNREhERiWqePrU3M+rXD+LEgR9+4EGDL+i0uStTD08le/LsLPtiGfnTvNlow5o1ULeufT/Sli3w6adOyi+vFRISwuzZs+nevTs3btzgyy+/ZPDgwaRPn97V0USiDE29ExERiUp27oQ8eaB3b6hSBU6fZmO5LHw8KTfTj0yne9HuHGp26I1KkjH2InmVK8N779mbyKokuc7evXspUqQIX3/9NWnSpGHXrl3Mnj1bJUnEwVSUREREooJ79+zdXosVg0ePYOVKHv48jRZ+vpT9uSzxY8dnd6PdDCo9iLgxw77y2ZMn8NVX0L27vYnszp2QIYMTvw/5R//5z3+oX78+hQsX5urVq8yYMYN9+/ZRpEgRV0cTiZJUlERERCIzY2DuXHuxhqlToVMnOHmSLTnc+fjHj5l0aBKdC3fGr5kfn6T75I0++vp1KF4c5syxt1yaNw9060v4e/LkCf369SNr1qwsXLiQnj17cu7cORo0aECMGPqrnIiz6B4lERGRyOrXX6FVK3vZufz5Yd06HuXIQvdN3fnhwA9k8cjCzkY7KZL+zUcc9u6F6tXtwanly8HLywn55ZWMMSxcuJCuXbty5coVatSowbBhw8iUKZOro4lEC/pnCBERkcjm2TMYPBhy5IBdu2D0aNi7l188HpJrQi7GHxhPh0IdONLiyL8qSTNm2JvIurvbhUklKfz5+flRokQJ6tSpQ+LEidm6dSuLFi1SSRIJRxpREhERiehKliT3/ftw5Ajs2WPfi3TihD3kM2YM/ik96LmxE6P3jea9JO+x/ZvtFHu32BufJigIunSBUaOgVClYsED7I4W3P/74g169ejFt2jSSJUvGxIkTady4MW5ubq6OJhLtaERJREQkErCCg+1pdkWLwv37sGwZLFnCzpDL5JqQi9H7RtOmYBuOtjj6r0rS3btQsaJdktq21Say4S0wMJChQ4eSJUsWZs6cSceOHTl//jzNmjVTSRJxEY0oiYiIRGTGwM2bJDx/Hk6dsltMv348iRuT3us78f3e73k38btsbbCVkhlL/qtTnD5tT6+7cgWmTIHGjR37Lcg/M8awfPlyOnfuzMWLF6lcuTIjRowga9asro4mEu2pKImIiERUR45Au3Zw+jQh8eIR45dfIH9+9l7fS4OZDTh35xwt87dkaJmhJIid4F+dYtUq+PJLiBcPtm61B6wkfBw/fpwOHTqwefNmsmfPzvr16ylbtqyrY4lIKE29ExERiWhu3rTvQ8qbF06ehCxZeJQlCwG5P6Lbxm4UnVaUgKAANtXfxPhK4/9VSTLGXg/CywuyZIGDB1WSwsvt27dp1aoVuXPnxs/PjzFjxnDkyBGVJJEIRkVJREQkonj6FIYPt5vL9On2aNL58xyJcZPlcc+Rd2Jehu4eSpM8TTje8jifZf7sX53G3x/q1YMePaBOHdixA9Knd/D3Iv/j2bNnjB49mixZsjBp0iRatWrF+fPnadOmDbFixXJ1PBF5gabeiYiIuJox9hy4jh3hwgWoUAFGjoRs2XgQ8IDRuQKYlS2QNE8fsq7eOsq9X+5fn+r6dahWDfz8YOBA6N4dLMuB34u81Nq1a+nYsSNnzpyhbNmyjBw5khw5crg6loi8goqSiIiIK508CR06wMaN8MEHsGYNVKhAQFAAP+wewaCdg7iTPRCPWB6caHmCRHET/etT7d4Nn39ujygtXw5Vqjjw+5CXOnPmDB07dmTt2rVkyZKFlStXUqlSJSy1U5EIT1PvREREXOHuXWjTBnLlggMH7HW5jx8nqFwZpvpNJcvYLHTe2Jl8afKRN1Ve0runf6uSNG0aeHpCggT2JrIqSc517949OnTowMcff8yuXbsYPnw4J06coHLlyipJIpGERpRERETCU1AQTJgA330HDx5A8+bg64tJmpTFpxfTe0tvzt45yydpP2FWtVl4ZvIEYNu2bf/6dJ07w+jRULo0zJ8PHh4O/H7kvwQFBTFlyhR69+7N3bt3adq0Kf369SNFihSujiYib0hFSUREJLxs2GBPszt1CkqVskeRPv6YTb9uosfSHhy8cZDsybOzrM4yvD7w+v+Rh5Il4f793Bw58manu3vXXqxh0yZ7XYjhwyGm/s/vNFu2bKF9+/YcP36cEiVKMGrUKHLnzu3qWCLyL2nqnYiIiLOdO2fPdStXDgICYOlS2LSJ/R5P+GzWZ5T5qQy3Ht9iRtUZHGtxjKrZqr719KyTJ6FgQdi+HaZOtTuZSpJzXLx4kerVq/PZZ5/x8OFDFi1axNatW1WSRCI5/ZEpIiLiLA8eQL9+MGYMxIkDQ4ZAu3ac/vNXei+syZLTS0junpzR5UfTPF9z4sSM45DTrlxpbyIbPz5s2wZFijjkY+U5JUuW5M6dO1SsWJFRo0YRK1YsBgwYQMeOHYkbN66r44mIA6goiYiIOFpwsD2M07s33L4NDRvCgAFcjfcUn3UtmXl0JvFjxce3pC/tC7UnYZyEDjmtMTBokH3avHntgSvtj+R4gYGB3Lhxg0uXLnHixAkaNGjAwIEDSZMmjaujiYgDqSiJiIg40vbt9g1BR4/Cp5/C2rXcypaBgTsGMv7geCws2n/Snh7FepDMPZnDTuvvD40a2Ys1fPGF3dPc3R328QI8ffqUGTNm0L9/f65du4a7uzu7du2iYMGCro4mIk6goiQiIuIIly5Bly6weDFkyADz5vGwagVG7v2e4WOG4//Mn4a5G+Jdwpv0iRw7zHPtmr2J7OHD9ohSt27aRNaRnj17xsyZM+nfvz9Xrlzhk08+IXHixFiWpZIkEoWpKImIiLyNR4/sdjJiBLi5ga8vAe2/ZcLJmQwY+x63/W9TM3tN+nn2I1uybA4//a5d9iayT57AihVQubLDTxFtBQUF8dNPP9GvXz8uXbpEgQIF+PHHHylfvjyWZf3rJdtFopWSkPt+bnjDVTsjAq16JyIi8m+EhMDMmZA1KwwcCDVrEnT6JNMrp+ODqbnpsL4DuVPlZn+T/SystdApJWnqVHsT2XfegX37VJIcJSgoiJkzZ5ItWzYaNWpEkiRJWLlyJfv27aNChQraMFYkmtCIkoiIyJvas8e+D+nAAShYELN4McsS/06vlRU5ffs0BdIUYJrXND7L/JlTTh8UBB07wtixUKaMfV9SkiROOVW0EhwczNy5c/H19eX8+fPkzp2b5cuXU6VKFZUjkWhIRUlERCSsrl+H7t1h9mxInRpmzmRL0TT02Nqe/f/ZT7Zk2VhcezHVs1V32l+s79yxN5HdvNneu3boUO2P9LaCg4OZP38+vr6+nD17lpw5c7JkyRKqVaumgiQSjemPVhERkdfx94fhw+19kIKDoVcv/BqUpfve/mz8eSPp30nPNK9p1M9Vn5gxnPe/1pMnwcvL7mvTp8M33zjtVNFCSEgICxcupG/fvpw+fZqPPvqIRYsWUb16dWLE0N0JItGdipKIiMg/MQYWLICuXeHqVahZk4vdm9P914ksmjOAZO7JGFl2JC0LtCRuTOduMvrgQUwKFYIECexNZAsXdurporSQkBAWL15M3759OXnyJNmzZ2fBggXUqFFDBUnEUR4Bm4Cz4P4kcu5VoKIkIiLyMocOQfv2sHMn5MrFzfHD6Rm8numry+Eeyx3vEt50LNyRd+K849QYT57A5ctw5Up88uWDZcsgXTqnnjLKCgkJYdmyZfj4+HD8+HGyZcvG3LlzqVWrFm5ubq6OJxL5XQRWh/7YBjwF3ICEQHDo15GIipKIiMjzfv8devWy57YlS8bDcSPpm+kq4/zqYzC0LdiWnsV6kjx+cqfGePIEJk60Z/v9/jskTvyMHTtiEy+eU08bJRljWL58OT4+Phw9epSsWbMye/Zs6tSpo4Ik8jaeAbuAVdjl6Ezo89mANkAlwBv8//Qntlts12R8CypKIiIiAIGBMGoUDBgAAQE8bfcto0onpP8xbx4ffMzXub7Gp4QP7yZ+16kxXixInp6QMiWAP/HiRb6/aLiSMYZVq1bh4+ODn58f77//PrNmzaJu3brE1AoYIv/OLWAtdjFaDzwAYgMlgJbY5ei9597fN7wDOo7+lBARkejNGFi+HDp1gl9/JbhyJX7+OjddLk/i1sFbVM9Wnf6l+pM9eXanxnhZQZo3D0qUgJIl4f59p54+SjHGsGbNGnx8fDh48CCZM2dmxowZ1KtXTwVJ5E0Z4Ch/jxrtC30uNVATqAyUBhK4KqDz6E8LERGJvo4ft+9D2rIFkz07m8Z3pmngQq6cWo1nRk8GfTaIT9J94tQIrypI8maMMaxbtw4fHx/2799PxowZmTp1KvXr1ydWrFiujicSeTwGNmOXozXAf0KfLwj4YJej3EAUX/tERUlERKKf27fhu+9g4kRMokQc792U+il2cezmcPKlzsfkKpMpnbm0U/fQUUFyHGMMGzduxNvbm71795IhQwYmT55MgwYNVJBEwuoSfy/EsBUIxF6EoSx2MaoApHRZOpdQURIRkejj2TP44Qfo2xcePuT6V1VpnPcqG+5PJquVlYW1FlLjwxoqSJGEMYbNmzfj7e3N7t27SZ8+PRMmTKBhw4bEjq37uUReKQjYzd9T6k6FPp8VaIVdjj7Fvv/obWyDI9uOUJKSb/lB4U9FSUREooe1a6FDBzh7lj9LFKJLeTcmBS4lXUg6JleZzDe5v3HqZrEqSI61detWvL292bFjB2nTpmX8+PE0atSIOHHiuDqaSMR1G1iHXY7WA/eBWNgLMTTFXoghi8vSRTgqSiIiErWdOQMdO8LatTzNnJHvu39K9zg78YjhwfAyw2lVoBXxYjlvzW0VJMfavn073t7ebN++nTRp0jB27FiaNGlC3LjO3fBXJFIywHH+HjXaC4RgT6Grzt8LMTh3O7hIS0VJRESipnv3wNcXxo0jxD0eixsW4ut0+3GLe4s+hfvQqXAnEsVN5LTTqyA51s6dO/H29mbLli2kSpWK0aNH06xZMxUkkRf5A1v4uxxdD30+P9AHe9QoH1F+IQZHUFESEZGoJSgIpkyB3r0xd++yr8LH1M55lt/dD9Ey/7f0LNaTlAmcd0eyCpJj7d69G29vbzZt2kSKFCkYOXIkLVq0IJ523hX52xXsUrQKeyGGAOzlustg72NUAXs5b3kjKkoiIhJ1bNliL/d9/DhXcmfkqy8D2ZX0OPVz1advyb5kTJzRaadWQXKsffv24e3tzfr160mePDnDhw+nZcuWuLu7uzqaiOsFAXv4e5W6E6HPvwc0x55SVwzQLXtvRUVJREQiv4sXoXNnWLaMP1MnpUP9REzLfJmq2apyrFR/PkrxkdNO/WJBKlUK5s+H4sWddsoo7cCBA3h7e7N27VqSJk3KkCFDaN26NfHjx3d1NBHXusvfCzGsA+5h/02+GDACe0pdVsB5i3ZGO04tSpZllQdGA27AFGPM4BdeLw6MAnICXxhjFj33WgOgd+jD/saYmc7MKiIikdDDhzBgAOb77wlysxhdKQm9c9+h0Psl2P3ZIAqnL+y0U6sgOdahQ4fw8fFh1apVeHh4MHDgQL799lsSJkzo6mgirmGwR4r+mlK3B3shhuSAF/aoURnAebdaRntOK0qWZbkBP2BfwuvAAcuyVhhjTj33tqvAN0DnF471ALyxbzszwKHQY+85K6+IiEQiISEwYwamZ0+sP/5gRaHEtCxyn1RZs7P8s7mUfa+s0/ZCUkFyrMOHD+Pj48OKFStIkiQJ/fv3p02bNrzzjpbhkmjoCfY9Rn8txHA19Pm8QC/sUaMCaCGGcOLMEaWCwAVjzK8AlmXNA6ry93ZWGGMuh74W8sKx5YCNxpi7oa9vBMoDc52YV0REIoOdO+37kA4d4sR7CWlcBe7nTM73nhOolaMWMSzn/A3ClQVp2zbYtu0IRMING//JsWPH8PHxYenSpSROnBhfX1/atm1LokT653GJZq7x96jRFuyyFB972e4+QEUgjcvSRWvOLEppsS/9X64Dn7zFsWkdlEtERCKjq1eha1eYP59bHnFp9zlsL5IA75LDaZi7IbHcYjnltBpBcqwTJ07g4+PD4sWLeeedd/D29qZ9+/YkTpzY1dFEwkcw9n5Gfy3EcCz0+UxAE+wpdSXQQgwRgGWMcc4HW1YtoJwxpkno4/pAQWNMm5e8dwaw6q97lCzL6gLEMcb0D33cB/A3xox44bhmQDOAlClT5ps3b55Tvpd/49GjRyRIkMDVMeQ5uiYRk65LxBPRrkmMJ0/IMG8e6ebNJdgEM7hICD+WSEC19+tRPU114rg5528TgYExWLkyDXPnpufu3TjkyXOPBg0ukyvXA6ec73Ui2nV5U5cvX2bmzJls376dePHiUaNGDWrVqhWp70GK7NckqoqI1yXmw5h47Pcg6d6keOz3INafsTAxDA8+fsCdwne4U+gO/hn8o+xCDBHtmnh6eh4yxuR/3fucOaJ0HUj/3ON0wI03OLbkC8due/FNxphJwCSA/Pnzm5IlS774FpfZtm0bESmP6JpEVLouEU+EuSbGwJw5BHftjNuN35n3sYV3+TjULNeRM0W7kDiuc0YgXjaC5O0NxYsnAZI45ZxhEWGuyxs6ffo0vr6+zJ8/n/jx49OjRw86deqEh4eHq6O9tch6TaK6CHFdDPbNJn9NqduNPZKUDPtGlMpglbVInDgxiUnMe7znuqzhIEJck3/BmUXpAJDFsqxMwH+AL4Avw3jsemCgZVl//R+pLNDD8RFFRCRCOnCAoDatibnvAEfTWHRs7MZHn7dge/HepEqQyimn1BQ7xzp37hy+vr7MmTMHd3d3unXrRqdOnUiWLJmro4k4RwD2Qgx/laMroc/nBrpjL8RQEHstaIkUnFaUjDFBlmV9i1163IBpxpiTlmX5AgeNMSssyyoALMX+J7oqlmX1NcbkMMbctSyrH3bZAvD9a2EHERGJwm7cIKh7V2L+NJs7CSx6VIWg+l8yrZQvmZNkdsop/f3/Lkh//KGC9LbOnz9Pv379mD17NnHjxqVz58506dKF5MmTuzqaiONdB9ZgF6PNgD/gjr0QQ0/shRjSuSydvCWn7qNkjFmD/cvn+ee+e+7rA/zDLx9jzDRgmjPziYhIBBEQQPDwYYQMHEDI00CGFwW/hmXpXXkoOVPmdMopX1aQFixQQfq3Ll68SP/+/fnpp5+IHTs2HTp0oGvXrqRIkcLV0UQcJxjYz9+jRkdDn88INMReiKEkENcF2cThnFqUREREXskYQhYvwr9daxLcuMXybDD/m3y0rTua7hmKOuWUKkiOdenSJfr378/MmTOJFSsWbdq0oVu3bqRK5ZwpkiLh7j72/KjVwFrgNvZcqaLAEOwpddmJsgsxRGcqSiIi4hLm8GHutmhA0v3H+TUFjG2XmeqtxzLv/QpO2SxWBcmxrly5woABA5g+fTpubm60bt2a7t27kzp1aldHE3k7BjjD35u+7sQeSfIAKmCPGpXDlWu7SDhRURIRkfB18ya/dWhKyrkrMHGhT61k5OjxPRNzf+mUzWJVkBzr6tWrDBw4kGnTpmFZFs2bN6dHjx6kTavtDiUSCwC28/eUukuhz+cEumKXo0/QQgzRjIqSiIiEj6dPuTGwB4mGjiFZYBBTPnXHzduXPiXbENsttsNPp4LkWNevX2fQoEFMnjwZgCZNmtCjRw/Sp0//miNFIqgb/L3p6ybgMfa9RaWxy1FFIIPL0kkEoKIkIiLOZQy/z5+K6diRNL89ZOMHMbnUpwP1avUjfuz4Dj+dCpJj3bhxg0GDBjFp0iRCQkJo1KgRPXv25N1333V1NJE3E4K9nvJfo0aHQ5/PAHyNPWrkCcRzSTqJgFSURETEaW4d3M6tZvXJfvgaZ5NZrBtQi2odJlImnuMn96sgOdZvv/3GkCFDmDBhAkFBQTRs2JBevXqRMWNGV0cTCbsHwAb+j737jq+6uv84/jqZhBFG2Al7r4QlS0YgAVFQiXtRV63b6q9qta0FrW1tXbVqHW1pq1RttUZFUJQRFERk7y2ICZBAAoGE7JzfH+cmNwsMkOQm5P18PPJIcu/33nsuh5vcd87n+zkuHM0DDgF+wCjg97hGDP1RIwapkIKSiIhUufT9e9h891UM+2gVAUHw7m3nM/qpt7i5RdXXsSggVa3k5GT+8Ic/8Morr5CXl8ePfvQjfvWrX9G1a/XsYyVSpcbB4OTBcBsuHH0J5OMaL0zG24ghzHdDlLpDQUlERKrMiaxjLPvljxjy2kcMz7IsmtSdbi/+myt7DKv6x1JAqlIpKSk8/fTTvPzyy+Tk5DB9+nR+9atf0b17d18PTeTU9gMJwGLgGwjNDoUHcStFP8OFoxHoXa+cNv2XERGRs5ZXkMdnrz5EtydfZuLBfNb1C6PBi68wcfyVVf5YCkhV6/Dhwzz99NO89NJLZGdnc9111/HYY4/Rs2dPXw9NpGIH8QajBGCH5/KmQCM4EXaChssagk6jk7OkoCQiImes0Bbyybw/E/zIr5iyKZOkVg3Y8trjDLztUajivZAUkKpWamoqzzzzDC+++CInTpzg2muv5bHHHqN3796+HppIaSm4QJSAC0fbPJc3AcYCP8E1YYgCYiD3aC4NOzWs+XHKOUdBSURETpu1loXr3mf/z+/imoUp5AX6sfXBm+j9m1cIb9CgSh+rbECKiYF334UxY6r0YeqNtLQ0nnvuOV544QUyMzO56qqr+PWvf03fvn19PTQR5zClg9EWz+WNgTHALUA0MIjy72QTYF3COqKJrv5xyjlPQUlERE7LV3u/ZOnjt3LjuzuZcAK+vXQcXV7+N33aV+2GowpIVevIkSM8//zzvPDCCxw7dowrr7ySGTNm0K9fP18PTeq7NNxmr0WldBs9lzcCRgPTcStGg4FAH4xP6i0FJRERqZRNKZv498t3cNXry3j4IOyP6kbB67PpPmxElT6OAlKE+fXdAAAgAElEQVTVSk9P509/+hPPP/886enpXHbZZcyYMYPIyEhfD03qqyPAF3hXjDYAFrd/0fnANbgVo/NQMBKfUlASEZFT2nNkDy/+92eM/HM8v98C6W2akT37T7S/7kdVeh6SAlLVOnbsGC+88ALPPfccR48eZdq0acyYMYOBAwf6emhS36Tj2nQv9nyswwWjBrj9jB7HrRgNA4J8NEaRCigoiYiIV3Q0A48ehXXrSM5I5unPZhD2wl/53VeF+PkHcuKxB2n66GMQUnVb1ysgVa3jx4/z4osv8uyzz5KWlsbFF1/MzJkzGTx4sK+HJvXFcbzBKAFYAxQCwcBIYAbeYFS1pzSKVCkFJRERKSU9oIDnFvyK/a89zePzcwk/DieuiqPBs38mKCKiyh5HAalqZWRk8NJLL/HMM8+QmprKlClTmDlzJkOHDvX10ORclwEsxVtKtxoowJXNjQB+hSulG4ErrxOpIxSUREQEgOSMZGa2/JqdnXL47U2bGJ4EWYMj4eXXaDii6s5DUkCqWpmZmfzlL3/hj3/8I4cPH2by5Mk8/vjjDBtW9Zv8igCQCXyFt5RuFZCPe1c5HHgUF4xGAurSLXWYgpKISD23/uB6/vLFs5x47y1+tLaAid9CbpuW8K9nCbnhBvDzq5LHUUCqWidOnODVV1/lD3/4AykpKUyaNImZM2cycuRIXw9NzjVZeINRAvANkAf44xouPIQrpRuF61Qnco5QUBIRqYcKbSEfb5/D3P88SeTcVTy1EZpnQ25IEFltWxCycyc0blwlj6WAVLWysrJ47bXXeOqpp0hOTiYmJobHH3+c888/39dDk3NFNrAcbyndCiAXF4yGAP+HWzEajdvbSOQcpaAkIlKPZORm8HbCSxx8/VkuWXqY15IhLyiAwsvi4LY7CHr8cY6mpxNSBSHpxAl49VX44x8VkKpCbm4uL774Ir///e85cOAA48eP591332WM/kHlbOXgwlDRitFyz2V+uL2L7sOtGI0GQn0zRBFfUFASEakHvkv9ls9efYiW/5nDj7bkEVwAaf26UvDr/yPwuuuhWTN34BNPnPVjFQWkP/wBUlIUkM5WUlIS48aNY9++feTl5TF27FjeeustoqOjfT00qatyceVzCbhw9BVuFckAg4C78QajZr4ZokhtoKAkInKOstayetm77H1+BsMXbOO2Y3C8SRBpN11Nu/t+QYsq3nC0ooA0Y4YC0pnYsWMH8fHxxMfHs2LFCgAaNWrEp59+yvjx4zFVuH+V1AN5wEq8wWgZ7rwjgCjgDlwp3Vigec0PT6S2UlASETnH5B4/yqqXfkHQP2czdMdxBhnYObQrh+95iJZX30yT4OCT3zghgXUJCUSfxuMpIJ09ay1r1qwpDkdbtmwBYMiQITz55JPExcWRnJzM+PHjfTxSqRPycS26i0rpluI61QEMAH6MWzEaC4T5YHwidYSCkojIucBa0r9cwO5nf0X3z1YyKtvyXctAVtx5CQMefJreXXtW+UMqIJ2dgoICli5dWhyO9u3bh5+fH2PHjuX2229n2rRpdOzYsfj4lJQUH45WarV8YC3eFaMvcXsbAfQDbsIbjFrV/PBE6ioFJRGRuuzQIQ6++gwFf/sr4fuO0DsAlg1vR+id93PeNf9HJ//T+zEfHQ1Hjw5k3bqTH6OAdOays7NZsGAB8fHxfPTRRxw+fJjg4GAmTpzIjBkzuPjii2nVSu9k5QcUAOvx7mP0JXDMc11vYDqulC4aaF3zwxM5VygoiYjUNfn52E8/JfnFp2i58CvaFlhWRBgW3j2aoQ88zcRuVbc5bEkKSGfm2LFjzJs3j/j4eObNm0dGRgahoaFMmTKFuLg4Jk+eTJMmTXw9TKnNCoENeEvpvgCOeq7rCVyDWzGKBtrW/PBEzlUKSiIidcXOneT97XVy//FXGh1Kx68h/G10I8zNt3DZFY8xvFH1rEQoIJ2+lJQUPvzwQ+Lj41m4cCG5ubm0bt2aa6+9lri4OCZMmEDwqc4Vk/qtENiEt5RuCXDEc1134ApcMBoHhPtgfCL1hIKSiEhtlpkJ771HzuuvEPzVCvwMLOoBSy7vyuAfP8YtA68jyD+oWh5aAen07N27l/j4eN5//32WLVuGtZYuXbpwzz33EBcXx8iRI/H39/f1MKU2ssAWvKV0S4BUz3VdgDi8pXQdan54IvWVgpKISG1jLXz9NcyaRcHbb+GfeYK9YfCPWMPhyydz44WP8nTH0dXWIrqwEJ57TgHph1hr2bRpU3EzhnWeE7sGDBjAY489xmWXXUZkZKRaeUt5FtiGt5QuATjkua4TcDHeYNSppgcnIkUUlEREaovkZHjzTeysWZitWzkR7Mc7fQp5Z1gI/eNu597h99GleZdqeejMTEhIgF27IDk5lJ/9TAGpIoWFhaxYsaJ45Wj37t0YYxg5ciRPP/00cXFxdOvWzdfDlNrGAjvwltIlAMme6yKAyXjPMaqel7iInAEFJRERX8rLg08+gVmzsB9/jCkoYHXnIF65BFae35Efj3uA9wbeRGhwaJU+bGEhbNgA8+e7j6VL3VD8/KBx4wI+/thPAckjNzeXhIQE4uPj+fDDDzlw4AABAQFMmDCBBx98kEsvvZR27dr5ephSm1hgN95QtBg44LmuPRCLC0Xjga6AFh1FaiUFJRERX9i2Df7xD3jjDTh4kGPNGvK3UX68HllA26EjeWDEA7zecyr+flV3TktKCnz2mQtGn3/uFrAAIiPhpz+FCy6AJ56AY8cyGTOmWZU9bl2UmZnJ/Pnzef/99/n4449JT0+nYcOGXHjhhcTFxTFlyhSaNavf/0b1XjQMPDoQ1uGC0R5KB6Mkz3Ft8a4Wjcc1Y1AwEqkTFJRERGrK8ePw7rvw97/DV19R6O/HNwNb8fto+LxXLlcNvJ63h/+UQe0GVcnD5ebCsmUuGH32Gaxd6y5v2RImTnTBaNIkKLkY8uSTVfLQdVJaWhpz5swhPj6e+fPnk52dTYsWLYiLiyMuLo6JEycSEhLi62FKbZENQWlBcCMuHO3zXN4abyiKBnqhYCRSRykoiYhUJ2tdWpk1C/77X8jM5Gjndvz9snY83eUAhW0KuXPor3ntvDtp2/jsNkCxFnbu9K4aLV7szj0KCIBRo+C3v3XhaNAgV2InkJSUxAcffMD777/PkiVLKCgoICIigh//+MfExcUxduxYAgL0q1KAFNxK0SJgIbAbGtIQ5uEC0cO4cNQHBSORc4R++ouIVIcDB1xZ3axZsGMHhY0bsXZcTx7rsodPWh5gQJsB/G7Ek1w34DoaBDQ444dJT4dFi7znGu3d6y7v1g1uvNEFo+hoCK3aU5zqtO3btxd3qvvmm28A6N27Nw8//DBxcXEMHTpUneoEjuHadBcFo42ey0NxwQg45n+M0K2hoD88iJyTFJRERKpKbi7MnevC0SefQEEBGcMH8c695/NQs2846r+WqT2nsnDEA4zvPP6M3owXFMDq1d5g9PXX7rLGjV2XuocecuFIjde8rLWsWbOG999/n/j4eLZu3QrA0KFD+e1vf0tcXBx9+vTx8SjF57KAr/AGo1VAAdAAGA1cC8QAg3HvnqKh8GihQpLIOUxBSUTkbG3Z4sLRG2/AoUPYdu3Yees0ftP1e2Znf0OjwEbcPPB27h1+Lz3Dep723Sclec8z+vxzSEsDY2DwYPj5z10wGjkSAgPP/qkkJEBCwjqK/2ReR+Xn57N06VLi4+P54IMP2LdvH/7+/owdO5Y777yTadOm0aGDdu6s1/JxYWghLhwtA3IAf2AY8CguGI3AhaWyEmBdwjqi6/hrRUROTkFJRORMHDsG77zjAtKKFRAQQN7Ui/hkTFseMgvYcex/dAzuyNNjnubWQbfSPKR5pe86Kwu++MJ7rtHmze7ydu3g4otdMIqNhVatqum51VHZ2dl8/vnnxMfH89FHH5GamkpwcDCTJk1i5syZXHzxxbRs2dLXwxRfKQQ24Q1GS4DjnuuigLuBCcBYoIkvBigitY2CkohIZVnrEsysWa57XVYW9O1L6m9+wQs9Unlhz9scO36MUR1G8eSkp4jrE0eA3w//mLXWLUoVldN98QVkZ0NwsNvs9aabXHe6AQPcSpJ4paenM2/ePOLj45k3bx6ZmZmEhoYydepU4uLimDx5Mo0bN/b1MMUXivYyKgpGi4FDnut6ANfjgtF4QPlZRCqgoCQi8kOSkuBf/3IBafduCA3FTp/O+ilD+E3Wp3yw/Sn8dvhxZd8ruX/E/QwLH/aDd5maCgsWeEvqkjx7rvTpA3fc4YLRuHHQsGE1P7c6KDk5mQ8//JD4+HgWLlxIXl4ebdq04frrrycuLo4JEyYQFBTk62GKL+zHG4wW4W3ZHQ5ciAtGEwBVXYpIJSgoiYhUJCcH5sxx4Wj+fCgshOho8h/7Je/2LuTZ9a+weu3rNG/QnIdHPczdw+4mIjTipHeXl+cq9IpWjVatcitJzZu7MrpJk9xHx441+BzrkD179hR3qlu2bBnWWrp27cp9991HXFwcI0aMwN+/6jbnlToiDbeHUVE42ua5vAVupegR3HlGPVDLbhE5bQpKIiIlbdzowtGbb7pln4gI+MUvSLv6El5J+4yXV/6SA58eoHfL3rw65VWmR02nYWDFyz579niD0aJF7rQmPz8YPhxmzHDnGp13Huj9fXnWWjZu3FgcjtavXw9AZGQkM2bMIC4ujgEDBqiNd32TASzFG4zW4krsGuHOLfoxbsUoCnWjE5GzpqAkInL0KLz9tgtIq1a59nHTpsEtt7A5qj0vrHqJNz8cS3Z+NpO6TWLWpbOY1G0Sfqb0O7GMDLfJa1EThp073eUdO8LVV7tgFBMDzZr54DnWAYWFhXz99dfF4Wj37t0YYxg1ahTPPPMMcXFxdO3a1dfDlJqUA6zAG4y+xnWrCwJGAo/jgtEwoAq6PoqIlKSgJCL1U2Gh64U9axb873+ue8KAAfCnP1F43bXMP7qa579+js9f/5wGAQ34UeSPuG/4ffRr3a/UXaxf7101WrbMldg1bOg2eb3nHheOevZUE4aTyc3NZfHixcTHx/Phhx9y8OBBAgMDmTBhAg8//DCXXHIJbdu29fUwpaYU4FaJioLRl7j9jfyAIcCDuGB0PqDz90SkmikoiUj9sm+fa8zwj3+42rimTeGWW+CWW8js34s3NrzJC/8Zy/bU7bRr3I7fTvgtPxnyE1o2dG2xkpO9K0affw4pKe5uo6LggQfceUajR7uOdVKxzMxMPv30U+Lj4/n4449JT0+nUaNGXHjhhcTFxTFlyhSaNm3q62FKTbDAVrybvCYARz3X9cOV0sUA4wCtxIpIDVNQEpFzX04OfPCBWz36/HPXRSEmBp58EuLi+D73MC+vfJnX//Q6R7KPMKTdEGbHzebKfldi84NYtszbnW7dOneXrVp5GzBMmgRa9Di11NRU5syZQ3x8PJ999hnZ2dmEhYVx2WWXERcXR2xsLCEhIb4eptSEvXiD0SLgoOfyLsDluGA0HtBrSkR8TEFJRM5d69a5cPTvf0NaGnToAI895jYm6tKFFYkr+NO8W3h387tYLHG947h/+AO0zBrFZ58ZLvuFO+foxAl32tL558PvfufK6QYOdI0Z5OQSExP54IMPiI+PZ8mSJRQUFBAREcFtt91GXFwcY8aMISBAv4bOecm4PYyKgtG3nsvb4MroYjyfu/hkdCIiJ6XfUCJybklLg7fecgFp7VpXAxcX58rrJkwg31je3/o+f/r79SxPXE5ocCh39H+E/pn3sXZha254GL77zt1V9+5w880uGEVHQ5MmPn1mdcK2bduKmzGsXLkSgD59+vDzn/+cuLg4hgwZok5157p0YAneVaNNnsubAtHA/bhg1Be17BaRWk1BSUTqvsJCWLjQhaP4eFdqN2gQvPQSXHsttGjBkawj/PXrZ3npm5f4/mgS4cencWHGctI2nserK/0pKHBBKCYGHnnEldOpwdoPs9ayevXq4nC0detWAM477zx+97vfERcXR+/evX08SqlWWcAyvMFoFVAIhACjgetxq0aD0LsOEalT9CNLROquvXvhn/90jRn27XO7t/7kJ24ZaNAgAHak7uCFuY8x64vPyN42llYH3qDxjlEkpQex38DQofDoo27VaPhwV2Inp5afn8+XX35JfHw8H3zwAd9//z3+/v6MGzeOu+66i2nTphERcfLNd6WOywNW4g1GXwG5uHcUw4Ff4oLRCEBNTUSkDlNQEpG6JSvLrRrNmuVWkYyBiRPhj3+ESy+FBg2w1jJ38yKeeCOBlV80x+y+G3voZQAC28OUOBeMYmOhZUsfP586Ijs7m88//5z333+fOXPmkJqaSoMGDZg0aRJPPPEEF198MWFhYb4eplSHQmAD3mD0BW7jVwMMBO7FBaPRgMpTReQcoqAkIrWftbBmjQtHb73lNojt3Bkef9w1ZujYEWth1dpsnn5jBfPmF5C5cxQUTMA/MJ/RYwq4+CIXjvr1055GlZWens7cuXOJj4/nk08+ITMzk6ZNmzJ16lTi4uKYPHkyjRo18vUwpapZYBfe5guLgcOe63oC03HBKBpQNhaRc1i1BiVjzGTgBcAf+Ju19qky1wcDb+C2kUsFrrbW7jXGdMbtrLDdc+jX1to7qnOsIlILpabC7NkuIG3YAA0awOWXu8YM0dEcTvNjwQKI/8UJPvk0n+OpocBwgtvtZtI1u7nnuh7Ejg8iJER/E6qsffv2MWfOHJ566ikWLVpEXl4ebdu25YYbbuCyyy4jOjqaoKAgXw9TqloS3mC0EEj0XB4BTME1X5jg+V5EpJ6otncPxhh/4GVgIu5H7kpjzEfW2i0lDrsVOGKt7W6MuQb4A3C157rd1tqB1TU+EamlCgrcXkezZsGHH0JurjuR6C9/Ie+Ka/l6WzPmz4f5P4fVqy3WGgjJhq6fE3V5Mo/+aChXjRqpzmqVlJaWxuLFi1m4cCELFixg586dAHTr1o2f/vSnxMXFMWLECPzUC/3ckopbKSoKRjs8l4fhDUUxQHfUmU5E6q3q/DPrMGCXtfZbAGPMO8ClQMmgdCkw0/P1e8BLRu9uROqN6GbryM9vzNIMYPdu15ThX/+CxEQIC4M77+TbSXcw/7vezJ8Pi34Ox4+Dn38hjbtuwka/S4NeX3LrlCh+OvIeeoT18PVTqvWysrJYunRpcTBas2YN1loaN25c3IyhadOm3HTTTQqb55IM3LlFRcFoPa7ErjEwDrgdF4wGAMrEIiJA9QalcOD7Et8n4vrhVHiMtTbfGJOOt+K5izFmLXAM+JW19stqHKuI+ECwzSIm73MY/xAkJICfH8djprH4uneYnz6Cz+b6s+sFd2zHToX0j9nE7uavkNL6bZq3bcavh93LrYM/oFmDZj59HrVZQUEBq1evZsGCBSxcuJBly5aRk5NDQEAAI0eOZObMmcTExDBs2DACPS3/EhISFJLquhzga7zldCuAfCAIGAU8gQtGQwF1ehQRqZCx1lbPHRtzJXCBtfbHnu+nA8OstfeWOGaz55hEz/e7cStRGUBja22qMWYI8AHQz1p7rMxj/AT4CUCbNm2GvPPOO9XyXM5ERkYGjRs39vUwpATNSe0QdOgQYV9/TdjXX9PoqzUEk8PylpP4oPNtLDwxho07WpKf70eDBgUMHHiUngP3kBz+Bl/Yv5NVeIL+of25IuIKRrccjb/x9/XTqXWstXz//fesXr2aNWvWsHbtWjIzMwFXTjd48GCGDBlCZGQkISEhFd6HXiu10ynnpQCa7GxC8zXNaba2GU03NsU/xx/rZzne8zhHBh/h6OCjpPdPpzC4sGYHfg7Ta6V20rzUPrVtTsaPH7/aWjv0h46rzhWlRKBDie8jgP0nOSbRGBOA27c7zbr0lgNgrV3tCVA9cdvYFbPWvg68DjB06FAbHR1dDU/jzCQkJFCbxiOaE58pLIRVq+Djj93H2rUU4MfC1tfxe7/fsaJwGFmHQ+AwDBwIP/sZTJpkKYz4ipfXPseb2z7E3/pzdb+r+enwn3Je+Hm+fka1zv79+4tL6RYuXEhSUhIAnTt35tprryU2Npbx48fTunXrSt2fXiu1U6l5sbhC9qIVowQg3XNgf+AOYAKYcYbQpqGEEkonOtX0kM95eq3UTpqX2qeuzkl1BqWVQA9jTBdcP51rgOvKHPMRcCOwHLgCWGSttcaYVrjAVGCM6Qr0AL6txrGKSFU6dsw1ZJg7132kpGCNH+uibmT26Fd5a9sgDqYE4k8BLfyP8vo/Q5g4EZq3zOU/m/7Dg18/z9ov19IipAWPjn6Uu867i/DQcF8/q1ojPT2dhISE4mC0detWAMLCwoiJiSEmJobY2Fi6du3q45FKlYmGwcmD4We4YLQISPZc1xW4CteAYTzQxicjFBE551RbUPKcc3QPMB/XHnyWtXazMeYJYJW19iPg78CbxphdQBouTAGMBZ4wxuQDBcAd1tq06hqriFSB3bu9q0ZLlkBeHjRrxndjbuCtkFuZvb4/W9YFEBgIU6bA9Onwp5s3UViQxwVxhby66lX+suovHMw4SJ+WfXht6mvcEHkDDQMb+vqZ+Vx2djbLly8vDkYrV66ksLCQhg0bMnbsWG655RZiY2OJjIxUd7q6zgIpuA0ytpX4/DWE5oTCbUBb3PlFMbhw1Nk3QxUROddV6+Yi1tp5wLwyl/26xNfZwJUV3O5/wP+qc2wicpby8mDZMheM5s6Fbdvc5X36cPSOR3ivwQ3MXtGDJXNcU4DRo+HVB+DKK6FFC3cuzW9nFbC31Z/p8Px/ySnIYXL3ydw//H4mdZtUr5sJFBQUsG7duuJyui+//JLs7Gz8/f0ZNmwYv/zlL4mJiWHEiBEEBwf7erhyJgqAPZQOQ0Wfj5Q4rhHQG2gKJwJP0PCzhtAHtewWEakB2oVRRCrv8GH49FMXjj79FNLTISgIoqPJue0ePml4GbMXtGPOa277o1694Mkn4brroEsXyMjNYMG3C5i3bB7zds4j6bwkyA/m9oE3cd/w++jbqq+vn6FPWGvZtWtXcTBavHgxaWluEb1fv37cfvvtxMTEMG7cOEJDQ308WjktJ3Bbp5cNRDuA3BLHtcEFoKs9n3t7Pofj2nVHQ+7RXBr21QqriEhNUVASkZOzFjZt8q4aLV/umjO0aQOXX46dMpWvmlzA7Pcb8p8n4cgRaN0a7rwTbrgBhgyBXWk7+WjnPOYuncuS75aQW5BLk6AmTOw2kSk9phB2OIxLJ17q62da45KTk1m4cGFxONq3bx8AHTp04JJLLiE2NpYJEybQrl07H49UKuUQ5VeGtgLflTjGD3c+UW/gQryBqDfQ/AfuPwHWJawjmugqHbaIiJycgpKIlJadDYsXe8838ryBZ8gQeOwxmDKF7Y2HMPstP/79IOzZAw0bQlycC0djonNYvv9L/r1jLte9NJedaTsB6BXWi3vOu4cpPacwuuNogvyDANcJpz44fvw4S5YsKQ5GmzZtAqB58+aMHz+eRx55hJiYGHr06FGvyw5rtQJc8KmoXC61xHEhuPAzCrgV7+pQd6BBDY5XRETOioKSiEBSkrdD3YIFcOKESz8TJ7pwdNFFJPu35z//gTfvct2+/fwgNhYefxyGxxzgi4NzeW3nXK58fgEZuRkE+wcT3Tmae4fdy0U9LqJbi26+fpY1Kjc3lxUrVrBgwQIWLFjAN998Q35+Pg0aNGD06NFcf/31xMbGMmjQIPz9tR9UrZKFK42rqFwuu8RxrXAB6HJKl8t1wK0eiYhInaagJFIfVbC3EQCdOsEtt7i2dNHRZBY04MMPYfaP4bPPoKAABg2CZ54tpOfYNaw49gHP7ZzLur+uAyAiNILrB1zPlB5TmNBlAo2CGvnwSdaswsJCNm7cWNyZ7osvviAzMxM/Pz+GDh3KQw89RGxsLKNGjaJBAy0r1AqpVFwutxfXfQ5c04QuuAA0kdLlcmE1O1wREalZCkoi9UUFexvh5wejRsFTT8HUqdC3LwWFhkWL4M2fwPvvQ2YmdOwI9z6QRftRi1hv3+b3uz4ldW4qfsaPUR1G8fuY33NRj4sY0HpAvSob27NnT6mNXg8fPgxAr169uOmmm4iNjSU6OppmzZr5eKT1WCGwj4rL5Q6VOK4B0AsYhtvdr2h1qAeulE5EROodBSWRc9lJ9jbiwgvdqtHkyRAWhrWwbh3MfhDefhsOHICmTS2T49JoMewTtjR8nT8nLaNwQyFhIWFc2ONCLup+ERd0v4AWIS18/SxrzKFDh1i8eHFxMPr2W7cPdrt27bjwwguLN3uNiIjw8UjroRwqLpfbjiulKxKGC0CXUrpcriNuxz8REREPBSWRc8kp9jbi/vvdqtGoURDgXvr79sFbf4U334QtWyAw0DJ43EH63/gRW5s/w/+ydkEaDAoaxKOjH2VKjykMCx+Gv1/9eEeZmZnJl19+WRyM1q1zJYahoaFER0dz//33ExsbS+/evevVSppPHcEbgkoGoj241SNw5XKdcAFoPKUDUcsaHq+IiNRZCkoidd0p9jbizjvdylE3byOFo0fhvfdg9my3yATQNWo/fW9+j11tf8+K4IM0DmrMxE4TmdHj51zU4yLaN2nvm+dWw/Ly8li5cmVxMFq+fDl5eXkEBQUxatQonnzySWJiYhg6dCgBAfrxWW0s8D0Vl8sllzguGOgJDAauxxuGegLabkhERM6SftOL1DU/sLcRU6e6dnRNmhTfJDcXPvnErRx9/LElJ8fQPDyFllPe4nC3P/Ntiz30aNGDu3pcw5SeUxjTcQzBAcE+fJI1w1rL5s2bi88zWrJkCcePH8cYw6BBg3jggQeIiYlh9OjRNGyod95VLhfYScXlcpkljmuOC0BTKL061BmVy4mISLVRUBKpCyqxtxFDhrjmDB7WwldfuZWj//ynkCNH/AhuepTCIS6f6FMAACAASURBVG9Bv1lkdNhIdOdxTOnxUy7qcRE9wnr46MnVrH379hUHo0WLFnHw4EEAunfvznXXXUdsbCzjx48nLEwtzapMOuXD0FbgW9zeREU64gLQGEoHola4cjoREZEapKAkUltVYm8j2pcvidu+Hd580/KPN3PYv68BJjAb2/t/cNFswqK2MKX3BUzp8RgxXWNoHNTYB0+sZqWlpbF48eLicLRzp9sAt3Xr1sTExBAbG0tMTAydOnXy8UjrOAskUXG53IESxwXiSuMigavxBqJeQP3pJi8iInWAgpJIbXGyvY06d3Z7G02dCuPGQQV78KSkwD/ePMFf/5nF7k1hYAqh6xLMZW8xbMJ+Lokcz5QeTxHZJvKcbzqQlZXF0qVLi4PRmjVrsNbSqFEjoqOjufPOO4mNjaV///7n/L9FtcgDdlFxIMoocVxTXAi6gNKrQ13Qbx4REakT9OtKxJcqubcRFbyhz8y0vPRGIv94I5ft33SCwobQdhshU57ngmlHuHL4+VzQ7TnCGp7bJWQFBQWsXr26uAHDsmXLyMnJISAggJEjRzJjxgxiY2MZNmwYgYGBvh5u7RcNA48OhC9w5wqVDUO7gPwSx0fgAtDNlA5EbVC5nIiI1GkKSiI17VR7G02dChdcACc5P+Z49gn+9PYGZs+Gncv6Y3M6QNPvaD3xX1x6ZQY3ThzKiIjHz+n23dZatm/fXhyMFi9eTHp6OgCRkZHcfffdxMTEMHbsWBo3PvdLC89aIS78rPN8bITQ46FuRahIAG7j1b7AZZQul2uCiIjIOUlBSaS6nebeRmV9m7aH1+d+w3/eDmTv0pFwfAQ0OEqnUV9xxTU53HfVIDo2u7UGn1DNS0pKYuHChcXldPv37wegU6dOXHnllcTExDBhwgRat27t45HWcieATXhD0TpgA94OcwFAMOQ3zifo4SDv6lBX3LlFIiIi9YiCkkh1ONXeRnfd5brUde1a4U3zCvJY9v0y3l66jPh3Qzi0/AI4dDX459J12Dauuz6ZB2/sQ9PGk2r2OdWg9PR0EhISileNtm7dCkBYWBgTJkwobsDQtWtXnWd0MsnAekqHou14N2VtCgwEfuz5PBAXioLhq4SviI6OrukRi4iI1CoKSiJV4Qz2NiopOSOZT3Z9Qvy6xXw2J5Ts1ZfDd78EoEtkEjc+nMy9t7ShRYvImnxWNSY7O5vly5cXB6OVK1dSWFhISEgIY8eO5ZZbbiEmJoaoqCj8SrRAF1x77d2UDkTrKN1prhMuCF2FNxR1QucQiYiInIKCksiZ+qG9jaZOhcGDS+1tVKTQFrJ6/2rm7pzLnK3zWfNFa1g/HXa+BvkNaN/5OLfMyOHmHwXTtWt4DT+x6nf48GFWr17N6tWriY+PZ9OmTWRnZ+Pv78+wYcP4xS9+QWxsLCNGjCA4+Nzf+LbSKlM61w+YhDcQReE2bBUREZHToqAkcjrOcG8jgPTsdD7b/Rlzd85l3s5POLStO2yYTsDWTyGzKc3D8rjhzgCmT4ehQ5tU1OiuTioZioo+vvvuu+Lrg4ODuf3224mNjWXcuHGEhob6cLS1yFmUzomIiMjZU1ASOZWz2NvIWsvWw1uZu2Mu83bNY+m+peSndCV4y48J2PQHSGlDSIglLs5www0QGxtIXe9eXRSKVq1aVRyK9hWttAHdunVj+PDh3HXXXQwdOpRBgwaxfv36+n0+TAGlu84VhSOVzomIiPiUgpJIWWext1FWXhaL9y4uDkd7j+6FjFa0++7/aLXhDQ5s70Cen2VsjAtHcXHmZKct1XqHDh0qt1JUNhSNHDmSe+65hyFDhjB48GCaNWvmwxHXAieAjZQvnTvhuV6lcyIiIrWGgpIInNXeRt8d/c5TTjePRXsWkZWfRYgNo/fhR2i09iq2rejAgQLDoEHw4LNwzTXmZNV5tdYPhaLu3bsrFJWVTPkGCzsoXzp3GyqdExERqYUUlKR+OtneRn37wgMPuPbdJ9nbKK8gj+WJy5m7Yy5zd85l86HNAHRp2p1JPE3G+mms+Lw9azMMHTrAQw/BDTdAv341+QTPXMlQVFRC9/333xdfXzIUFZXP1etQVLZ0rujjYIljikrnrkalcyIiInWEgpLUD9HRDDp8GB555Iz2NkrJTOHTXZ8yd+dc5u+aT3pOOgF+AYzpOJZJDR/myDdTmf9acz48YGjaFK65xoWjMWMqbHpXa6SkpJRbKSoZinr06MH555/PkCFDGDJkiEJRZUvnLkClcyIiInWcgpKce3JzYccOt69R0ceKFYRmZ8P06dC2LVxxhXdvo8aNy91FoS1k7YG1zN3pVo1WJq3EYmnTqA2X9bmMYY2u4ODXE3jv6QY8vxkCA13Du+nTXd6qoLeDz51uKBo8eDBNmzb14Yh9TKVzIiIi9ZqCktRdBQXw7belA9GmTS4k5ee7Y/z9oVcvaNKE7GbNCJkz56R7Gx3LOcbnuz9n7s65fLLrEw5mHMRgOC/8PGZGz2Rs60vYsTSSt5734x9L3G3OPx9eeQWuvPKkpzD5RMlQVFQ+l5iYWHx9jx49GD16dKmVonobilQ6JyIiIhVQUJLaz1r4/nvYvLl0INqyxW36Cq4DXZcu0L8/TJvmPvfvDz17gmfD0hUJCUQPHVribi3bU7cXd6j78rsvySvMo2lwUy7ofgFTekxhQsfJrP6iNbNfgt/NgZwcd5dPPAHXX3/SSr0alZycXG6lqGQo6tmzJ2PGjFEoApXOiYiISKUpKEntkpJSfoVo82bXsrtIeLgLQXff7Q1EffpAo0Y/ePfZ+dkk7E0oDkffHvkWgH6t+vHAiAeY0nMKI8JHsnJFILNfhQf+C2lp0KoV3H67O+9o6NAKO4PXiNMJRUWNFurtBq4qnRMREZGzoKAkvnH0qAtAZVeJDh3yHhMW5kLQ9OneQNSvHzSv3J/3rbXsS9/HhuQNrE9ez7yN81j/1XpO5J0gJCCECV0m8ODIB7mox0V0ataJ7dvh33+Hm2bDnj0QEuIWp6ZPd6cy1fRmsCVDUVH5XFJSUvH1vXr1YuzYsaVWiuplKFLpnIiIiFQDBSWpXidOwNat5VeJSqyC0LixC0GXXuoNRP37Q+vWlV66ycrLYlPKpuJQtD55PRuSN3A0+2jxMREhEdw88GYu6nER4zuPJyQwhJQUeOcNmD0bVq50py7FxMDMmRAXR41tBnvw4MFyK0VFocgYQ8+ePRk3bpxCkUrnREREpIYoKEnVKNtprmilaPdud44RuHOF+vRx7bhLBqKOHSsdiKy1JB1PYv3B9aVC0Y7UHRRaV1PVKLARkW0iuabfNUS1jSKyTSQDWg9g9fLVREdHc+IEfPCeC0fz57ueEAMHwrPPurbe1b0ZbGVCUXR0dKlQ1KSmElttotI5ERER8SEFJTk9BQWuLq3sCtH27aU7zfXsCYMGlS6b69q1wg1cTyY7P5sth7aUC0VpWWnFx3Ru1pmoNlFc1feq4lDUtXlX/EzprnZjxsD+/UMZPRrefx8yMijeDPb6693wqkPJUFRUPrd//37AhaJevXopFBUA21HpnIiIiNQqCkpSMWtdeVzZpgpbtkBWlve4ok5zl1ziDUS9ehV3mqvcQ1kOZhx0QejgejakbGD9wfVsO7yNAlsAQEhACAPaDODyPpcT1SaKqLZRDGg9gKYNmpa5L9i3D9av935s2AA7dwI0JjW1+jaDPXDgQLmVorKhaPz48cWNFgYOHFg/QtFxIAlILPPZ8/WYLWPA07xQpXMiIiJSWygoiWugUHaFaNOm0p3m2rd3IejOO0t3mqtgs9ZTyS3IZeuhreVC0aET3iYOHUI7ENU2imm9pxWHom7Nu+Hv51/qvrKy3HlFJQPRhg2uT0SRbt0gKspVBvr5ZbBlS+Mq2Qy2MqFowoQJxStF52QoKgQOUSr0VBSEOF7BbZsDEUA4HOhygIipESqdExERkVpFQak+SU8v32Vu82bXkrtIixYuBN1wQ+lOcy1anPbDpWSmsP7g+lLNFbYe2kpeYR4Awf7B9G/dn4t7XkxU2yii2kQxoM0AWoSUfixrISnJG4aKgtGOHVDoOV+lUSOIjHSrRVFR7mPAgNI5LiFhFQ0aRJ/28ygbilatWsWBAwcAF4p69+597oWiXGA/5UNPyc/7gbwyt/MD2gHhuNATS3EgItzzdXugofcmuxJ2EREdUW1PRURERORMKCidi7KyKu409/333mMaNXIh6OKLvWGof39o2/a0NwnKK8hje+r2cqHoYIb3JJPwJuFEtonkou4XFYeiHmE9CPAr/V8wJwfWri1dOrd+vdvLqEjnzi4IXXWVNxR16VI1ZXT79+8vt1JUNhTFxMSUKp9rfJqraj53jJOv/hR9nVLB7ULwhp7RlA9A4UAb9FNFREREzgl6S1OX5eWV7jRX9FGy01xQkCuRGzu2fKe5M0gWqSdSi8vmikLRlkNbyC3IdQ/nH0TfVn25oNsFxWVzkW0iadmwZbn7OniwfCDats31iwC3j9GAAXD55aVXiZo2LXdXZ+SHQlGfPn2IjY0ttVJUq0NRIS7gnCwAFX3OqOC2YXgDz1BKh5+ir5uh5gkiIiJSbygo1QVFnebKls1t3+7CErjQ07On63NdVDbXrx90735aneaK5BfmszN1Z7lQtP/4/uJj2jZuS2SbSCZ2nVgcinqF9SLQv/TOrLm5pUvmikroSlb8dejggtC0aa6ELirKDd2/9GlJp81ay9GjR0lKSmLZsmUkJCQUl88dPOhWvPz8/Ojdu3ftDkU5eIPPyYLQfiC/zO38caVwEUB/YDLlV4Ha41aLRERERKSYglJtUnQyTtkVorKd5jp3dkFo6tTSnebOsEvBkawj3vbbnlC0+dBmsvNdK7IAvwD6turLhC4TXCDyhKLWjVqXu69Dh8oHoi1bvHkuONg79KJAFBl5RqdAUVhYyOHDh0lMTCz1kZSUVOr7EydOFN+mKBRNmjSpVChq1KjRGf3bnTULpPPDDREOV3DbhnjDzjjKB6AIoDUuLImIiIjIaVFQ8pWiTnNlV4nS073HtGvnUsUdd3jPIerbF86wUUBBYQG70naV2pNo/cH1fH/Me+5Sy4YtiWoTxV1D7yo+l6hPqz4E+QeVuq/8fDf0koFo/XrwVK4BrlFeZCRMnuwtnevZs3ILXPn5+Rw8ePCk4afosry80t0EAgICCA8PJzw8nIEDBzJ16lQiIiKIiIjg0KFD3HjjjTUXigpwpXCnKoNLAjIruG1LvIFnGBWfD9QUlcKJiIiIVBMFpep27Fj5MLRpU+m6s+bNXQi67rrSnebCws74YdOz09mQvKFUKNqUsokTeW51xd/407tlb8Z0GkNk68jiUNS2cVtMmWYOaWnlS+c2b3aNFwACA11+mzjRG4giI6FVq4rHlpOTUxx8ThaADhw4QGFRSzuPBg0aFIee0aNHF38dHh5e/HXr1q3xO8m5VwkJCVUXkrI5dRlcUSlcQZnbBeBK3cKBSOAiyp8P1B6oghbmIiIiInLmFJSqQ5cunJ+a6gLQvn3eyxs1cgGoqGSuaJWoXbvT7jRXpNAW8u2Rb92eRCVC0d6je4uPaRHSgqg2Ufxk8E+IbONCUd9WfWkQUPrdeEGB6w1RtsFCYqL3mNatXRC6915vKOrd24UlgIyMDJKSktiwIfGkJXGHDh2irNDQ0OKw079//1Lhp+ijefPm5UJclbPAUU5dBpcEpFZw28Z4Q894ypfBheNK4apwk1sRERERqR4KStUhPR2/vDwYPbp0p7lOnc6qh/XxnONsTNlYKhRtTNlIRq5rY+Zn/OgZ1pPh4cO5bfBtxecShTcJLxcw0tNhZZlVok2bvKdCBQS4ADRuXNEKkaVTp6Pk5XmDz86diSQklF4RSi9ZOujRsmXL4pWfYcOGlQtA4eHhNbPvUAGl9wY6WUlcVgW3bYULOx2BUVR8PlBo9Q5fRERERGqOglJ1SE3lyyVLiI6OPqObW2vZe3Rv8TlEG1I2sP7genYf2V18TNPgpkS1jeLmgTe7VaI2UfRr3Y+GgQ1L3VdhoesWXrbBwt693mNatCikb99DxMUl0rJlIiEhiRQWJnHwoAs/33zjPmdllU4Qxhjatm1LREQEPXv2ZMKECeXK4dq3b09ISDW0VMvDreqU/Th8ksu+hXF548rfTyDeUrhBwFTKnw/UDgiu+qcgIiIiIrWXglJ1OI3ysMzcTDalbCoVijYkb+BYzjF3Vxi6t+jOoHaDuGngTcWhqGPTjuVWiY4fh69Wlg5EGzbkk5l5AEjEmERat06iWbNEBgxIpKAgkWPHEklO3s/SpRU3RYiIiGDw4MFccskl5crh2rZtS2BRzd2ZssAJKhd2Sn5/7BT3GYxrhhDm+RgARMO+zH10GtWpdBBqhUrhRERERKQcBaUaYq3l+2Pfl9qTaEPyBnam7sTiNodtEtSEyDaR3DDghuLmCv1b96dRUKMy9+VWhFauzOarr5JYsyaR7duTSElJxNWOJeLvn4i/fxJ5eQdxO5G62yUnw7FjIcWrPoMHj6mwFO5UTRFOqhDX6rqyYafospxT3Gco3sATBvQq830YpUNRGK5tdgVZdU/CHjpFdzq95yQiIiIi9ZKCUjXIysti+/Ht7F6zu1QoOpp9tPiYrs27EtUmiuv6X0dU2ygi20TSuVln/IwLJ8ePHycpKYnF65bzzTeJbNiQyK5diezfn0R6eiKFhRVvrtOoUVPatw+nS5cIIiIGVNgZrlJNEfJwra0rG3ZSgTSKMll5fkALvMGmMzCEk4edMM/xQRXcl4iIiIhINVNQqgbn/fU8Nh/aDGugUWAjBrQZwNX9riaqjQtE4YHhHDt0zDVA2JHImkVr+ChxDrt3J7JnTyIpKYnk5JSvLTOmJQ0bRtChQwSdOo2gd+9wBg+OoFu3UzRFKFvatobqKW2rKOiUDEBNUYmbiIiIiNQZCkrV4ET8j2iVlsRdVzcnOy2bpK1JbE/czsLEhSQlJZVrigAGY9phbQSutiyGFi0i6No1gv79Ixg+PILo6Pb07N4Av+OUDzYbgQTOvrStJeVL2yoKQCcpbRMREREROVcoKFWD7xb9hsLCDB5fA4GBgTRv3p6QkAisHUJIyKVkZ0d4QlE4IcERDOjalkEdAolqBVFNoH8ghGbggs5OYDnwGJUrbSsKNp3xlrZVFHZaeo4/y14MIiIiIiLnomoNSsaYycALgD/wN2vtU2WuDwbewL2lTwWuttbu9Vz3KHArbveb+6y186tzrFWpf9MFpGUYTgR0Ii2rFSkpruasUxCMDoCoQIjMhSigWw74bQW2lriDBpQONZGcuqxNpW0iIiIiIlWq2oKSMcYfeBmYiGvFttIY85G1dkuJw24FjlhruxtjrgH+AFxtjOkLXAP0w+1ys8AY09NaW1Bd461KLY4NJ7gAovIgsgFENYPIdtCsDT9c1tYSV9omIiIiIiI+U50rSsOAXdbabwGMMe8AlwIlg9KlwEzP1+8BLxnXju1S4B1rbQ6wxxizy3N/y6txvFWm1VAwx9P567qmKm0TEREREamDqrNYKxz4vsT3iZ7LKjzGWpuP24UnrJK3rbVSGkBaoFVIEhERERGpo6pzRamivmi2ksdU5rYYY34C/ASgTZs2JCQknOYQq8fMmZCRkUFCQmNfD0VKcHOS4OthSBmal9pHc1I7aV5qH81J7aR5qX3q6pxUZ1BKBDqU+D4C2H+SYxKNMQG4lgRplbwt1trXgdcBhg4daqOjo6tq7GctISGB2jQe0ZzUVpqX2kdzUjtpXmofzUntpHmpferqnFRn6d1KoIcxposxJgjXnOGjMsd8BNzo+foKYJG11nouv8YYE2yM6QL0AL6pxrGKiIiIiIgUq7YVJWttvjHmHmA+rj34LGvtZmPME8Aqa+1HwN+BNz3NGtJwYQrPcf/FNX7IB+6uKx3vRERERESk7qvWfZSstfOAeWUu+3WJr7OBK09y298Cv63O8YmIiIiIiFREW5SKiIiIiIiUoaAkIiIiIiJShoKSiIiIiIhIGQpKIiIiIiIiZSgoiYiIiIiIlKGgJCIiIiIiUoaCkoiIiIiISBkKSiIiIiIiImUoKImIiIiIiJShoCQiIiIiIlKGgpKIiIiIiEgZCkoiIiIiIiJlKCiJiIiIiIiUoaAkIiIiIiJShoKSiIiIiIhIGcZa6+sxVAljzCHgO1+Po4SWwGFfD0JK0ZzUTpqX2kdzUjtpXmofzUntpHmpfWrbnHSy1rb6oYPOmaBU2xhjVllrh/p6HOKlOamdNC+1j+akdtK81D6ak9pJ81L71NU5UemdiIiIiIhIGQpKIiIiIiIiZSgoVZ/XfT0AKUdzUjtpXmofzUntpHmpfTQntZPmpfapk3Oic5RERERERETK0IqSiIiIiIhIGQpKZ8kYM9kYs90Ys8sY80gF1481xqwxxuQbY67wxRjrm0rMyf8ZY7YYYzYYYxYaYzr5Ypz1TSXm5Q5jzEZjzDpjzFJjTF9fjLM++aE5KXHcFcYYa4ypcx2L6ppKvE5uMsYc8rxO1hljfuyLcdY3lXmtGGOu8vxu2WyMeaumx1jfVOK18nyJ18kOY8xRX4yzvqnEvHQ0xiw2xqz1vA+7yBfjrCyV3p0FY4w/sAOYCCQCK4FrrbVbShzTGQgFHgQ+sta+V/MjrT8qOSfjgRXW2hPGmDuBaGvt1T4ZcD1RyXkJtdYe83x9CXCXtXayL8ZbH1RmTjzHNQHmAkHAPdbaVTU91vqikq+Tm4Ch1tp7fDLIeqiS89ID+C8wwVp7xBjT2lqb4pMB1wOV/flV4vh7gUHW2ltqbpT1TyVfK68Da621r3j+IDrPWtvZF+OtDK0onZ1hwC5r7bfW2lzgHeDSkgdYa/daazcAhb4YYD1UmTlZbK094fn2ayCihsdYH1VmXo6V+LYRoL/iVK8fnBOP3wB/BLJrcnD1VGXnRGpWZeblNuBla+0RAIWkane6r5VrgbdrZGT1W2XmxeIWEACaAvtrcHynTUHp7IQD35f4PtFzmfjO6c7JrcAn1ToigUrOizHmbmPMbtwb8/tqaGz11Q/OiTFmENDBWvtxTQ6sHqvsz6/LPSUr7xljOtTM0Oq1ysxLT6CnMWaZMeZrY4xWw6tXpX/Xe8rruwCLamBc9V1l5mUmcIMxJhGYB9xbM0M7MwpKZ8dUcJn+Cu5blZ4TY8wNwFDg6WodkUAl58Va+7K1thvwc+BX1T6q+u2Uc2KM8QOeB35WYyOSyrxO5gCdrbWRwALgX9U+KqnMvAQAPYBo3OrF34wxzap5XPXZ6bz/ugZ4z1pbUI3jEacy83It8E9rbQRwEfCm5/dNrVRrB1ZHJAIl/5oXQS1fQqwHKjUnxphY4JfAJdbanBoaW312uq+Vd4Bp1Toi+aE5aQL0BxKMMXuBEcBHauhQrX7wdWKtTS3xM+uvwJAaGlt9VpmfX4nAh9baPGvtHmA7LjhJ9Tid3ynXoLK7mlKZebkVdz4f1trlQAOgZY2M7gwoKJ2dlUAPY0wXY0wQ7sX4kY/HVN/94Jx4yolew4Uk1ZHXjMrMS8k3FVOAnTU4vvrolHNirU231ra01nb2nGj7Ne41o2YO1acyr5N2Jb69BNhag+Orryrzu/4DYDyAMaYlrhTv2xodZf1SqfdfxpheQHNgeQ2Pr76qzLzsA2IAjDF9cEHpUI2O8jQoKJ0Fa20+cA8wH/fL6r/W2s3GmCc8XbswxpznqcO8EnjNGLPZdyM+91VmTnCldo2Bdz1tQxVuq1kl5+UeT1vddcD/ATf6aLj1QiXnRGpQJefkPs/rZD3uPL6bfDPa+qOS8zIfSDXGbAEWAw9Za1N9M+Jz32n8/LoWeMeqxXONqOS8/Ay4zfMz7G3gpto8P2oPLiIiIiIiUoZWlERERERERMpQUBIRERERESlDQUlERERERKQMBSUREREREZEyFJRERERERETKUFASEZGzYoyJM8ZYY0zvGnzM+40xDWvq8c6EMSbaGDPK1+MQEZEzo6AkIiJn61pgKW5zwZpyP+DzoGSMCTjF1dGAgpKISB2loCQiImfMGNMYOB+4lTJByRjzsDFmozFmvTHmKc9l3Y0xCzyXrTHGdPNc/pAxZqUxZoMx5nHPZZ2NMduMMf/yXP6eMaahMeY+oD2w2Biz2HPsK8aYVZ7NWB8vMYa9xpjHPY+1sWjVyxjT2BjzD89lG4wxl3sun2SMWe45/l3P8yv7nBOMMb8zxiwBfmqMudgYs8IYs9bz3NoYYzoDdwAPeDa2HmOMaWWM+Z/nea40xpxftbMhIiJV6VR/CRMREfkh04BPrbU7jDFpxpj/b+9uQqys4jiOf38KJeFYTlGKZQa9kFiE2IsUvTEIQouKCCYQo6SFhAsLXZQgIdhiqKBFLwuLKEt6GZiCaiJa1KSLsjSrZaC1aijMtFrEr8Xzv3h5mhuXkbhBv8/mnuf/nHOec+/m8ud/7rkrbe+XtLbuXWv7hKTh6v8K8LjtcUnzgDmS1gCXANcAAiYk3QgcBi4D7rc9JWkXsNH2mKTNwC22p2veR2z/JGku8KGkK20frHvTtldK2gg8DGwAtgFHbV8BIGmhpHOAR4ER28clbQU2A4/N8L7Psn1TZyxwnW1L2gBssf2QpGeBX22PVb/dwJO2P5G0lObf6y8/xc8/IiL+JUmUIiLiVIwCT1X7tbreD4wAL9g+AVBJzBCwxPZ4xX6HpooDrAG+qHnm0yROh4Ejtqcq/jKwCRibYR13S3qA5nttMbAc6CRKb9Xr58Cd1R6hqwJm+2dJt9W4KUkApwF7e7zvPV3t84E9khbXmO96jBkBltfcAAskDdk+1qN/REQMUBKliIiYFUlnA7cCKyQZmAtY0haaypDbQ3pNBey0/Vxr/mUzzNG+RtJFNJWiqyvheRGY19Xlj3r9k5Pfe73W94Ht0R7r7Ha8q/008ITtzRfT9gAAAXNJREFUCUk3A9t7jJkDrLb9Wx/zR0TEgOU3ShERMVt3AS/ZvtD2MtsX0FRTbgAmgfs6J9NJGrb9C/C9pNsrdnrdf7/6zq/4Eknn1jOWSlpd7c6hEQDHgKFqL6BJXI5KOg9Y28faJ4EHOxe1fW4fcL2kiyt2hqRL+5jrTOCHaq/vinevcaZnXtXH3BERMSBJlCIiYrZGgfFW7E3gHtvvARPAZ5K+pKn4AKwDNkk6CHwKLLI9CewG9kr6CniDkwnGt8D66j8MPFPx54F3JX1k+wDNtr2vgV1AZ6veP9kBLJR0SNIBmt87/QjcC7xaz9sH9HPk+XbgdUkfA9Nd8beBOzqHOdBsG1xVh0d8Q3PYQ0RE/EfJ/tsuhoiIiIGrrXfv2F4x4KVERMT/UCpKERERERERLakoRUREREREtKSiFBERERER0ZJEKSIiIiIioiWJUkREREREREsSpYiIiIiIiJYkShERERERES1JlCIiIiIiIlr+AuOSoSWILWqKAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHwCAYAAACYFJ/XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcTuX/x/HXNWayToNEhbKUCjMGYxfDyL6X7EtClHwlRX4lfFVIpaRElhJRZKdkGVvJ1uRrKUuUfTdmMJiZ6/fHuWcaY1bMzD28n4/HPLrvc65znc851z26P3Mtx1hrERERERERkX95ZHQAIiIiIiIi7kaJkoiIiIiISDxKlEREREREROJRoiQiIiIiIhKPEiUREREREZF4lCiJiIiIiIjEo0RJRDIFY8wXxphBrtd1jDEHMjgkkXRjjClmjAlPYr+nMcYaY4qkX1TuG0dSkovRGNPNGBOcrkGJiFtSoiQi6coYc8AYc8kYEx7n54HkjrPWdrPWvpMeMd4sY8xwY8zUjI4jIa4k0xpj+mVwHA8bYzL9g/zSKzGw1v5lrc0V57zrjDFd0vKcIiJ3OiVKIpIRmlhrc8X5OZJeJzbGeGbk8W6gM3DG9V9Jxm3Q3rclY0yWjI5BRG5/SpRExC0YYzyMMbONMceMMeeMMcHGmMfj7P/aGDMkgeOu+4t+3LIxw/SMMYOMMceAia7tTY0xv7vOtc4YUzqRuGLqf8EYsxf4w7X9E2PMIWPMeWPMJmNMVdf2xsBrQHtXb9kW1/bcxpgpxpijruOGGWOu+zfYGFPYGHPRGOMTZ1sFY8wJVywljDFrjDGhxphTxpgZqbjHuYCWQC+gpDHGP97+GsaYDa66DxpjOrq25zDGfGiM+ce1b40xJqtrXzXXMeeMMSHGmBpx6ltnjHnbGLPZddxcY0we1+41rjIxvYoVjDGPGGNWGWNOu65tWrz7cMgY088Y8z9Xfd/ExOHa39IVw3ljzF5jTN3U3HtX2eHGmFmuusOADsaYKnGu8agx5mNjjFfc6wB2uK7jKVc9Kf18vW2M+dD1OqsxJsIY805Me7ne+5g4PXDGmJFAFWC865xj4lRZz3XtZ40xHyd0Tlcd1/w+mXjDWVNwr3u6znPaGDPPGHN/vFM0Mcbsd7XjiJj7ndTn1xhT0hiz3BhzxhjzR8y9jBPvOGPMD8aYC8DrxpjDcdvRGNPKGLPV9TqpNksyxgTuVVJxNTbG7DLGhLnu2cuJ3XMRyYSstfrRj370k24/wAGgTgLbPYAugDeQDfgE2Bxn/9fAENfrOsAB12tPwAJFkigbCbwD3AVkByoAx13/zQJ0BfYBdyUQV0z9PwB5gOyu7R2BvK79A4DDQFbXvuHA1Hj1LAI+BXIA9wFbgOcSuUdrgGfjvP8Q+MT1+jvX+Txc96laKu79s8Ah17FLgQ/i7CsKhAHPuK4pH+Dv2vc5sAK433W/qgNeQGHgNFDPVWd94BRwj+u4dcBBoCSQE5gXc1+Ah53/BV0TXwkgyNVO+YH1wOg4+w8BG1z37x5gN9DNta8qcM51vIcrtkdv4N4PB64ATVz1xHxeKrnuSzHXeXsn8flLzeerLvCb63UNV7n1cfZtSeh+ue5tlwQ+p/MBH6AITs/hdb9r8X9H4v9OpeBe1wVOAP44n8FPgZXx4liO8/tSBNgbEyuJfH5xfu8PA51cdZTH+Ww9GifeszgJogeQFeffklpxYp4L9I/TBsm1WWIxdgOCUxjXSaCq63VeoFxG/xurH/3o59b9qEdJRDLCPNdfes8ZY+YBWGujrbVTrbVh1toIYAhQ3hiT8xacLxLnS+EVa+0loAfwqbV2k7U2ylo72VWuQhJ1vGOtPes6HmvtNGvtGWttJDAKuBvny+x1jDEFcb7Av2ytvWitPQaMAdokcq4ZQFvXsR5Aa9c2gKs4X+zut9ZGWGvXp+QGuHQGZlpro131tTf/Di3rAPxgrf3WWhtprT1lrQ0xzhCnLkAfa+1R1/1aZ629ivPlcYG19kdX+/0A/I6TMMX40lq701p7ARgMtDHGmISCs9buttaucLXTCZwEsWa8YmOstcestadxEqCYXrHngImu46OttQettX/ewL0HWGetXeiq55Lrc/Kr6778BUxIIK64UvP5Wo/Tu5cbJ1GaABQ1xuRwnWN1EudJyLvW2lBr7QEgmH/vz41I7F63B76w1oa4flcHAjWNMYXiHDvC9ftyAPgY1+eZxD+/TYHd1tqvXPd5C05i/XScOudaa39xtctlYCb//p7kxknYZwKksM0SizGu5OK6itN+3q5/D7Ymc09FJBNRoiQiGaG5tTa366c5OHMOjDGjjDF/GWPO4/yFF5yejZt13Fp7Jc77h4ABcZK1czi9JQWTqONg3DfGmNdcw3BCcf7SnTOJWB/C+Qv48TjnGwcUSKT8d8ATxpgCQC0gwlr7s2vfKzi9OZtdw6JSNNfIOEMTawDTXZvmArn4N6kpjNObEV8BnB6ehPY9BLSNdx8rA3EX54h73/7GuQ95E4nxPmPMt64hVeeBqVx/T4/FeX3RdQ1JxZ/aex8/ZowxjxljFhtnWOh5YFgCccU/Z4o+X64E8jectqmBk9xswOk5uZFEKbH7cyMSq+sBnLYEwFp7Hud3IO71xW/3mM9EYp/fh4Bq8e5Za5z7llCd4CT7T7mG1D0F/GqtPQQpbrPEYowrubha4CRT/xhnuHClBOoQkUxKk1RFxF10AhoCtXG+tNyDM6wlwd6HGNbaSGPMZZxhVTHu499EC5xhNnEdBIZaa0emIr7YOowxtYB+OD0VO12bQ+PEmtD5LgJ5Xb05SZ/I2tPGmJVAK6As8E2cfUdxhgZhnPlAPxlj1lhr9ydTbSdXfEvjdOjc5dq+yBWjXwLHHccZilYc2JHAdU2x1vZK4ryF47x+ELiMMyQsdwJlR7r2+1przxhjngZGJ1F3/FiKJ7I9xffeJX77fY6TvLS21oYbY/oDjRMpG3PO1Hy+VuMMffPFGRa4GmiAM8xrbQpjTK0LXP87k1JHcBIIAIwx3jhD2A7HKVMY+NP1+kHXMYl+fnHu2QprbYMkznvNNVtrtxljjuL0JLXj315XSLrNkowxniTjstb+CjR1JWv/wenRKprENYhIJqIeJRFxF944X5JP43yBezsVx/6OM4wsizGmEc4cmqRMAF40zgICxjiT5pukYpifN85wvlM4fx0fgtOjFOM4UCRmiJm19iDOl9/Rxpi7jbNwxcMmzsIHCZiBM1SuJXG+ABpjnnENJwNnTo4FolIQcyecoW/+cX5a43zJy4MzB6S+MeYp4ywakc8YU8ZaG4XTszPG1eOTxTgLOHgB04AWxpgnXduzGWNqmWuXe+/k+ut+TmAo8K211uLMcbHGmGJxynrjfIEPNcYUBvqn4LpiTAK6uc7vYYwpZIx59AbvfXzeOInwBeMsMPJ8zA7X/TmNMw8mRmo/X6txhjducw3lDMYZvrfbWnsmkWOOxztnaoUAjYwxeYyzEEOfVBz7DfCcMcbPOAs8vAusjenNcXnNOItoPOiqexYk+fldAJQyxrQzxni5fioaYx5NQSwv4/TAzY6zPdE2Sy7GeBKNyxiT3bX9btdQ1DBS9rsoIpmEEiURcRdTcP6iewSn5+LnpItfow/OEJhzOL0wC5Iq7PorcC/gM5whQ7tx5uik1BKcieB7cCaUnweOxtk/C6e35owxZqNrWwecZGqn65zfkfRf8efhLILwj7U2bk9OJWCTcVb++h540Vr7D4Ax5k9jTOv4FRljquMMKxrnmnNyzDVXZ64r/tauHqkmOBPtzwBbcXo4wPkiugunt+MMzsIYxjW3owXwJk7v3z84Q6vi/r9lGk4SdhRnYYO+ANbaMJwv2L+6hjQFAG8BFXG+4C4A5iRxf67hGprYHWeuSSiwin97s1J77+N7BSdpDcPpqYj/hfotYIbrOlrewOdrHc4fB2JW0NuGM/dlTaJHOPOsYoY9fpCKa4kxFadN/8ZZqGRmSg90zUUbhvP5OYrTG9M+XrGFOMnYb65yU13bE/z8WmtDcXqGOrjqPIbz+chK0mbg9EL/ZK09G2d7cm2WVIxxrzW5uDoDf7uG9z2Hs8iLiNwmjPOHPRERkVvLGLMOZ9L/1IyORUREJLXUoyQiIiIiIhKPEiUREREREZF4NPROREREREQkHvUoiYiIiIiIxKNESUREREREJJ40feCsMaY+8BHOkrBfWGtHxNvfE3gR57kD4UAPa+1O4zxBfhf/Pghug7W2Z1Lnypcvny1SpMgtjf9mXLhwgZw5U/pIFkkPahP3pHZxP2oT96R2cT9qE/ekdnE/7tYmW7ZsOWWtvTe5cmk2R8kYkwXn2RFPAoeATUBba+3OOGXuttaed71uCrxgra3vSpQWWWtLp/R8AQEBdvPmzbfwCm5OcHAwgYGBGR2GxKE2cU9qF/ejNnFPahf3ozZxT2oX9+NubWKM2WKtDUiuXFoOvasI7LXW/mWtvYLzMLtmcQvEJEkuOXGe0C0iIiIiIpKh0rJH6WmgvrW2m+t9R6CStbZ3vHIvAv1wnmJf21q7x9WjtAOnR+o88Ia1dm0C5+gB9AAoUKBA+ZkzU/xg8TQXHh5Orly5MjoMiUNt4p7ULu5HbeKe1C7uR23intQu7sfd2qRWrVop6lFKyzlKJoFt12Vl1tpxwDhjTDvgDaAzcBR40Fp72hhTHphnjCkVrwcKa+0EYAI4Q+/cqUvP3boYRW3irtQu7kdt4p7ULu5HbeKe1C7uJ7O2SVomSoeAwnHeFwKOJFF+JvAZgLX2MnDZ9XqLMWYfUAJI1SSkq1evcujQISIiIlJz2C3h4+PDrl270v284siWLRuFChXCy8sro0MRERERkUwoLROlTcAjxpiiwGGgDdAubgFjzCPW2j2ut42APa7t9wJnrLVRxphiwCPAX6kN4NChQ3h7e1OkSBGMSaiDK+2EhYXh7e2drucUh7WW06dPc+jQIYoWLZrR4YiIiIhIJpRmiZK1NtIY0xv4EWd58MnW2h3GmGHAZmvtAqC3MaYOcBU4izPsDqAGMMwYE4mzdHhPa+2Z1MYQERGRIUmSZCxjDPfccw8nT57M6FBEREREJJNK0+coWWuXAEvibRsc5/V/EjluDjDnVsSQ2iQpcGogAMFdgm/F6SWDKDkWERERkZuRlsuD3/FOnz6Nv78//v7+3HfffRQsWDD2/ZUrV27ZeZYvX46Pj09s3f7+/qxatSrV9URGRpI7d+4bjmPy5MkcO3Ys9v2zzz7Ln3/+mcQRIiIiIiLuKU17lO5099xzDyEhIQAMGTKEXLly0b9//2vKWGux1uLhcXM5a61atZg3b95N1XGzJk+eTLly5bjvvvsAmDJlSobGIyIiIiJyo9SjlAH27t1L6dKl6dmzJ+XKlePgwYPX9OTMnDmTbt26AXD8+HFatmxJQEAAFStWZMOGDSk+zyuvvMKECRNi37/xxht89NFHnD9/ntq1a1OuXDn8/PxYtGjRdccuX76c5s2bx77v2bMnX3/9NQBvvfUWFSpUiL0Gay2zZs0iJCSE1q1bx/aYVa9ePTZR/Prrr/H19aV06dIMGjQI+LcHa+DAgZQpU4YqVapw4sSJVNxJEREREZG0ccf0KPX9oS8hx0KSLRdTJmauUlL87/NnTP0xNxTPzp07mTJlCuPHjycyMjLRcn369OG1116jcuXKHDhwgMaNG7N9+/bryq1atQp/f//Y9/PmzaNNmzYMHDiQHj16APDdd9+xatUqsmfPzvz58/H29ubEiRNUq1aNxo0bpzj2//znPwwdOhRrLe3ateOHH36gdevWjB07lk8++eSaOMBZffCNN95g8+bN+Pj4UKdOHRYtWkT9+vUJDQ2lZs2ajBgxgn79+jF58mQGDhyY4lhERERERNLCHZMouZvixYtToUKFZMstX778mnk+Z8+e5dKlS2TPnv2acgkNvStSpAgHDx7k+PHjHDp0iPvuu48HHniAK1euMGDAANatW4eHhwcHDx7k1KlTKZ6ftGLFCt577z0iIiI4deoU5cuXp0GDBomW//XXX6lduzb58uUDoF27dqxZs4b69euTPXv22GPLly/P2rVrUxSDiIiIiEhaumMSpZT2/KTXqnc5c+aMfe3h4YG1NvZ93AfkWmvZuHEjd9111w2d56mnnmLOnDkcOHCANm3aAPDVV18RGhrK1q1b8fT0pFChQtc9lNfT05Po6OjrYrp48SK9e/dm69atFCxYkDfeeCPZB/rGvbb44l5XlixZkuxdExERERFJL5qj5AY8PDzIkycPe/bsITo6mrlz58buq1OnDuPGjYt9HzPnJ6XatGnDzJkz+f7773nqqacACA0NJX/+/Hh6evLTTz9x+PDh64576KGH2LFjB1euXOHs2bOsXLkSgEuXLuHh4UG+fPkICwtjzpx/V3H39vYmLCzsuroqV67MqlWrOH36NJGRkcycOZOaNWum6jpERERERNKTEiU3MXLkSOrXr09QUBCFChWK3T5u3DjWr1+Pn58fJUuWZOLEiQkeHzNHKeYnJtkqU6YMJ0+epGjRouTPnx+Ajh078vPPPxMQEMB3333HI488cl19RYsWpXnz5vj6+tKpUyfKlSsHOCv5de7cmdKlS9OiRQsqVaoUe8yzzz5Lt27drlv+vFChQgwbNozAwED8/f2pXLkyjRo1uvmbJiIiIiKSRkxSw6Iyk4CAALt58+Zrtu3atYvHH388VfXcqqF3YWFheHt731QdcnPit39wcDCBgYEZF5AkSO3iftQm7knt4n7UJu5J7eJ+3K1NjDFbrLUByZW7Y+YopVRaz00SERERERH3p6F3IiIiIiIi8ahHSURERERE0kZgIP7nzkEqFyRzB+pREhERERERiUeJkoiIiIiISDxKlOILdP2IiIiIiMgdS4lSGsuVK1eKyw4ZMoTRo0enWf03eo6EHDhwgBkzZtx0PSIiIiJyG7t6lSwXL2Z0FDdEiZLcECVKIiIiIpKkkydh2zZy7t8PFy5kdDSppkQpAyxcuJBKlSpRtmxZ6tSpw/Hjx2P3/f7779SuXZtHHnmEiRMnxm5/7733qFChAn5+frz11lsJ1ptYmbfffptHH32UOnXq8OeffyZ47N9//01QUBB+fn4EBQXxzz//ANClSxdmz54dWy6mB2vgwIGsXbsWf39/PvzwQ6Kioujfvz++vr74+fkxduxYAFasWEHZsmXx9fWla9euXL58GYAiRYowaNAgqlSpQkBAAFu3bqVevXoUL16c8ePHJ3lNFy5coFGjRpQpU4bSpUsza9aslN98EREREUl7R45AzZpw8SIXCxeGnDkzOqJUu3OWB+8LpGRVwpgygSko6w+MSX0o1atXZ8OGDRhj+OKLLxg1ahTvv/8+ANu2bWPDhg1cuHCBsmXL0qhRI7Zv386ePXvYuHEj1lqaNm3KmjVrqFGjRmydy5YtS7BMzpw5mTlzJr/99huRkZGUK1eO8uXLXxdT79696dSpE507d2by5Mn06dOHefPmJXoNI0aMYPTo0SxatAiAzz77jP379/Pbb7/h6enJmTNniIiIoEuXLqxYsYISJUrQqVMnPvvsM/r27QtA4cKF+eWXX3j55Zfp0qUL69evJyIiglKlStGzZ89Er+nkyZM88MADLF68GIDQ0NDUN4KIiIiIpI2//4agIDh+HHx9iczoeG7QnZMouZFDhw7RunVrjh49ypUrVyhatGjsvmbNmpE9e3ayZ89OrVq12LhxI+vWrWPZsmWULVsWgPDwcPbs2XNdopRQmbCwMFq0aEGOHDkAaNq0aYIx/fLLL3z//fcAdOzYkddeey1V17R8+XJ69uyJp6fzkcqbNy+///47RYsWpUSJEgB07tyZcePGxSZKMbH4+voSHh6Ot7c33t7eZMuWjXPnziV6TU888QT9+/dnwIABNG7cmCeeeCJVsYqIiIhIGtmzx0mSwsJg+XIYMADOncvoqG7InZMopbTnJ9D13+C0CQPgpZdeol+/fjRt2pTg4GCGDBkSu88Yc01ZYwzWWl5//XWef/75ROtMrMyYMWOuqzMlYo7x9PQkOjo69hxXrlxJ9Pzxz2OtTfIcWbNmBcDDwyP2dcz7yMjIJK97y5YtLFmyhNdff526desyePDglF+ciIiIiNx6O3ZAnToQGQmrVoG/f0ZHdFM0RykDhIaGUrBgQQC+/PLLa/bNnz+fiIgITp8+TXBwMBUqVKBevXpMnjyZ8PBwAA4fPsyJEyeuOS6xMjVq1GDu3LlcunSJsLAwFi5cmGBMVatWZebMmQBMnz6d6tWrA85coi1btsTGdvXqVQC8vb0JCwuLPb5u3bqMHz+eyEinc/XMmTM89thjHDhwgL179wIwbdo0atasmeL7lNg1HTlyhBw5ctChQwf69+/P1q1bU1yniIiIiKSBrVudOUnGwOrVmT5JgjupRymDXLx4kUKFCsW+79evH0OGDKFVq1YULFiQypUrs3///tj9FStWpFGjRvzzzz+8+eabPPDAAzzwwAPs2rWLKlWqAM6CCl9//TX58+ePPa5u3boJlilXrhytW7fG39+fhx56KNFhah9//DFdu3blvffe495772XKlCkAdO/enWbNmlGxYkWCgoLI6ZqI5+fnh6enJ2XKlKFLly689NJL7N69Gz8/P7y8vOjevTu9e/dmypQptGrVisjISCpUqEDPnj1TfO8Su6a9e/fy6quv4uHhgZeXF5999lmK6xQRERGRW+yXX6BBA/DxgRUr4OGH/90XHExIcHCmfEypSW54VGYREBBgN2/efM22Xbt28fjjj6euokDXf4NvLp6wsDC8vb1vrhK5KfHbPzg4mMDAwIwLSBKkdnE/ahP3pHZxP2oT96R2SWfBwdC4Mdx/v5MkPfhgAkXcq02MMVustQHJlVOPUnzBGR2AiIiIiEgm8MMP0KIFFCvmLNxw//0ZHdEtpTlKIiIiIiKSOnPnQtOm8NhjTq/SbZYkgRIlERERERFJjRkzoFUrKF/eWd3u3nszOqI0oaF3IiIiIiKSMpMmQffuzgp3CxZAMnPyA6cGcu7cOUICQ9IpwFtHPUoiIiIiIpK8sWOhWzeoWxcWL042SQI4dfEURy4dSfb5mu5IiVJ8gYHOj4iIiIiIOEaOhD59oHlzmD8fcuRIsri1lg9/+ZAdJ3dwIeoCF69eTKdAbx0lSmksV65c17yfOnUqvXv3zqBo0kZgYCDxl2ZPqeDgYH7++efY9+PHj+err766VaGJiIiIyM2wFgYPhoEDoW1b+PZbyJo1yUOioqPos7QP/Zb1I1+OfBTPWZycd+VMp4BvHc1RkgwVHBxMrly5qFq1KkCqHkgrIiIiImnIWujfHz74AJ57Dj7/HLJkSfKQ8CvhtJ3TlkW7F/FKlVcY9eQo1qxek04B31rqUcpAXbp0Yfbs2bHvY3qfgoODqVmzJs888wwlSpRg4MCBTJ8+nYoVK+Lr68u+ffsAWLhwIZUqVaJs2bLUqVOH48ePAzBkyBC6du1KYGAgxYoV4+OPP07w/MuWLaNKlSqUK1eOVq1aER4eztKlS3nmmWdiywQHB9OkSRMAevXqRUBAAKVKleKtt95KsM64PWizZ8+mS5cuicZ64MABxo8fz4cffoi/vz9r165lyJAhjB49GoCQkBAqV66Mn58fLVq04OzZs4DTgzVgwAAqVqxIiRIlWLt2barvvYiIiIgkIToaXnjBSZJeegkmTEg2SToadpSaU2uyZM8SxjUcx+i6o/EwmTfduHN6lPr2hZAUrLYRUyYl85T8/WHMmCSLXLp0CX9//9j3Z86coWnTpslW/fvvv7Nr1y7y5s1LsWLF6NatGxs3buSjjz5i7NixjBkzhurVq7NhwwaMMXzxxReMGjWK999/H4A//viDVatWERYWxqOPPkqvXr3w8vKKrf/UqVMMHz6c5cuXkzNnTkaOHMkHH3zAoEGDeP7557lw4QI5c+Zk1qxZtG7dGoC3336bvHnzEhUVRVBQENu2bcPPzy/5+wSJxtqzZ09y5cpF//79AVixYkXsMZ06dWLs2LHUrFmTwYMHM3ToUMa47ndkZCQbN25kyZIlDB06lOXLl6coDhERERFJRmSk04P01VcwYAC8+y4Yk+Qh209sp9GMRpy+eJr5bebTuETjdAo27dw5iVIGyZ49OyFxErSpU6emaD5PhQoVuN/14K7ixYtTt25dAHx9fVm1ahUAhw4donXr1hw9epQrV65QtGjR2OMbNWpE1qxZyZo1K/nz5+f48eMUKlQodv+GDRvYuXMn1apVA+DKlStUqVIFT09P6tevz8KFC3n66adZvHgxo0aNAuDbb79lwoQJREZGcvToUXbu3JniRCmpWBMSGhrKuXPnqFmzJgCdO3emVatWsftbtmwJQPny5Tlw4ECKYhARERGRZFy5Ah06wHffwbBh8MYbySZJy/9azlPfPkVOr5yseXYN5e4vl07Bpq07J1FKpucnVkxPUnBwWkUSy9PTk+joaMBZGeTKlSux+7LGmSTn4eER+97Dw4PIyEgAXnrpJfr160fTpk0JDg5myJAhCR6fJUuW2GNiWGt58skn+eabb66Lq3Xr1owbN468efNSoUIFvL292b9/P6NHj2bTpk3kyZOHLl26EBERcd2xJs4vUtz9ScV6I2KuL6FrExEREZEbEBHhPEh20SJ4/33o1y/ZQ6b8NoUei3rwWL7HWNxuMQ/6PJgOgaaPzDto8DZQpEgRtmzZAsD8+fO5evVqqo4PDQ2lYMGCAHz55ZepOrZy5cqsX7+evXv3AnDx4kV2794NOHOAtm7dysSJE2OH3Z0/f56cOXPi4+PD8ePHWbp0aYL1FihQgF27dhEdHc3cuXOTjdXb25uwsLDr6vHx8SFPnjyx84+mTZsW27skIiIiIrfYhQvQpImTJH36abJJkrWWN1e+SdcFXalVpBbrnl13WyVJoEQpQ3Xv3p3Vq1dTsWJFfv31V3LmTN2yiUOGDKFVq1Y88cQT5MuXL1XH3nvvvUydOpW2bdvi5+dH5cqV+eOPPwCnl6Zx48YsXbqUxo2d8aVlypShbNmylCpViq5du8YO2YtvxIganXSAAAAgAElEQVQRNG7cmNq1a8cOHUwq1iZNmjB37tzYxRzi+vLLL3n11Vfx8/MjJCSEwYMHp+oaRURERCQFzp+H+vVh5UqYOhV69Uqy+OXIy3Sc25Hha4fzXNnnWNxuMT7ZfNIn1nRkMuNTchMSEBBg48/92bVrF48//njqKrpFQ+/CwsLwTsHTiiXtxG//4OBgAvUwYbejdnE/ahP3pHZxP2oT96R2SaUzZ6BePWdBs+nTIc7qxwkWv3SGFrNasObvNbxd+21er/76NVMvEuJubWKM2WKtDUiu3J0zRyml0mFukoiIiIhIhjtxAp58Ev74A77/3hl6l4S/zv5Fw+kN2X9uPzNazqCtb9tkTxEYCOfO+ado8Wl3o0RJREREROROc/gwBAXBP/8485KefDLJ4hsObaDpN02JslEs77icJx56Ip0CzTiaoyQiIiIicifZvx+eeAKOHIEff0w2SZqzcw61vqyFd1Zvfu768x2RJIESJRERERGRO8fu3VCjBpw7B8uXOwlTIqy1vP/z+7T6rhX+9/mz4bkNPJrv0XQMNmNp6J2IiIiIyJ1g+3aoUweio515+X5+iRaNjI7kP0v/w6ebP+Xpkk/zVfOvyO6VPf1idQNKlOJJx+fNioiIiIikjy1boG5dyJbN+aL72GOJFg2/Ek6b2W1YvGcxr1Z9lRF1RuBh7ryBaHfeFaezY8eO0aZNG4oXL07JkiVp2LBh7INdU2vMmDFcvHjxlsR14MABZsyYEft+8+bN9OnT55bUHVdgYCDxl20XERERkXS0fj3Urg3e3rBmTZJJ0pGwI9SYUoOle5fyacNPGfXkqDsySQIlSmnKWkuLFi0IDAxk37597Ny5k3feeYfjx4/fUH1JJUpRUVGpqit+ohQQEMDHH398Q3GJiIiIiJtaudLpSSpQANauheLFEy36v+P/o/IXldl9ejcL2y6kV4WkHzx7u1OilIZWrVqFl5cXPXv2jN3m7+/PE088gbWWV199ldKlS+Pr68usWbOAfx/I9fTTT/PYY4/Rvn17rLV8/PHHHDlyhFq1alGrVi0AcuXKxeDBg6lUqRK//PILw4YNo0KFCpQuXZoePXoQ8zDhvXv3UqdOHcqUKUO5cuXYt28fAwcOZO3atfj7+/Phhx8SHBxM48aNAThz5gzNmzfHz8+PypUrs23bNgCGDBlC165dCQwMpFixYqlOrL755ht8fX0pXbo0AwYMiN0+adIkSpQoQWBgIN27d6d37943ftNFRERExLFkCTRsCMWKOT1JhQsnWvSnfT9RbXI1omwUa59dS8NHGqZjoO7pjpmj1LcvKXrQVUyZlDw82N8fxoxJfP/27dspX758gvu+//57QkJC+P333zl16hQVKlSgRo0aAPz222/s2LGDBx54gGrVqrF+/Xr69OnDBx98wKpVq8iXLx8AFy5coHTp0gwbNgyAkiVLMnjwYAA6duzIokWLaNKkCe3bt2fgwIG0aNGCiIgIoqOjGTFiBKNHj2bRokWAk6DFeOuttyhbtizz5s1j5cqVdOrUiRDXjfnjjz9YtWoVYWFhPProo/Tq1QsvL69k79WRI0cYMGAAW7ZsIU+ePNStW5d58+ZRsWJF/vvf/7J161a8vb2pXbs2ZcqUSbY+EREREUnCnDnQti34+sKyZXDPPYkWnbR1Ej0X9+TxfI+zuN1iCvsknlDdSdSjlEHWrVtH27ZtyZIlCwUKFKBmzZps2rQJgIoVK1KoUCE8PDzw9/fnwIEDCdaRJUsWnnrqqdj3q1atolKlSvj6+rJy5Up27NhBWFgYhw8fpkWLFgBky5aNHDlyJBtbx44dAahduzanT58mNDQUgEaNGpE1a1by5ctH/vz5UzyMcNOmTQQGBnLvvffi6elJ+/btWbNmDRs3bqRmzZrkzZsXLy8vWrVqlaL6RERERCQRX38NrVtDQACsWJFokmSt5Y2Vb9BtYTeCigaxrus6JUlxpGmPkjGmPvARkAX4wlo7It7+nsCLQBQQDvSw1u507XsdeM61r4+19sebiSWpnp+4buWqd6VKlWL27NkJ7osZFpeQrFmzxr7OkiULkZGRCZbLli0bWbJkASAiIoIXXniBzZs3U7hwYYYMGUJERESS50lMQscYY1IVW0rqTGq7iIiIiNyACROgZ0/nS+2CBZArV4LFLkde5tn5z/LN9m/oVrYbnzb6FK8syY8SupOkWY+SMSYLMA5oAJQE2hpjSsYrNsNa62ut9QdGAR+4ji0JtAFKAfWBT131ZSq1a9fm8uXLTJw4MXbbpk2bWL16NTVq1GDWrFlERUVx8uRJ1qxZQ8WKFZOsz9vbm7CwsAT3RUREAJAvXz7Cw8NjE7S7776bQoUKMW/ePAAuX77MxYsXk6yrRo0aTJ8+HXCG5OXLl4+77747ydiCgoI4fPhwovsrVarE6tWrOXXqFFFRUXzzzTfUrFmTihUrsnr1as6ePUtkZCRz5sxJ8jwiIiIikoiPPoLnn4cGDWDx4kSTpNMXT/PktCf5Zvs3vBv0LhOaTFCSlIC0HHpXEdhrrf3LWnsFmAk0i1vAWns+ztucQEz3QjNgprX2srV2P7DXVV+mYoxh7ty5/PTTTxQvXpxSpUoxZMgQHnjgAVq0aIGfnx9lypShdu3ajBo1ivvuuy/J+nr06EGDBg1iF3OIK3fu3HTv3h1fX1+aN29OhQoVYvdNmzaNjz/+GD8/P6pWrcqxY8fw8/PD09OTMmXK8OGHH15T15AhQ9i8eTN+fn4MHDiQL7/8Msm4oqOj2bt3L3nz5k20zP3338+7775LrVq1YheVaNasGQULFmTQoEFUqlSJOnXqULJkSXx8fABYsGBB7JwrEREREUnCO+84k/JbtoS5cyF7wg+H3XdmH1UmVeHXw78y86mZDKw+MHbkkFzLpNXQJ2PM00B9a2031/uOQCVrbe945V4E+gF3AbWttXuMMZ8AG6y1X7vKTAKWWmtnxzu2B9ADoECBAuVnzpx5TQw+Pj48/PDDqYq7YUPnQ7VkyaVUHRdfVFRU7LC4293OnTuZNm0a77777g0dHx4eTq5cuYiMjKRdu3Z07NiRJk2a3HRce/fujZ1bFfc84l7ULu5HbeKe1C7uR23inu64drGWopMm8dD06RyvU4c/Bg7EJvIddEfoDv5vx/9hrWV46eH4+vimeXh9+/oTFRXF2LH/S/NzpVStWrW2WGsDkiuXlnOUEkpNr8vKrLXjgHHGmHbAG0DnVBw7AZgAEBAQYAPjLVW3a9cuvL29UxX02rUxr1J3XHxhYWGpPndmValSJSpVqnTDxw8dOpTly5cTERFB3bp1adu27S35y0a2bNkoW7Zs7PuYpdfFvahd3I/axD2pXdyP2sQ93VHtYi28/DJMnw7du1Pgs88okEiSNHvnbF5Z9wqF7i7E0vZLeeSeR9IlxNy54dy5c5myTdIyUToExF02oxBwJInyM4HPbvBYycRGjx6d0SGIiIiIZC7R0dCrl7N4w3/+Ax9+CAn8odlay+ifR/Pa8teoWrgq81rP496c92ZAwJlPWs5R2gQ8Yowpaoy5C2dxhgVxCxhj4qayjYA9rtcLgDbGmKzGmKLAI8DGNIxVRERERCRziIyEzp2dJGnQoESTpMjoSF5Y/AKvLX+NViVbsaLTCiVJqZBmPUrW2khjTG/gR5zlwSdba3cYY4YBm621C4Dexpg6wFXgLM6wO1zlvgV2ApHAi9baqLSKVUREREQkU7hyBdq1cx4oO3w4/N//JVgs7HIYbea0YcmeJQyoNoB3gt7Bw+gRqqmRps9RstYuAZbE2zY4zuv/JHHs28DbaRediIiIiEgmcukSPP00LFni9CL17ZtgscPnD9P4m8b87/j/GN9oPM8HPJ/Ogd4e0jRRyoxiJpoF34onzoqIiIiI3Arh4dCsGaxaBZ9/Dj16JFhs2/FtNJrRiHMR51jYdiENHmmQzoFeLyqTjgtT/1saO3bsGG3atKF48eKULFmShg0bsnv37jQ/b3BwMI0bN07Tcxw4cIDSpUvfdBkRERERSUJoKNSrB8HB8NVXiSZJP+79keqTq2OtZd2z6zI0SbpyBWbOhN9+g717vUmjJxKlKSVKachaS4sWLQgMDGTfvn3s3LmTd955h+PHj2d0aCIiIiKSGZw+DUFBsHEjzJoFHTokWGzilok0mtGIonmKsqHbBsrcVyadA3UcPgyDB8NDD0Hbtk7ClCfPFSIjMyScm6JEKQ2tWrUKLy8vevbsGbvN39+fJ554gvDwcIKCgihXrhy+vr7Mnz8fuL4HZvTo0QwZMgSAjz/+mJIlS+Ln50ebNm0A2LhxI1WrVqVs2bJUrVqVP//8M8mYpk6dSvPmzWnSpAlFixblk08+4YMPPqBs2bJUrlyZM2fOABASEkLlypXx8/OjRYsWnD17FoAtW7ZQpkwZqlSpwrhx42LrjYqK4tVXX6VChQr4+fnx+eefp+peff3111SsWBF/f3+ef/55olx9tLly5eKVV16hXLlyBAUFcfLkyVTVKyIiIpJpHTsGgYGwfTvMm+fMT4on2kbz+vLX6bGoB08Wf5K1z66l0N2F0jVMa50RgU8/7SRIw4dD+fLOVKqKFSF//st4eaVrSLfEHTNHqW/fvoSEhCRbLqZMSh6K5e/vz5gxYxLdv337dsqXL5/gvmzZsjF37lzuvvtuTp06ReXKlWnatGmS5xsxYgT79+8na9asnDt3DoDHHnuMNWvW4OnpyfLlyxk0aBBz5sxJsp7t27fz22+/ERERwcMPP8zIkSP57bffePnll/nqq6/o27cvnTp1YuzYsdSsWZPBgwczdOhQxowZw7PPPhu7/dVXX42tc9KkSfj4+LBp0yYuX75MtWrVqFu3booeHLtr1y5mzZrF+vXr8fLy4oUXXmD69Ol06tSJCxcuUK5cOd5//32GDRvG0KFD+eSTT5KtU0RERCRTO3TI6Uk6dAgWL3ZexxMRGUGXeV2YtWMWPcr1YFyjcXh6pN/X+7AwZyTgp5/Czp2QNy/06wc9e0KxYk6ZkSPTLZxb7o5JlNyNtZZBgwaxZs0aPDw8OHz4cLJD8vz8/Gjfvj3NmzenefPmAISGhtK5c2f27NmDMYarV68me+5atWrh7e2Nt7c3Pj4+NGnSBABfX1+2bdtGaGgo586do2bNmgB07tyZVq1aXbe9Y8eOLF26FIBly5axbds2Zs+eHRvXnj17KFGiRLLxrFixgi1btlChQgUALl26RP78+QHw8PCgdevWAHTo0IGWLVsmW5+IiIhIpvbXX05idOYMLFsG1apdV+TUxVM0n9mc9QfXM7LOSF6t+mqK/kB9K+zcCePGOUlSeDgEBMCUKdC6NWTPni4hpIs7JlFKqucnrlu56l2pUqViE4f4pk+fzsmTJ9myZQteXl4UKVKEiIgIPD09iY6Oji0XERER+3rx4sWsWbOGBQsW8N///pcdO3bw5ptvUqtWLebOncuBAwdS1BOWNWvW2NceHh6x7z08PIhMYgCptTbRX0BrLWPHjqVevXrXbD9w4ECy8Vhr6dy5M++++26yZdPrHwARERGRDPHHH1CnjrMU+IoVThYSz94ze2k4vSH/hP7DrKdn8UypZ9I8rKtXYf58J0EKDoasWZ3E6MUXneF1tyPNUUpDtWvX5vLly0ycODF226ZNm1i9ejWhoaHkz58fLy8vVq1axd9//w1AgQIFOHHiBKdPn+by5cssWrQIgOjoaA4ePEitWrUYNWoU586dIzw8nNDQUAoWLAg4849uBR8fH/LkycPatWsBmDZtGjVr1iR37tz4+Piwbt06wEn2YtSrV4/PPvsstkdr9+7dXLhw4Zp6Dx8+TFAC3cZBQUHMnj2bEydOAHDmzJnY+xEdHR2bbM6YMYPq1avfkmsUERERcTvbtkGNGk5WEhycYJL088GfqfxFZc5cOsOKTivSPEk6ehSGDYMiRaBVK9i/H0aMcEYEfvnl7ZskwR3Uo5QRjDHMnTuXvn37MmLECLJly0aRIkUYM2YMpUqVokmTJgQEBODv789jjz0GgJeXF4MHD6ZSpUoULVo0dntUVBQdOnQgNDQUay0vv/wyuXPn5rXXXqNz58588MEH1K5d+5bF/uWXX9KzZ08uXrxIsWLFmDJlCgBTpkyha9eu5MiR45reo27dunHgwAHKlSuHtZZ7772XefPmXVPn0aNH8fS8/iNXsmRJhg8fTt26dYmOjsbLy4tx48bx0EMPkTNnTnbs2EH58uXx8fFh1qxZt+waRURERNzGpk3OEuA5cjg9SY8+el2Rb3d8S6e5nSjsU5il7ZfycN6H0yQUa2HdOqf3aM4ciIx0Qhs/Hho2hCxZ0uS0bsfYzLioeQICAgLs5s2br9m2a9cuHn/88VTVc6uG3oWFheHt7X1TddxuPvnkEx588MFkF62IK1euXISHh9/Q+eK3f3BwcIqGJkr6Uru4H7WJe1K7uB+1iXvKlO2ybp2TgeTL5yRJRYtes9tay3s/v8eA5QOoVrga89rMI1+OfLc8jPBwmD7dSZD+9z/InRuefRZ69YJHHrmxOgMD4dy5c4SE5L6lsd4MY8wWa+313XXxqEcpnlsxN0kS1rt374wOQURERMS9LF8OzZpBoUJOklTo2qW9I6Mj6b2kN59v+ZzWpVoztflUsnlmu6Uh/PEHfPYZTJ0K58+Dvz9MnAjt2jkdXHcqJUri1m60N0lERETE7S1a5Dx8qEQJ+OknKFDgmt1hl8N4ZvYz/LD3BwZWG8jbQW/jYW7NEgORkc7pP/nEyc+8vOCZZ+CFF6BKFdD6WUqURERERETS33ffOV02/v7w44/OQ4jiOHT+EI1nNGb7ie1MaDyB7uW735LTnjgBX3zhzDc6eNDpwBo+HLp1uy5Pu+Pd9olSUktay+3rdpl7JyIiIrehr75yJv9UqeI8TNbH55rdvx/7nUYzGnH+8nkWt1tMvYfrJVJRylgLv/zizD367jtnUb06deCjj6BJE0hgrS3hNk+UsmXLxunTp7nnnnuULN1BrLWcPn2abNlu7fhdERERkZs2fryzOkJQkPNgopw5r9m9dM9Snpn9DLmz5WZd13X4FfC74VNdvAgzZjgJUkgI3H039OzpDK9zLawsSbitE6VChQpx6NAhTp48me7njoiI0Bf1DJQtWzYKxZsMKSIiIpKhPvgAXnkFGjWC2bMh3nfFCVsm8MLiF/At4MuitosoeHfBGzrN3r3w6acwZQqcOwelSzuLNXToALly3YoLuTPc1omSl5cXReMtr5hegoODKVu2bIacW0RERETciLXw9tvw5pvOU1u//hruuit2d7SN5vXlrzPq51E0eLgBs56ehXfW1D1mJioKlixxeo9+/NEZTvfUU/Dii1C9uhZnuBG3daIkIiIiIpKhrIVBg2DECOjYESZPvmZSUERkBJ3mduK7nd/Rs3xPxjYci6dHyr+inzoFkyY5I/oOHIAHHoChQ6F7d7j//jS4njuIEiURERERkbQQHQ19+8LYsfD88854OI9/l/c+dfEUzWY24+eDPzOqzij6V+2f4nn1Gzc6vUezZsHly86DXd97z3kkk5dXGl3PHUaJkoiIiIjIrRYV5SRHkybByy/D++9fM/5tz+k9NJzRkIOhB/n26W9pVapVslVeuuQkRuPGwebNznyj555zFmcoVSotL+bOpERJRERERORWunoVunRxlpx7801nLFycJGndP+toPrM5xhhWdl5J1cJVk6xu/35nMYZJk+DMGXj8cedBsR07OivZSdpQoiQiIiIicqtcvgxt28LcufDuuzBw4DW7Z22fRad5nXjI5yGWtl9K8bzFE6wmOtpZlGHcOGeRBg8PaN7cWZwhMFCLM6QHJUoiIiIiIrfCxYvOUnM//OA8zbVPn9hd1lpGrh/J6ytep/qD1ZnXeh735LjnuirOnHGW9f7sM9i3DwoUgDfegB49QE8+SV9KlEREREREblZYGDRtCqtXw8SJ0K1b7K6rUVd5ccmLTNw6kTal2zCl2RSyeV77DKWtW53eoxkzICLCWdJ7+HBo2fKalcQzneBgCA4OAQIzOJLUU6IkIiIiInIzzp2DBg1g0ybnGUnt2sXuOn/5PM989ww/7vuRQdUH8d/a/8XDOCvfXb4M333nJEgbNkCOHNCpk7M4Q5kyGXUxEkOJkoiIiIjIjTp1CurWhe3bnaynRYvYXQdDD9JoRiN2ntzJF02+4LlyzwHw99/Oc4+++MI5vEQJGDMGOneG3Lkz6kIkPiVKIiIiIiI34uhRqFMH/voL5s93epVcQo6F0GhGI8Iuh7Gk/RLqFK3LsmVO79GiRU6ZJk2cxRmCgq55vJK4CSVKIiIiIiKp9c8/ToZz9KizLF2tWrG7luxZQuvZrcmTLQ9Ln/qFTQtL8dJnsHs33HsvDBgAPXvCgw9mYPySLCVKIiIiIiKpsW8f1K4NoaGwbBlU/fc5SOM3j+fFJS/yyNWnCdg9mbpv5OTiRahcGaZNg1atIGvWDIxdUkyJkoiIiIjcFgID4dw5f0JC0vAkO3c6w+2uXIGVK6FcOQCibTSvLv0/Pph8gDz/28afu0vxdzZnXYcXX4wtJpmIEiURERERkZQICYEnn4QsWZx1r0uXBmDP/ks07b+YP378D1y4j7zFLW+8D126QN68GRqx3AQlSiIiIiIiyfn1V6hfH3LlghUrsI+UYNVK+OCjyyxe5AXRLXm82n7e/z9LvXpGizPcBpQoiYiIiIgkZc0aaNQI8ufn/LyVfLXsIT5tDrt2gUfOC2SpNoWP3yjJC3UbJF+XZBpKlEREREREErNsGTRvzo77ghhX/RumVc1FeDg8ViaMnM8MJHuZhSzs9C2VC1XO6EjlFlOiJCIiIiKSgKtzFjCvzTeMy7qG1fsDyHoE2rSBh+v9yH/3NaVI7iIsabeK4nmLZ3SokgY0elJEREREJI4jR2Boq+0Uebo8z0R+w9/3lGXkSDh40FLiuXd4c3d9KhWsxC/P/aIk6TamHiURERERueNZC2vXwiefwNzvo4mMKk39PBv4fHweGjyVg2iu0mtxLyb9Nol2vu2Y3HQyWT31QKTbmRIlEREREbljhYc7D4L99FPYvh1yZ4+gT9Q4elX7Hw8v+xRy5CA0IpRW37Xip79+4o0n3mBYrWEYYzI6dEljSpRERERE5I6za5eTHH35JYSFQdmy8MXTP9B2dktyNKkD334L2bLxT+g/NJrRiD9O/cGkppPoWrZrRocu6USJkoiIiIjcESIjYcECGDcOVq6Eu+6CVq3gxRcslZcNwwwdAs88A19/DV5ebD26lcYzGnPh6gWWtl9KnWJ1MvoSJB0pURIRERGR29rx4zBxInz+ORw6BIULw9tvQ7dukP9eCwMGwHvvQZcu8MUXkCULi3cvpvXs1uTNnpf1XddTOn/pjL4MSWdKlERERETktmMt/Pyz03s0ezZcvQp16sDYsdC4MXh6AtHR8FIfp9ALLzg7PTz4dNOnvLT0Jfzv82dR20Xc731/Rl+OZAAlSiIiIiJy24iKcnqPxo2D33+Hu++GXr2cPOjRR+MV7NYNpk6F/v1h1Ciisby2rD/v//I+jUs05punviHXXbky6lIkgylREhEREZFM7+pV+OsvOHzYhx49wNcXxo+H9u0hV/xc5+pV6NgRZs2Ct96Ct97iUmQEHed2ZM6uObxY4UU+qv8RWTyyZMi1iHtQoiQiIiIimVp0NHTtCgcPgo/PVRYuvIvq1SHBFbwvX4bWrWH+fBg5El57jRMXTtBsZjN+PfQrH9T9gL6V+2r5b1GiJCIiIiKZl7Xwn/84C9UVKQI+Phd54om7Ei588SK0aAHLljlPln3xRf489ScNpjfgaPhRZj8zm5aPt0zX+MV9KVESERERkUxryBAn5+nXDzZvhtDQRAqGhTmrOKxdC5MmQdeurPl7Dc1nNsfTw5PgzsFUKlQpPUMXN+eR0QGIiIiIiNyIMWNg2DB49lkYPTqRoXYAZ886S96tXw/Tp0PXrkzfNp0npz1J/pz52dBtg5IkuY4SJRERERHJdKZOhZdfhpYtYcIEV5IUEkKuvXuvLXjyJNSuDSEhMGcOtk0bhq8ZToe5HahSqAo/P/czxfIUy4hLEDenoXciIiIikqnMnQvPPed0Es2Y4XomUkKOHHEK7d8PCxZwtU5tnl/wHFNCptDBrwNfNPmCrJ5Z0zV2yTzStEfJGFPfGPOnMWavMWZgAvv7GWN2GmO2GWNWGGMeirMvyhgT4vpZkJZxioiIiEjmsGIFtGkDFSo4CVPWxPKcv/+GGjWcpfB++IHQmpVpOKMhU0KmMLjGYL5q/pWSJElSmvUoGWOyAOOAJ4FDwCZjzAJr7c44xX4DAqy1F40xvYBRQGvXvkvWWv+0ik9EREREMpdff4VmzaBECViyJIHnI8XYsweCgpwFHH76ib8fu59Gk6vx5+k/mdJsCl38u6Rn2JJJpWWPUkVgr7X2L2vtFWAm0CxuAWvtKmvtRdfbDUChNIxHRERERDKp7duhQQMoUMBZ3Ttv3oTLFY3e5/QkXboEK1ey5UEvKk+qzKHzh/ih/Q9KkiTF0jJRKggcjPP+kGtbYp4DlsZ5n80Ys9kYs8EY0zwtAhQRERER9/fXX1C3LmTLBj/9BPffn3C5R6J2MfbS887KDqtXszDHIWpMrcFdWe5ifdf1BBULSt/AJVMz1tq0qdiYVkA9a2031/uOQEVr7UsJlO0A9AZqWmsvu7Y9YK09YowpBqwEgqy1++Id1wPoAVCgQIHyM2fOTJNruRHh4eHkSrQ/WDKC2sQ9qV3cj9rEPald3I/aJH2cPn0XffqUJSzMk48+CqFo0QsJlsuzcSPFBvyXCyYXf08bzQw28sneT3g418O86/suee9KpAtK0py7/a7UqlVri7X/z95dx2dV/n8cfx3GRpeAtMAXUKQEAZEQBjnO9GIAACAASURBVIKEhKJ06OjR3SDNYHSHdEqPbkZKp4B0dzdjcf3+OPspIjFw9+5tvJ+Ph49t933O2ft4gMc+u67rc5lcbzrOkV3vLgKpnvs6JXD5xYMsyyoKdOK5IgnAGHM5+ONpy7J8gRzAPwolY8w4YBxArly5jLu7e+jewX/g6+tLeMojeibhlZ5L+KNnEj7puYQ/eiaOd/s2FCpkbyK7bh3kyZP73wcZA4MHQ4cOnIySjrbRvUmTaCPDtg+jzMdlmPXDLGK5xQr78PKXiPp3xZFT73YBGSzLSmtZlhtQGfhH9zrLsnIAY4Gyxpjrz72ewLKsaMGfJwLyA883gRARERGRSOzhQ/j2Wzh+HBYtgjwv2w/26VP4+Wdo1Qq+/56G8Uez8bshDN4+mCZfNGFhpYUqkuSdOWxEyRgTYFlWY2AV4AJMNMYctiyrB7DbGLMY8AZiA3Mteyvl88aYssCnwFjLsoKwizmvF7rliYiIiEgk5ednbyS7cyfMnWtvhfQvV67A99/brfC6deNC05/Z2r4kj5P9yZDiQ2j2ZbMwzy2Ri0M3nDXGLAeWv/Ba1+c+f9kfe4wx24CsjswmIiIiIuFPQABUrWo3bZg0yS6Y/mXXLvjuO7h7F+bPZ0XWGNQYn5OnCR/zvwW9aNZNRZL8dw7dcFZEREREJKSMgfr1YcECe9nRzz+/5KAZM+Crr8DVlYAtm+gYbzelZpYieZzk5Jw5i2Snvwnr2BJJOXRESUREREQkJIyB1q1h4kTo0gWaN3/hgMBA6NgR+veHQoW4Omk4lTY2ZtO5TdTJUYdhJYcR47eS3I1/F9jvjFuQSEaFkoiIiIg4XZ8+MGgQNG4M3bu/8Oa9e/Z8vOXLoUED1jUvR5V5X/PI/xFTv5tKjc9q2Mf5+rLf1xf3sA4vkZIKJRERERFxqlGjoHNnqF4dhg6194v9y/HjUK4cnDxJ0IgR9Mh8gx6zS5ExUUZ8K/qSKXEmp+WWyE2FkoiIiIg4zcyZ9ihSmTL2tLsoz6+gX70aKlUCFxduL5lDxesjWbdxHTWy1WD0t6PV+lscSs0cRERERMQpli6FmjWhYEH47TdwdQ1+4/83kS1ZElKlYsfCEWQ53IitF7bya5lfmfLdFBVJ4nAaURIRERGRMLdxI1SoANmzw+LFECNG8Bt+ftCgAUyejPn+OwbUz0b7DdVIlyAdK6uvJFuSbE7NLe8PFUoiIiIiEqb27rWn2qVJAytXQty4wW9cuWJvnLR9O487tuHHjAdZsb0HlbNUZlzpccSJFseZseU9o0JJRERERMLMn39C8eKQIIG9qWyiRMFv7NoF338Pd+7w55heFHs8huvnrjOq1Cga5GqA9Y8ODyKOpzVKIiIiIhImzp+HYsXshg1r10LKlMFvzJwJBQtiokZlyqj6ZL3eDTcXN36v/TueuT1VJIlTqFASEREREYe7ft0ukh48gFWrIEMG7E1k27eHatXwz/U5NTtm5OezgynzcRn21NvD58k+d3ZseY9p6p2IiIiIONS9e/Z0uwsX7Ol22bMHv1itGixbxvXq31Mg+17OXLvEkOJDaJqnqUaRxOlUKImIiIiIwzx+DKVLw+HDdne7/PmBEyegbFnMyZP4tqlA8TiLSOaSjC0eW8iTMo+zI0socnd35+7du+zfv9/ZUd6apt6JiIiIiEM8ewY//ghbt8K0aVCiBPaQ0hdfEHTjOt075qNIrLkUT1+cffX3qUiScEWFkoiIiIiEusBA+OknWLECxoyBShUNDBkCJUrwJGkiijSKTS+XrfQv2h+fyj58EOMDZ0cW+QdNvRMRERGRUGUMNG4Ms2eDlxfU+8kPatmbyJ5x/4zcBY4SPV5ifH/0pcBHBZwdV+SlVCiJiIiISKjq1MkeRWrXDtr9dBUKl4fff2dBhSz8+OkBvslQnGnfTyNxrMTOjioO9vTpU+7du+fsGO9EhZKIiIiIhBpvb+jbF+rVg74/7oHc3xF06yYtaiVnROoj9HTvRYevOhDF0gqQyCwoKIgxY8awe/duLMviyZMnxIgRw9mx3ooKJREREREJFePHQ9u2ULEijCo4G+srDx7Gj0XRWoZzaYNYW34thdMWdnZMcbBTp05Ru3ZtNm7cSIIECUiaNGmEK5JAzRxEREREJBTMnQv160OJ4oZpqTvjUr0Kx/4Xj/9Vv0XM3PnYV3+fiqRILjAwkCFDhpA1a1b27dvHr7/+StasWXFzc3N2tHeiQklERERE/pNVq+y9Y/PlCWB+lAq4efdmTv4EZCt/Dc9SXVlTYw1JYyd1dkxxoGPHjlGwYEFatGhB4cKFOXz4MLVr147QGwdr6p2IiIiIvLNt26B8eciUzo+ltwsSfdduWpRxY0YBF5b8sIpv0n3j7IjiQAEBAQwaNIiuXbsSM2ZMpk6dSvXq1SN0gfT/VCiJiIiIyDs5cABKlYIUCR6x8srnRA06R9FqQfi7f8G+H2aTIm4KZ0cUBzp8+DAeHh7s2rWL7777jlGjRpEsWTJnxwo1mnonIiIiIm/txAkoXtwQm4esvpKVB7HOk83Djy9qtGPDTxtUJEVi/v7+9O7dm88//5wzZ84we/ZsFixY8NIiydfXlyFDhjgh5X+nESUREREReSuXLkGxoobAew/Z8PQL/vj0Ao2qxGFUpXl8+/G3zo4nDnTgwAE8PDzYt28fFStWZMSIESROHDn3w1KhJCIiIiIhdvMmFCscwO1LfmwIdGdewT9ZUT0PmyvO4aN4Hzk7njjIs2fP6N27N3369OGDDz5g/vz5lC9f3tmxHEqFkoiIiIiEyIMHULLQI06fcGGxSxm8KuwlVe0W+Bb1ws0lYraAljfbs2cPHh4eHDp0iOrVqzNkyBASJkzo7FgOp0JJRERERN7o6VMo9+U19h1JyPiY5elVexctGy7ku4zfOTuaOMjTp0/p3r073t7eJEmShCVLllC6dGlnxwozKpRERERE5LUCngVRMeufbDiZic4fVGdmh3NMrn2A/yX4n7OjiYNs376dWrVqcfToUTw8PBg0aBDx48d3dqwwpa53IiIiIvJKQXfvUzPtOpaczETllI25PzEOS5vvVJEUST1+/JjWrVuTP39+Hj58yMqVK5k4ceJ7VySBRpRERERE5BXMiZM0zL2ZWfc8yPdJd76f9xUVs1RydixxkM2bN1OrVi1OnjxJ/fr16d+/P3HjxnV2LKdRoSQiIiIi/xK4ZjVdS+9k7LPOZMkxgUmrq/JxogzOjiUO8OjRIzp06MCIESNInTo169ato0iRIs6O5XQqlERERETkb8Zwz7sXE9rfpI8ZSra8vmzbUJVY0WI4O5k4wPr166lTpw5nzpyhSZMm9OnTh9ixYzs7VrigQklEREREbH5+XKrxHWvnfkgrppC70Bm2rXUnqn5ijHTu379P27ZtGTt2LOnTp2fTpk189dVXzo4VrqiZg4iIiIgQeOUy53JlYNfcaNSyJvDlVw/ZtDKtiqRIaNWqVWTJkoXx48fTqlUrDhw4oCLpJVQoiYiIiLznbm1Zw60s/+PwkfRUcJlDztwWa5bHJnp0ZyeT0HT37l1q165NiRIliBUrFlu3bmXAgAHEjBnT2dHCJRVKIiIiIu+xwyO6ErPIN+zwy8YPriv5JKMbK1e4oGUqkcvSpUvJnDkzU6ZMoX379uzbt48vv/zS2bHCNQ2mioiIiLyHggID+N2jGPmn+TInZQ7qPdhKsg9dWb0aPvjA2ekktNy6dYvmzZszffp0smbNio+PD7ly5XJ2rAhBI0oiIiIi75lb186y44sU5J/my8x8BWkeuIsYMVxZswaSJ3d2OgktCxYsIHPmzMyePZuuXbuye/duFUlvQYWSiIiIyHtkz+Y53Miegdz7r7OoQX26XvPl6VMX1qyBdOmcnU5Cw40bN6hUqRI//PADyZMnZ9euXXTv3h03NzdnR4tQVCiJiIiIvAeMMcwZVp80xSuR9H4Q+8dPoOvWMVy9arF8OWTJ4uyE8l8ZY5g9ezaZMmVi0aJF9OrVix07dpA9e3ZnR4uQtEZJREREJJK7/fgWcxu6U3vqH1xJEQfXhVto2jQbx47BsmWgNf0R39WrV/H09GTRokXkzp2bSZMmkTlzZmfHitA0oiQiIiISie06s5VVX6eh/pQ/OJ8/C4n3XKBmx2zs2AGzZkHRos5OKP+FMYZp06aRKVMmVqxYQf/+/dm2bZuKpFCgQklEREQkEjLGMH5Fb/zcv6LK9odcbvIzqdcfoEajeKxZA7/+CuXLOzul/BcXL16kTJky1KxZk08//ZQDBw7Qpk0bomqX4FChQklEREQkkrn39B5t+xejeOXO5L5q8XDKeJINnUR9zyjMmweDBoGHh7NTyrsyxjBhwgQyZ87M+vXrGTJkCJs2beKTTz5xdrRIReWmiIiISCSy98peJnYsSf8Z1wlMEA+39etw+zwnbdvChAnQuTO0aOHslPKuzp07R7169Vi9ejWFChViwoQJpFO7QofQiJKIiIhIJGCMYczOUayskpsRk68TkC0rcQ4ew8qZEy8vGDAAGjWCHj2cnVTeRVBQEKNHjyZLlixs3bqVkSNHsn79ehVJDqRCSURERCSCe+D3gFozKpC0ZiM6bgziac2qxN26C5IkYfRo6NgRqlWDYcPAspydVt7W6dOn+frrr2nYsCFffvklf/zxBw0bNiRKFP0o70j6vysiIiISgR26dojv+majVav5lD0ZhaAhQ4g+eTpEi8asWfYoUunSMGkS6OfqiCUoKIhhw4aRNWtW9u7dy/jx41m9ejVp0qRxdrT3gtYoiYiIiERAxhgm7Z/EbyMaMHd2AHFc4xBl5YK/+n0vWwY1a0LBgjBnDri6OjmwvJXjx49Tq1Yttm7dSsmSJRk7diypUqVydqz3ikN/r2BZVgnLso5ZlnXSsqz2L3m/pWVZRyzLOmhZ1jrLslI/995PlmWdCP7vJ0fmFBEREYlIHj17xM+LfmJP59osnxxA3FTpcd29968iafNm+PFHyJYNFi+GGDGcHFhCLDAwkAEDBvDZZ59x+PBhpkyZwrJly1QkOYHDRpQsy3IBRgLFgIvALsuyFhtjjjx32D4glzHmsWVZnkB/oJJlWR8AvwC5AAPsCT73jqPyioiIiEQER28cpcqsH2g05Sh194L5thTWzJkQNy4Ae/faU+3SpIGVK/96WSKAI0eO4OHhwc6dOylXrhyjR48mWbJkzo713nLkiNIXwEljzGljzDNgNlDu+QOMMRuMMY+Dv9wOpAz+vDiwxhhzO7g4WgOUcGBWERERkXBv+sHplByckzGDT1B3L9ChA5aPz1/V0LFjUKIExI8Pq1dD4sTOzSsh4+/vT58+fciRIwenTp1i5syZLFy4UEWSkzlyjVIK4MJzX18E8rzm+NrAitecmyJU04mIiIhEEE/8n9BsZTN2LhvP9nnRSPIoKsycClWq/HXM+fNQrJjd1W7NGtBMrYjh4MGDeHh4sHfvXipUqMCIESP48MMPnR1LAMsY45gLW1YFoLgxpk7w1zWAL4wxTV5ybHWgMVDIGONnWVYbIJoxplfw+12Ax8aYgS+cVw+oB5AkSZKcs2fPdsi9vIuHDx8SO3ZsZ8eQ5+iZhE96LuGPnkn4pOcS/oTVM7nw+ALdj3Qnx85TTPNxgbgJONyrFw8++eSvY+7ccaVZsxzcvu3GkCH7SZ/+ocNzhVcR5e+Kv78/M2bMYPr06cSNG5dmzZpRqFAhZ8dyiPD2TAoXLrzHGJPrTcc5ckTpIvD87zJSApdfPMiyrKJAJ4KLpOfOdX/hXN8XzzXGjAPGAeTKlcu4u7u/eIjT+Pr6Ep7yiJ5JeKXnEv7omYRPei7hT1g8kzmH59B4UUM6bwigzTog7xewYAE5kyb965h796BwYbh5055uV6DAG3/+i9Qiwt+VPXv2UKtWLQ4ePEi1atUYMmQIiRIlcnYsh4kIz+RlHLlGaReQwbKstJZluQGVgcXPH2BZVg5gLFDWGHP9ubdWAd9YlpXAsqwEwDfBr4mIiIhEen4BfjRe3phaMyqxeL4rbdY9BQ8P2LABniuSnjyBMmXg0CGYPx8KFHBiaHkjPz8/OnbsSJ48ebhx4wY+Pj5Mnz49UhdJEZnDRpSMMQGWZTXGLnBcgInGmMOWZfUAdhtjFgPeQGxgrmVvE33eGFPWGHPbsqye2MUWQA9jzG1HZRUREREJL07fOU3FuRW5dWQPxxcnItm52zBkCDRtai9ACubvDxUqwJYtMGsWlCzpxNDyRjt27MDDw4OjR4/y888/M2jQIBIkSODsWPIaDt1w1hizHFj+wmtdn/u86GvOnQhMdFw6ERERkfBl4dGFePh48NXpALbOjUM0AmDFCvjmm38cFxQEP/1kbyo7ZgxUquSkwPJGT548oWvXrgwaNIjkyZOzYsUKSpRQM+eIwKEbzoqIiIjImz0LfEbLVS0pP6c8HQ7FY/HEp0RLlhJ27vxXkWQMNG5sjyL17Qv16zsptLzRli1b+OyzzxgwYAB16tTh8OHDKpIiEIeOKImIiIjI652/d56Kcyuy99wONu/JQoEVf8C338KMGRAv3r+O79IFRo+Gtm2hfXsnBJY3evToER07dmT48OGkTp2atWvX8vXXXzs7lrwljSiJiIiIOMmy48vIMTYH1878waUVn9pFUrt24OPz0iJp4EDo3Rvq1gUvLycEljfasGEDWbNmZdiwYTRq1IhDhw6pSIqgQlwoWZYVy5FBRERERN4XAUEBtF/bntKzSlP0QWKOT4tP4sNn7FEkLy9wcfnXORMmQOvWdgOH0aP/0ddBwoEHDx7g6elJkSJFiBIlChs3bmT48OHhav8geTtvLJQsy8pnWdYR4Gjw159ZljXK4clEREREIqFL9y9ReEph+m3tx5inxZg96AKuQcDmzVC16kvPmTcP6tWD4sVh+vSX1lHiRKtXryZLliyMHTuWli1bcvDgQQoWLOjsWPIfhWREaTBQHLgFYIw5AOjJi4iIiLyl1adWk31sdvZf2suBq99T32sNVrZssGsX5Hr5RrFr1tj1U9689l5Jbm5hHFpe6e7du9SuXZvixYsTM2ZMtm7dysCBA4kZM6azo0koCNHUO2PMhRdeCnRAFhEREZFIKTAokK4bulJiegnSuCTi8vZ8ZBuzEH7+2d5ENlmyl573++/w3XeQKRMsXQqxtBAi3Fi2bBlZsmRh8uTJtGvXjn379pE3b15nx5JQFJKudxcsy8oHGMuy3ICmBE/DExEREZHXu/rwKlXnV2XD2Q20TvYj/YYfJcqR9TBoEDRv/srFRgcPQqlSkDw5rFoF8eOHcXB5qdu3b9O8eXOmTZtGlixZWLhwIblz53Z2LHGAkBRKDYChQArgIrAaaOjIUCIiIiKRwYYzG6gyvwr3/e6zLEU7SnWYAAEv30T2eSdP2uuRYsWyp94lSRKGoeWVFi5ciKenJ7du3aJLly506tSJaNGiOTuWOEhICqVPjDHVnn/Bsqz8wFbHRBIRERGJ2IJMEH029+EX31/I8EEG9gbVJbmnF6RLB4sXw8cfv/LcS5egWDHw94f16yFNmrDLLS9348YNmjRpwm+//Ub27NlZuXIl2bNnd3YscbCQrFEaHsLXRERERN57Nx7doOSMknTZ0IVqn1Tg0MECJG/Xyx5B2rHjtUXSrVv2YTdvwsqV8OmnYRhc/sUYw5w5c8icOTMLFiygZ8+e7Ny5U0XSe+KVI0qWZeUF8gGJLctq+dxbcQE1pRQRERF5wZbzW6g8rzI3H99kSv4B1Oi1BGvjRnsT2d69X9vX+8EDKFkSTp2yi6RXNMGTMHL16lUaNmzIwoULyZUrF+vXrydLlizOjiVh6HUjSm5AbOxiKs5z/90HfnR8NBEREZGIIcgE0X9rf9wnuxPDNQb78k6hZp3hWNu32xsfvWIT2f/39Knd3W7vXpgzB9zdwy67/JMxhunTp5M5c2aWL1+Ol5cXv//+u4qk99ArR5SMMRuBjZZlTTbGnAvDTCIiIiIRxu0nt/lp0U8sPb6UHzP9yOTAssQqVxvixbM3kX1DR7SAAKhSxV6PNG0alC0bRsHlXy5dukSDBg1YunQpefPmZeLEiWTMmNHZscRJQtLM4bFlWd5AZiD6/79ojCnisFQiIiIiEcCOizuoOK8iVx5cYdg3Q2i88jZWj5qQJw8sXPjK/ZH+X1AQ1KkDixbBsGFQvXoYBZd/MMYwadIkWrZsybNnzxg0aBBNmzbF5TWjgBL5haRQmgH8BpTGbhX+E3DDkaFEREREwrNCkwpx8vpJbmy+QYq4Kfi90hpydhgGCxbATz/BmDEQPfprr2EMtGwJU6ZA9+7QpEkYhZd/OH/+PPXq1WPVqlUULFiQCRMmkD59emfHknAgJF3vEhpjJgD+xpiNxphawJcOziUiIiISLp29e5aA7du4/PQyJTOUZH/xReSs0NQeFho4ECZNemORBNCzJwwdau8526VLGASXfwgKCmLs2LFkyZKFLVu2MGLECDZs2KAiSf4SkhEl/+CPVyzL+ha4DKR0XCQRERGR8CcwKJBhO4bReUNnTOIAWu90o3+hFlhfFbU3PVq+3N4lNgSGDYNffoGff7ZrK8tybHb5p9OnT1OnTh02bNjA119/zfjx40mbNq2zY0k4E5JCqZdlWfGAVtj7J8UFWjg0lYiIiEg4cuDqAeouqcuuy7solaEUo6fcItGRS1jFioVoE9nnTZsGzZrZXe7Gj4coIZnfI6EiKCiIkSNH0r59e1xcXBg7dix169bFUqUqL/HaQsmyLBcggzFmKXAPKBwmqURERETCgSf+T+ixsQcDfh9AgugJmPXDLCpZWdmyvgkfBVy0Nz6aNcvucBcCPj7g4QFFitinRQ3Jr6wlVJw4cYJatWqxZcsWSpQowbhx40iVKpWzY0k49trfYRhjAgE1qRQREZH3zoYzG8g2JhteW72onq06x75dSWXvFVjZsvF5wE7GuXrCkiUhLpI2bIBKlSBnTns5UwiWMUkoCAwMZODAgWTLlo0//viDSZMmsXz5chVJ8kYh+T3GNsuyRmB3vnv0/y8aY/Y6LJWIiIiIk9x5cofWq1szcf9E0iVIx6YSc/hq2kao8KW9aWzLllQdW4pbQXGoF8L20bt22fsjpU9vL2WKE8fBNyEAHD16lFq1arF9+3bKlCnDmDFjSJ48ubNjSQQRkkIpX/DHHs+9ZgDtoyQiIiKRhjGGuUfm0nRFU24+vkm3bM3o+HtUXNv/ZDdrqF3bbk+XIgX3xu+HoIAQXffIEXuGXqJEsHo1JEzo4BsRAgIC8Pb2plu3bsSOHZsZM2ZQpUoVrUWSt/LGQskYo3VJIiIiEqlduHeBRssbseT4EgokyM7eWz+S3GMy3L8PVarYGx093zY6e3Ye3r37xuuePQvffAOurrB2LWgww/FOnz5N69at2bNnDz/88AMjR44kSZIkzo4lEZCWEIqIiMh7KzAokNG7R9NhXQdcngWw7m45Co/6Hev6SHuuXM+ekC3bO1376lUoVgwePYJNm+zmeOI4fn5+fPLJJ5w/f55EiRIxd+5cfvzxR2fHkghMhZKIiIi8lw5fP0ydJXXYdW47/a5mptmKO0S96APu7na3hbx53/nad+7YWypdvmyPJGXNGnq55d/WrFlD48aNOXfuHPHjx+fIkSMkSpTI2bEkglOhJCIiIu8VvwA/em/uTb9Nfal6IjortyUn3pnDkCsXTJwMRYv+px1gHz2C0qXh6FFYtuw/1VvyBpcuXaJVq1b89ttvpE+fnpUrVxItWjQVSRIq3rjFmWVZMS3L6mJZ1vjgrzNYllXa8dFEREREQteW81vIPuYzdkzsyZ9T4zJpxkPixYgPCxbAzp32XLn/UCQ9ewY//ADbt9v7JBUrForh5S8BAQEMHjyYjBkzsmjRIrp3786hQ4coXry4s6NJJBKSEaVJwB7g/38fchGYCyx1VCgRERGR0HTv6T3ar23PwYVjmLwxGnlOAWniwpTBUK2a3fb7PwoMhOrVYdUqmDDBLpgk9G3dupWGDRty8OBBSpYsyfDhw0mnBWDiAG8cUQLSGWP6A/4AxpgngHorioiISISw8OhCKnTKQOlWY9g6EXI/jAcjRsCxY1CzZqgUScZAgwYwdy4MHAi1aoVCcPmHGzduUKtWLQoUKMCdO3dYsGABy5YtU5EkDhOSEaVnlmXFwN47Ccuy0gF+Dk0lIiIi8h9dfnCZ3hN+psCENaz+AwLixYG+HYnSpAnEihWq36t9e/j1V+jUCVq2DNVLv/eCgoL49ddfad++PQ8ePKBdu3Z06dKFWKH8DEVeFJJC6RdgJZDKsqwZQH7gZ0eGEhEREXlXQSaImcv6EdDjF4bu8SfIzZXADq2I2rYdxI8f6t/Pywv694eGDe1u4hJ69u7di6enJzt37qRQoUKMGjWKTJkyOTuWvCdeWyhZ9vbFfwLlgS+xp9w1M8bcDINsIiIiIm/lxJ/b2NusIj+uu0QUy+JhnZrE79EfHLTh6Nix0KEDVK0Kw4f/pz4Q8py7d+/SpUsXRo0aReLEiZk+fTpVq1bF0v9gCUOvLZSMMcayrEXGmJzAsjDKJCIiIvJWnt25yfYWFcgxy5cf/eFUmQJkGDqN+GnSOOx73rnjiqcnfPstTJ4MUUKy8lteyxjDjBkzaN26NTdu3KBhw4b07NmT+A4YCRR5k5D8ld5uWVZuhycREREReVtPnnC2cxMep0pKwSm+HP48JXd2beZjn81YDiiSjIEDB+DsWTh/PiZffWU3cHB1DfVv9d45cuQIhQsXpkaNGqROnZpdu3YxfPhwFUniNCFZo1QYqG9Z1jngEfb0O2OMyebQZCIiIiKv4u/P07GjeNqtE2luPcL3k2i49BnAV+WbO+JbsXkz+PjA4sV2kQQQJ04Aixe7EiNGqH/L98rDhw/p2bMngwYNIk6cOIwdAXk4swAAIABJREFUO5Y6deoQRUN04mQhKZRKOjyFiIiISEgEBcGsWTzq0JpYF66yJxXsaVsej2aTiRMtTqh9m/v3YeVKuzhavhzu3oXo0aFoUbuz3cSJ8PjxI+LF02jHuzLGsHDhQpo3b86FCxeoVasWXl5eJE6c2NnRRICQFUrG4SlEREREXscYWLIE/47tcT18lBNJYJznR9TsMJumqfKGyre4dMkeMfLxgQ0b4NkzSJQIvvsOypWDYsX+7io+fTo8fhwq3/a9dOrUKZo0acKKFSvIli0bs2bNIn/+/M6OJfIPISmUlmEXSxYQHUgLHAMyOzCXiIiIiG3DBkzHjljbt3M+YRR+qeBCxoZdGfJVe9xc3N75ssbAoUN/T6nbvdt+PX16aNLELo7y5QuV/Wgl2NOnT+nXrx99+/bF1dWVwYMH07hxY6JGDcmPpCJh641/Ko0xWZ//2rKsz4H6DkskIiIiArBrF3TsCGvXcuODaHQsA6fK5GX097+SMVHGd7pkQMDf6418fP5eb/Tll9C3L5QtC59+qjbfjrBq1SoaNWrEqVOnqFy5MgMHDiR58uTOjiXySm9dvhtj9qoLnoiIiDjMkSPQuTMsXMjjeLHoVjIqk/O60bPkUMblrEsU6+0W+T948M/1RnfuQLRo9nqjjh2hTBlImtRB9yJcvHiRFi1aMG/ePD7++GPWrFlD0aJFnR1L5I3eWChZltXyuS+jAJ8DNxyWSERERN5PZ85At24wbRqBsWIytnQS2mW9xjfZy7O/5HCSxwn56MPly3+vN1q/3l5vlDChPWJUtix88w3Eju24WxHw9/dn6NChdOvWjcDAQHr16kXr1q2JFi2as6OJhEhIRpSebyETgL1mab5j4oiIiMh758oV6N0bxo3DuLjgW/5zKqbfi2viuEwttYDvP/3+jZcwBv744+/1Rrt22a+nSweNG/+93khLYcLG5s2b8fT05PDhw5QuXZphw4aRNm1aZ8cSeSshWaPUPSyCiIiIyHvm9m3w9oahQ8Hfn/MVilPxkwPsYA8NcjbAq6gX8aLHe+XpAQGwZcvf643OnLFf/+ILu+4qVw4yZdJ6o7B0/fp12rRpw9SpU0mdOjU+Pj6ULVvW2bFE3skrCyXLspbwmtbgxhj9qRcREZG39/ChXRx5e8P9+zytWJ5OX/kz6OZiMibKyKbSm/gq9VcvPfXBA1i92i6Mli2za61o0eDrr6FdO3u9kfoDhL3AwEDGjRtHx44defToER07dqRTp07EjBnT2dFE3tnrRpQGhFkKERERifz8/GDsWHu45/p1TNmyLK2RB4/Tg7h/+z5dC3al41cdiRb1n2tYrlz5e73RunX2eqMPPoBvv7VHjYoX13ojZ9q1axcNGzZk9+7dFClShJEjR5Ix47t1JRQJT15ZKBljNoZlEBEREYmkAgJg2jS7UcP581C4MJenjebna2NYc7gTeVPmZXyZ8WT+0N6i0Ri78d3/T6nbudO+TNq00LChXRwVKKD1Rs52584dOnXqxJgxY0iSJAmzZs2iUqVKWJrrKJHE66bezTHGVLQs6xAvmYJnjMnm0GQiIiISsQUFwfz50KULHDsGuXMTOH4cQ2IdouvGGkSxojCi5Ag8c3sSFBiFjRv/bsZw6pR9idy5oVcvuzjKnFnrjcIDYwxTp06lTZs23Lp1i6ZNm9K9e3fixXv1ejKRiOh1v4tpFvyxdFgEERERkUjCGFi1Cjp1gr177Y4KCxawL09q6i6tx54reyjzcRn6FxzFkR0p8Rhprze6dQvc3KBIEWjd2l5vlCKFs29GnvfHH3/QsGFDNm/eTN68eVm9ejXZs2d3diwRh3jd1LsrwR/PhV0cERERidC2brV3cd20CdKkgSlTeFzxe7pv7sXAXyuQICAT9aLs4uL0nGT3sPDzgwQJ/rneKE6cN34XCWMPHjyge/fuDBkyhPjx4/Prr7/i4eFBlChvt/mvSEQSkg1nvwSGA58CboAL8MgYEzcE55YAhgaf86sxxuuF9wsCQ4BsQGVjzLzn3gsEDgV/eV5d9kRERMKx/fvtEaTlyyFpUhg5EurUYe2FzdTqUYELO3OQ+MIxbhxPxzjsGqpBg7/XG7m6OvsG5GWMMcybN48WLVpw6dIl6tatS9++fUmYMKGzo4k4XEiWQY4AKgNzgVxATSD9m06yLMsFGAkUAy4CuyzLWmyMOfLcYeeBn4HWL7nEE2OMxnJFRETCs+PHoWtX+O03e2jIy4tAz8Ys3x5Ah4rrObw5HdxeCUDqXNC0J5QtC1mzRuz1Rr6+4Ou7H3B3chLHOXHiBI0bN/5ret28efP48ssvnR1LJMyEqF+MMeakZVkuxphAYJJlWdtCcNoXwEljzGkAy7JmA+WAvwolY8zZ4PeC3ja4iIiIONGFC9CjB0yaBNGj86hNN1Zna43P2pjMT/2Mh3djgUsR0uY4S7Puz/jhOzdSpnR2aAmJJ0+e4OXlhZeXF9GjR2fYsGF4enoSVW0G5T0Tkj/xjy3LcgP2W5bVH7gCxArBeSmAC899fRHI8xbZoluWtRsIALyMMYve4lwRERFxhBs3oG9fGDWKq0EfstR9Oj5Rvmft8Gg8fQpRYz4kIN0i0lU8wpTWVcifIauzE8tbWL58OU2aNOH06dNUq1YNb29vkiVL5uxYIk5hGfOvzt//PMCyUgPXsNcntQDiAaOMMSffcF4FoLgxpk7w1zWAL4wxTV5y7GRg6QtrlJIbYy5blvU/YD3wtTHm1Avn1QPqASRJkiTn7Nmz33C7Yefhw4fE1u534YqeSfik5xL+6JmET85+Li4PH5Lytzk8nHuIpc9KMD9eTfbey4gxFkmSPCHJZzs4mtyLKKm3Uif9T3yf4ntcLBen5Q0Lzn4moenatWuMHDmSzZs389FHH9G8eXNy5Mjh7FjvJDI9l8givD2TwoUL7zHG5HrTca/bR+kjY8z557rePQW6v0WGi0Cq575OCVwO6cnGmMvBH09bluUL5ABOvXDMOGAcQK5cuYy7u/tbxHMsX19fwlMe0TMJr/Rcwh89k/DJWc8l8OETfm+7EJ9Jt/B52pkTfAxAznTQrSxkKnAC71M12Hl5ByXSl2D0t4dIEz9NmOd0hsjwd+XZs2cMHjyYHj16AODl5UWLFi1wc3NzcrJ3FxmeS2QTUZ/J63o6/jXVzbKs+e9w7V1ABsuy0gZP3asMLA7JiZZlJbAsK1rw54mA/Dy3tklEREQc5/FjWDQvAI98f5I03mO+Gl2VoX4NSPtlUkaOtJcnbdn+lGcFOlNlayZO3z3FjPIzWF51+XtTJEUGvr6+ZM+enfbt2/PNN99w5MgR2rVrF6GLJJHQ9Lo1Ss/3ovnf217YGBNgWVZjYBV2e/CJxpjDlmX1AHYbYxZblpUbWAgkAMpYltXdGJMZuxX52OAmD1Gw1yipUBIRkfeSuzvcvZud/fsd9z2uXYOlS8FnkWHNqkCe+kclHkkplWgX5RqlpESLT4kXz+7hvfHsRr4eU4/jt45T87OaDPxmIIliJnJcOAlVV69epXXr1syYMYO0adOydOlSvv32W2fHEgl3XlcomVd8HmLGmOXA8hde6/rc57uwp+S9eN42QKs/RUREHOjPP8HHBxYvht9/Nxhj8ZHrFer6z6Pc//6g4ODvcS1T4q8+3nef3qXtmraM3zuetPHTsrr6aoqlK+bku5CQCgwMZPTo0XTq1ImnT5/SpUsXOnToQIwYMZwdTSRcel2h9JllWfexR5ZiBH9O8NcmJBvOioiISPgRGAjbt9vFkY+PvQUSQI70D/gl+WzKXRrJZ6kfY/XqCRUaQxR7hr4xhgVHF9B4RWOuP7pO67yt6ebejVhuIWmCK+HBjh078PT0ZN++fRQrVowRI0bw8ccfOzuWSLj2ykLJGBO5W9WIiIi8Bx4/hjVr7FGjJUvs7t5Ro0LhwtC07FnKbO/IR1tmQcqU8Gs3+Okn+4Bgl+5fotHyRvgc8yFH0hwsrbKUnMlzOu+G5K3cunWLjh07Mn78eJIlS8acOXP48ccfsSLybr8iYUQ7h4mIiEQy168HrzfysYukJ08gblwoVQrKlYOSaY4Sr19HGLAIEiWCwYOhQQOIHv2vawSZIMbuHku7te3wD/Knf9H+tMjbgqhR9KNDRBAUFMTkyZNp27Ytd+/epUWLFnTr1o04ceI4O5pIhKF/7URERCKBY8fsUSMfH9i2DYyBVKmgdm0oWxYKFQK3S2fgl19g+nSIEwd69IDmze3Pn3PkxhHqLanH1gtb+Trt14wtPZZ0H6Rz0p3J2zp48CCenp5s27aN/PnzM3r0aLJm1dJvkbelQklERCQCCgyEHTv+Xm907Jj9evbs0LWrPXKUPXtwH4YrV6BFLxg/HlxcoHVraNcOEib8xzX9Avzw2uJF7829iRMtDpPLTabmZzU1TSuCuH//Pt26dWPYsGEkSJCASZMmUbNmTaJEed1uMCLyKiqUREREIognT2DtWrswWrLEnmIXNao9WtSokT1ylDr1cyfcvg39+8OwYeDvD3XqQJcukDz5v6697cI26iyuw9GbR6mSpQpDSgzhw1gfht3NyTszxjBnzhxatGjB1atXqV+/Pr179+aDDz5wdjSRCE2FkoiISDhmjF0QXboUi4QJ/15vVLJk8HqjkhA//gsnPXwIQ4eCtzfcvw/VqkG3bpDu39Pn7vvdp8PaDozePZpU8VKxrOoySmUoFSb3Jv/dsWPHaNy4MWvXriVnzpz4+PiQO3duZ8cSiRRUKImIiIRTJ05AvXpw9Ci4urpQt65dHLm7g5vbS054+hTGjoXeve32duXKQc+e8Ir1KT5/+tBoeSMuP7hM0zxN6VWkF7HdYjv0niR0PH78mD59+tC/f39ixozJyJEjqV+/Pi4ualosElpUKImIiIQz/v4wYAB07243ovv4Y4ge/T4jR744dBQsIACmTrVHjS5cgCJFoE8fyJPnpYdfeXCFpiubMu/IPLJ+mJX5FeeTJ+XLj5XwZ8mSJTRt2pSzZ89Ss2ZN+vfvT5IkSZwdSyTS0eo+ERGRcGTnTsiVCzp2hDJl7NGkZMmCmzK8KCgI5s6FLFns9nbJktmLmNate2mRZIzh172/8unIT1lybAm9i/RmT709KpIiiLNnz1KuXDnKli1LzJgx8fX1ZcqUKSqSRBxEhZKIiEg48PCh3ak7b164dQsWLbJroGTJXnKwMbBihV1RVaxod3RYuBC2b4evv37p9Y/fOk7hKYWpu6Qu2ZNm56DnQTp+1RFXF1fH3pj8Z35+fvTp04dMmTKxbt06vL292b9/P4UKFXJ2NJFITVPvREREnGzFCnu/1/PnoWFD6NvXbtjwUlu22MNNmzdD2rT2lLuqVe223y/hH+iP9zZvemzsQfSo0RlfZjy1ctQiiqXflUYE69ato1GjRhw7dowffviBwYMHkypVKmfHEnkvqFASERFxkuvXoUULmDkTPv3UroHy53/Jgfv3k8PvMHw7E5Yvh6RJYeRIu933S7s62HZc3EHdJXU5dP0QP2b6kWElhpEszsuGqCS8uXz5Mq1atWL27NmkS5eOFStWUKJECWfHEnmvqFASEREJY8bYA0EtW8KDB3YPhvbtIVq0lxx85gxdHrfna/9V8HsC6NcPGjeGmDFfef2Hzx7SeX1nhu0YRvI4yfGp7EPZT8o67H4k9AQEBDBy5Ei6dOnCs2fP6NatG+3atSN69OjOjiby3lGhJCIiEoZOn4b69e2eC/nywfjxkCnTSw68c8du8z18OPn8ozDFtRY/nR74kk2T/mn5ieV4LvPkwr0LeObypG/RvsSN9qp5fBKe/P7773h6enLgwAFKlCjBiBEjSPeSva9EJGxogrKIiEgYCAiwW35nyQI7dsCoUfYyo38VSc+ewbBhkD49DBoE1apRI44P4908X1skXX90narzq/LtzG+J5RqLLbW2MPLbkSqSIoCbN29Sp04d8uXLx61bt5g/fz7Lly9XkSTiZBpREhERcbC9e6FuXftjuXIwYgSkTPnCQcbYre7atbN3mv36a7uyyp6dm6fh4d27L722MYapB6bScnVLHvg9oFuhbrQv0J5oUV82j0/Ck6CgICZOnEi7du24f/8+bdq0oWvXrsSOrU1/RcIDFUoiIiIO8vgx/PILDB4MiRPDvHlQvvxL9kTatQtat4ZNm+yuDsuWQcmSfx3o6wu+vvsB93+cdur2KRosa8Da02vJlyof48uMJ1Pil83jk/Bm3759NGzYkO3bt1OwYEFGjRpF5syZnR1LRJ6jqXciIiIOsHYtZM1qDwrVqgVHjsAPP7xQJJ07B9WqwRdfwJ9/wpgxcPAglCr1ih1mbQFBAfTf2p+so7Oy4+IORpUaxWaPzSqSIoB79+7RrFkzcuXKxenTp5k6dSq+vr4qkkTCIY0oiYiIhKJbt6BVK5gyBTJksEeD/rUv6L174OVlDzVZlr0vUrt2r9k86W97r+ylzuI67Lu6j3KflGNkqZGkiJvCIfcioccYw6xZs2jVqhXXrl2jYcOG9OrVi/hvaM4hIs6jQklERCQUGAOzZkHz5nbDuk6doHNn+EdX54AAGDfO7gd+4wbUqGF3tgvBBqJPA5/SZnUbBm0fxIexPmRehXmU/7Q81mtGniR8OHr0KI0aNWLDhg3kzp2bpUuXkjNnTmfHEpE3UKEkIiLyH507B56esGKFPYtu3Tp72t1fjLHXHbVpY0+xK1QIBg6EEP6wnG10No7dOMYz84y6n9elf7H+xI+ukYjw7tGjR/Tq1YuBAwcSO3ZsxowZQ506dXBxcXF2NBEJARVKIiIi7ygwEIYPt0eOAIYOhUaN4B8/B+/bZzdqWL8ePv7Y7mxXtuxr1yD9vz2X99BhXQcOXT9EtCjR8K3pS6E0L87jk/DGGIOPjw/NmjXj/PnzeHh40K9fPxInTuzsaCLyFlQoiYiIvIODB6FOHbthXalS9r5IqVM/d8ClS/b8u6lT4YMP7Iqqfn1wdX3jtY/dPEaXDV2Ye2QuCWMk5H8J/keswFgqkiKA06dP07RpU5YtW0bWrFnZvHkzBQoUcHYsEXkHKpRERETewpMn0LMneHtDggQwcyZUrvzcANGDB/abAwbYQ06tW9vNGkKwaP/i/Yv02NiDifsmEj1qdLoW7EqrfK2IGy0uvr6+Dr0v+W/8/Pzo378/ffr0IWrUqAwaNIjGjRvjGoLCWETCJxVKIiIiIeTrC/Xq2fvB/vyzXQslTBj8ZkAATJoEXbrAtWt29dS3L6RJ88br3n5yG68tXgzfOZzAoEAa5W5Ep4Kd+DDWhw68Gwkta9asoVGjRpw4cYKKFSsyaNAgUqRQJ0KRiE6FkoiIyBvcuWP3YZgwAf73P1izBooWfe6AlSvtA/74A/LnBx8fyJPnjdd99OwRQ7YPwXubN/f97lPjsxp0d+9OmvhpHHYvEjrc3d25ceMGWbJkYc6cOWTIkIHVq1dTrFgxZ0cTkVCiQklEROQVjIF586BJE7h5E9q2hV9+gZgxgw84dMieWrd6NaRLZx9cvvwbGzU8C3zG+D3j6bmpJ9ceXaPsJ2XpXaQ3WT7M4vibkv/s5s2bnD17lgsXLnD69Gl69uxJmzZtiBYtmrOjiUgoUqEkIiLyEhcvQsOGsGQJfP653fo7R47gN69cga5dYeJEiBcPBg2y2925ub32mkEmiFmHZtFlQxfO3D1DwdQFWVBpAflS5XP8Dcl/dv78eQYNGsT48eN5/Pgx8eLFY9++faRNm9bZ0UTEAVQoiYiIPCcoCEaPhg4d7GVHAwZAs2YQNSrw6JG9/1H//vDsmf1G5852V7vXMMaw/MRyOq7vyMFrB8meNDsrqq2geLri2jA2Ajh8+DD9+/dn5syZAFSrVo3Dhw/j7++vIkkkElOhJCIiEuzIEahbF7Ztg2LFYMwYe00SgYEweZrd7vvyZfjhB/DygvTp33jNLee30GFdB7ac30K6BOmY9cMsKmauSBQriuNvSP6Tbdu24eXlxZIlS4gZMyaNGzemRYsWfPTRRwDqRCgSEu6Q/W522O/sIG9PhZKIiLz3/PygTx+7SV3cuDBlCtSoEbzUaN06ex3S/v12g4Y5c+yGDW9w8NpBOq3vxNLjS0kaOymjvx1N7Ry1cXVRu+jwzBjD8uXL6devH5s3byZhwoR0796dRo0akfCvFoci8j5QoSQiIu+1LVvsUaQ//4Rq1WDwYEicGDh61O5kt2yZvZPsrFlQqdIbGzWcvnOarhu6MvPQTOJGi0vfr/vS5IsmxHKLFTY3JO8kICCA3377jX79+nHo0CFSpUrF0KFDqV27NrFi6dmJvI9UKImIyHvp3j1o396eXpc6td2soUQJ4Pp18PwFxo+H2LHt9UhNmkD06K+93tWHV+m1qRfj9ozDJYoLbfO3pW3+tnwQ4/Xrl8S5Hj9+zMSJExkwYADnzp0jc+bMTJ06lcqVK2uzWJH3nAolERF57yxaZDepu3oVWrSAHj0gtssT6DvEnn/35Al4etq9wBMleu217j29h/c2bwZvH4xfgB91P69Ll0JdSB4neRjdjbyL27dvM3LkSIYNG8bNmzfJnz8/I0aMoFSpUkSJovVjIqJCSURE3iOXL9uDQwsWQLZsdsGUO2cQzJwJHTvChQtQrhz06weffPLaaz3xf8LIXSPpu6Uvt5/cpnKWyvRw70GGhBnC6G7kXVy8eJHBgwczduxYHj16ROnSpWnXrh0FChRwdjSRyCvQ2QHejQolERGJ9IKC4Ndf7Q1j/fzsQaNWrcD1902QpxXs3m1vljR1Kri7v/ZaAUEBTN4/mW6+3bj04BIl0pegT5E+5EiW47XniXMdPXoUb29vpk+fTlBQEFWqVKFt27ZkzZrV2dFEIh8/YAuwEtgNcQLiODnQu1GhJCIikdqxY1CvHmzaBIULw9ixkMEch4rt7CGllClh2jSoWhVeM+XKGMP8o/PptL4Tx28d58uUXzK9/HTc07iH3c3IW9u+fTv9+vVj0aJFxIgRgwYNGtCyZUvSpEnj7GgikctJ7MJoJbABeAy4ArHgWdxnxAiMAS7ODPj2VCiJiEik9OyZ3YehZ0+IGRMmTACPMjexevawd5SNHh1697YXKcWI8dprrT29lvZr27Pnyh4yJc7EokqLKPtJWW0WG04ZY1i1ahVeXl5s3LiRBAkS0LVrVxo3bkzixImdHU8kcniIXRCtBFYBp4JfTwd4ACUAd6A0+N31I4bL6/+dDY9UKImISKSzfbvd8vuPP6BiRRja34+kc4dDhl7w4IH9ZvfukCTJa6+z89JOOqzrwPoz6/ko3kdMLjeZ6tmq4xIlgv1a9D0REBDA3Llz6devHwcOHCBlypQMGjSIunXrEjt2bGfHE4nYDHCIvwujzYA/EBMoArQAigNv3oc7wlChJCIikcaDB9CpE4wYASlSwGIfQ5knc8C9PZw9C6VKgbc3ZMr02uscvXGUzhs6s+DoAhLHTMyQ4kNokKsB0aJGC5sbkbfy5MkTJk+ejLe3N2fOnCFjxoxMmjSJqlWr4ubm5ux4IhHXbWANfxdHV4Jfzwo0xx41yg9E0n8aVSiJiEiksGyZ3dH74kW79XfvsjuI26UZ7NgBn30Ga9ZA0aKvvcb5e+fp7tudyQcmE9M1Jt3du9PiyxbEiRYxFyJHdnfv3mXUqFEMHTqU69evkydPHgYPHkyZMmXU4lvkXQQCu/i7MNoJBAEJgGLYhdE3QApnBQxbKpRERCRCu3YNmjWD336DzJlh628XyTunBXwzD5Ilg4kToWZNcHn1dLmbj2/Sd3NfRu4aicHQLE8zOhToQOJYWs8SHl2+fPmvFt8PHjygZMmStGvXjoIFC2rdmMjbuoxdFK0CVgN3AAv4AuiCPZ0uN+9l1fAe3rKIiEQGxsDkyXab70ePoEeHJ7R7/Atu1YaAq6u9BqlVK4gV65XXePjsIYN/H4z3Nm8e+T/ip89+opt7Nz6K91HY3YiE2PHjx/H29mbq1KkEBARQqVIl2rVrx2effebsaCIRhx+wlb9HjQ4Gv54UKIc9alQUSOiUdOGKCiUREYlwTp6E+vVh/XookD+I8V9NI+OYFnD3LtSqZbe6S5bslef7Bfgxbs84em7qyY3H/8fenYdFWb1/HH8P+6KAIIIi7giCgPtuguSWJmWL5pJtmrlkZaZp9c0WU8v21aXdsn5lomWZiWipmeKGYOAuIqKIgOww8/z+OMMMCJaVMCz367rmAuZ5ZjiPIzIf73Puc4FbA27lhYEvEOj512uXhGXs3r2bxYsXs2bNGuzt7XnggQeYNWsWbdq0sfTQhKgdjmEORtFALqp1dz9gMSocBaMqSddbDOyP2U8YYVXw5FVLgpIQQohao7gYXn0Vnn0W7Ow03n9wP5N+GY3VoiMwaBC88gqEhFz18XqDni/ivuCZmGc4mXmSsFZhLIpYRM/mPavvIsQ10TSNX375hUWLFhEdHY2bmxvz5s3j4YcfpkmTJpYenhA1Wy6qdfdGVEA6ary/NTARNZ0uHJDll39JgpIQQohaITYWHngA9u+HW8MyeCv3fnw+WKsWJv34IwwZAldZn6JpGuuT1jNv8zziL8TTpWkXPhjxAYPaDJI1LTWMXq/n22+/ZdGiRezbt49mzZrx8ssvM3nyZFxcXCw9PCFqJg04hDkY/QoUoVp3hwMzMbfuln/yrpkEJSGEEDVabi488wy8/jp4NS7h235vMSrmMbUH0gcfqKl2Nlf/dbbt1Dbm/jKXnWd24ufux1e3f8XtgbdjpZOuaDVJQUEBn3zyCa+88gpHjx6lffv2rFixgvHjx2NvX0d7DwvxX2QAv2AOR2eN93cEHkZNp+tHnW3dXR0kKAkhhKixNm6EKVPUFkgPhv7OosORuMVehqeegieegIZXnzey/9x+5m2ex49Hf6RZw2YsG7GMezrdg621bfVdgPhbWVnmUg6rAAAgAElEQVRZvP/++7z22mukpaXRvXt3vv32WyIjI7H+i06FQtQ7emAP5mC0C9W6243yrbubW2qAdY8EJSGEEDVOejo8+ih8/jn4e11im+vd9D/4A0yYAC++CM2v/k7gaMZRntnyDF8e+pJGDo1YcuMSpveYjqOtYzVegfg7qampvPHGG7z33ntkZ2czePBg5syZQ3h4uEyHFKJUKqpl90/GjxmoqXPdgadQ0+l6IO/oq0iV/rHqdLqhwBuANbBC07RFVxy/AXgdCAHGaJr2TZljE1F/BQBe0DTtk6ocqxBCCMvTNFi1Ch55RCM7S+Npj/eYlzYLh/A+8Moe6NLlqo9NvZzK89ueZ/ne5dhZ2zGv3zxm952Nm4NbNV6B+DtHjx7l5Zdf5uOPP6akpIQ77riDJ554gi5/8doKUW8UoVp3l1aNDhjv9wJuxty6u7FFRlfvVFlQ0ul01sA7qGLgGWC3Tqdbp2laQpnTTgP3AI9f8Vh34H9AN9TytFjjYy9V1XiFEEJY1okT8NBDarpdL5cElpeMpmPjEvjo/2DEiKs2ariUf4kl25fwxq43KDYUM7nLZJ664SmaNrx6e3BR/fbu3cvixYv55ptvsLW15d577+Xxxx+nXbt2lh6aEJZ1HHMwigZyUO/Q+wGLUFWjEECWVVa7qqwo9QCOapp2HECn061GbWNlCkqapp00HjNc8dghwCZN0zKMxzehMvSXVTheIYQQFlBSAm++CU8/ZcCquJC3mM1Dtv+H9Tv/g0mT1OaxlcgrzuOtXW+xaPsisgqyGBs8lgVhC2jr3raar0BcjaZpREdHs3jxYjZt2oSLiwtPPPEEM2fOxNvb29LDE8IycoGtqGD0E3DEeH8rYALqHa+07q4RqjIo+QDJZb4+A1zrRhWVPdbnOo1LCCFEDbF/Pzxwn57YfdaMsPqRd21m4jvndngyCVxdK31Msb6YD/d9yIKtC0jNSWW433BeHPgiod6h1Tx6cTV6vZ61a9eyaNEi9uzZg7e3N4sXL+bBBx/E9SqvqxB1lgbEY64abUNNsXNEBaIZqBKBH9K6u4bRaZpWNU+s090BDNE07QHj1xOAHpqmzajk3I+B70vXKOl0utmAvaZpLxi/fhrI0zRt6RWPmwxMBvDy8uq6evXqKrmWfyMnJ4cGDRpYehiiDHlNaiZ5XWqe6nhNCgut+OSjFnz9tS8eXOQtbTo3DMzg5KQHKLhKpcGgGYi5EMOHJz8kJT+Fji4dmdR6EiFuV99gti6pDT8rRUVFbNq0ia+++ork5GR8fHwYPXo0Q4YMwc7OztLDu+5qw2tSH9WE18Umx4ZGsY1w/8Md9z/csU9XPbpzW+WS0SODjO4ZZIVkYbC7clJV3VQTXpOywsPDYzVN6/Z351VlRekM4Fvm6+aYO7xfy2PDrnhszJUnaZq2DFgG0K1bNy0sLOzKUywmJiaGmjQeIa9JTSWvS81T1a9J9GaNaffmcSzVmftYycs9v8X9zWehRw8qi0iapvHzsZ95cvOT7Du3j45NOvL+Le8z3G94veqOVpN/VrKzs/nggw947bXXSE1NpUuXLixdupRRo0bV6RbfNfk1qc8s8roYgFjM0+l2odp5u1KudbezrzPOOONb7i1y3Vdbf1aqMijtBvx0Ol1rIAUYA4y9xsduBBbqdLpGxq8HA09e/yEKIYSoLhkZ8Ph9GXwU5U5bUtncbAED3x4Ft/xw1UYNv5/5nSc3P0nMyRhaubXis1s/466Od2FtVXfffNcmaWlpvPnmm7zzzjtkZWURERHBp59+SkRERL0KsaKeOkf51t0XUVPnugHzUNPpeiKtu2uxKnvpNE0r0el001Ghxxr4UNO0eJ1O9xywR9O0dTqdrjvwHdAIuFmn0y3QNC1I07QMnU73PCpsATxX2thBCCFE7aJp8PX7GTz8mDUXC1yY6/A6zzxng+PMlXCV6Vjx5+OZHz2fqMQomjg34e1hbzOp6yTsrOve9K3a6Pjx47zyyit8+OGHFBUVcdtttzFnzhy6dfvbmSxC1F5FwE7MVaP9xvu9gOGoYDQI8LTI6EQVqNKMq2naBmDDFfc9U+bz3Vxl/2BN0z4EPqzK8QkhhKhap//MY+rIM/xwpD3ddHvYOGEbnd64Fxo1qvT8U5mn+F/M//j0wKc0tG/IC+EvMLPXTBrY1Zy57fXZ/v37Wbx4MV9//TU2NjbcfffdzJ49m/bt21t6aEJUjROUb919GfXuuS/wEiochSKtu+soKQYKIYS47vRFet699w/mfRmMQfPh1dBPePj/+mPt91il55/PPc/CXxfy3p730KFjVu9ZzO03Fw8nj2oeubiSpmls3bqVxYsX89NPP9GwYUNmzZrFI488QrNmzSw9PCGurzzKt+5OMt7fEhiHCkYDAReLjE5UMwlKQgghrqtDy3fywCPO7MrrzRDX33l/pS2tbptY6bnZhdm8uvNVlu5cSl5xHvd1uo9nBjyDr2v9WuhcExkMBqKioli8eDG7du2iSZMmLFy4kIceegg3NzdLD0+I60MDDmMORtuAQsAB1bp7KqoRQ3ukdXc9JEFJCCHEdVGwN4EX7zzAomO342aVzefTf2fsGz3RWVV8d1FQUsD7e97nxV9fJD0vndsDb+f58OcJaBxggZGLsoqKili1ahVLlizhzz//pE2bNrz33ntMnDgRR0dHSw9PiP8uE9iMCkYbMe/cGQhMQ1WN+qP2ORL1mgQlIYQQ/01aGtsmfcbk9SNI5C4mdI3n1ah2NPbpVeHUEkMJnx34jP/F/I/k7GQGtRnEwoiFdGsmTQAs7fLlyyxfvpxXX32VlJQUQkND+fLLL7n99tuxsZG3C6KWCINOmZ3MjRZAte7eizkY7US17nZBNV94BhWOpJAtriD/8gkhhPh38vLIXPgucxa7s6zkcVq7pLNxZTaDbw+qcKqmaaz9cy3zo+dzOP0w3Zt156PIj4hoE2GBgYuyLly4YGrxfenSJcLCwli5ciWDBw+WFt+i9kpDtezeaLylG+/vhtpwprR1t61FRidqCQlKQggh/hmDAVatYs2j25h+cQFpeDHrvgwWvNkYZ+eKp285sYW5m+fyR8of+Hv48+2d33JrwK3yJtzCTp48ydKlS1m5ciUFBQXccsstzJkzh549e1p6aEL8c4XADuA4NEhvgGn36ibAMMytu5tYaHyiVpKgJIQQ4trFxJAyYxHTDz3IWpbTqV0O61db07Wre4VTY8/GMi96Hj8f+5nmLs1ZOXIld4fejY2V/OqxpLi4OBYvXszq1auxsrJiwoQJzJ49m4AAWR8mahEDEAf8AmxCNWHIRzVccAJeRDVh6IS07hb/mvy2EkIIYRLmtp+Skgb8lnPFgcREDLPnsGy9N3N0X1Nk68Ti5w08+lgDbK+YupJ0MYmntzzN1/Ff4+HowdLBS5nafSoONg7Vdh2iPE3T+O2331i0aBEbNmzA2dmZmTNn8uijj9K8eaXbGQpR85xBhaJfjLfzxvs7AJOAG4HFkJOTg9s86cwo/jsJSkIIIa7uwgVYsIDD78UwWbeM3+jDwAF6PlhuTbt25U9NyU7hua3PsXLfShxsHHj6hqeZ1XsWrg6ulhm7wGAw8P3337N48WJ27NhB48aNef7555k6dSru7hWrgELUKNlADOZw9Kfxfi/UNLpBQARQNusvrcbxiTpPgpIQQoiKCgrgzTcpemEJi3Km86JuH84NrfnoNZg40Zqyy4sy8jNY9Nsi3vrjLfQGPVO7T2V+//l4NfCy3PjrueLiYr788ksWL15MQkICLVu25O233+bee+/FycnJ0sMTonLFwC7M0+l2obrTOQEDUFWjQUBHZE8jUS0kKAkhhDDRaQYiSn6GgNvZcaoZkxrsJUFrwZjR8Prr4FUm++QW5fLGrjdYsn0J2YXZjA8Zz4KwBbRu1NpyF1DP5ebmsmLFCpYuXUpycjLBwcF8/vnn3HnnndheOUdSCEvTUFWi0opRDHAZtaaoGzAXNZ2uN2B/jc8ZA/tj9hNG2HUerKiPJCgJIYSAy5fh00/5JOcV3AwXmZ67jHd1o2neSMcPX8FNN5lPLdIXsWLvCp7b+hxpuWmM9B/JC+EvEOwVbLnx13Pp6em8/fbbvPXWW2RkZNC/f3/ef/99hg0bJt0FRc2Shrli9AuQYry/LTAOVTEKBxpZZHRClCNBSQgh6rOjR+Gdd+DDDynOzuMz3RwW8wQ5FxsyY4aOF16Ahg3VqQbNwOpDq3l6y9Mcv3Sc/i36s2b0Gvr49rHsNdRjp0+fZunSpaxYsYK8vDxGjhzJnDlz6NNHXhNRQ+QCv6KC0SZUpzoAD9T6ohuNNylEixpIgpIQQtQ3mga//AJvvgk//ECedUNWdnqTV86M4fQ5e5ytctm5Q0fpdjqapvHj0R95cvOTHEw7SKhXKBvGbmBou6FSrbCQ+Ph4lixZwhdffAHAuHHjmD17NkFBFTf7FaJa6YFYzBWjHUARaupcP+AlVNWoM9K2W9R4EpSEEKK+yMmBzz6Dt96Cw4fJatyWd8N/5rUD4VzYY03fvuCSfQwXLtGzZzcAtp/ezpObn+TX07/SplEbvhj1BaM7jsZKJ+9wLGHHjh0sWrSI9evX4+TkxLRp03jsscdo0aKFpYcm6rNjmCtG0UCm8f5OwExUxagfqimDELWIBCUhhKjrjh9X0+tWroSsLM6H3MjrN3/FO1s7kh2tY+hQmDcP+veHMLfLlJRAXFoc86Pnsz5pPd4NvHn3pne5v8v92FnbWfpq6p3i4mI6d+7MyZMnyc3NxcPDg2effZbp06fj4eFh6eGJ+ugiKhCVVo1OGO/3BUZhbtvtaZHRCXHdSFASQoi6SNMgOlpNr1u/HqytOTVsCq/Yz2PF994Uxum4/XaYOxe6dDE/LLevDce8FxH6/te42LuwcOBCHu75MM52zpa7lnpI0zR27drF559/zldffUV6ejq2tra88cYb3H///Tg7y+shqlEBsB1zE4a9qI51LsBAYBYqHPkhbbtFnSJBSQgh6pLcXPj8cxWQEhLA05M/H3yNxRkP8Pka9eZ6wgSYMwf8/dVD8orz+Dr+a5bFLmNPj51QYs8TfWYzp98c3B1lU9LqlJSUxKpVq1i1ahXHjh3DwcGBm2++mYSEBKytrXn44YctPURRHxiAg5in0/2KCks2qFbdC1DT6boj7yRFnSZ/vYUQoi44eVJNr1uxAjIzoXNnYp9dx0v7b2LNB9Y4OMDUqTBrFpQuZzlw7gDLYpfxedznZBdmE9A4gDZHl+KYGMni59ta9HLqk7S0NFavXs3nn3/Onj170Ol0DBw4kPnz5zNq1ChcXV0BiImJsexARd12GnPFaDNwwXh/IPAgqmJ0A9DQIqMTwiIkKAkhRG2laRATo6pH69aBToc26jZ+HfAUC9d3ZOOzOlxd4cknYeZMaNIEcopyWLn3K5btXcYfKX9gb23PHUF3MLnLZPq16Idums74hlyCUlXKycnhu+++Y9WqVWzatAmDwUDnzp155ZVXGDNmDD4+PpYeoqjrsoAtmMNRkvF+b2AIKhjdCDSzyOiEqBEkKAkhRG2TlwerVqmAdOgQeHigzZnLBv9HWbisMTumg6cnvPQSPPQQuLrC3tS9PPP9Mr6I+4LLRZcJ9Azk9SGvMyF0gkyvqybFxcX8/PPPrFq1irVr15Kfn0/Lli2ZO3cu48aNIzAw0NJDFHVZEbALcwOGP1CtvJ2BAcBDqGAUhKwzEsJIgpIQQtQWp0+r6XXLl8OlSxAain7FR/yf7VgWvWrHgZfUtLq33oL77gO99WW+PPQly2KXEZsai4ONA6ODRjO562R6N+8teyBVg8qaMri7uzNx4kTGjRtHnz59sLKSVuuiCmhAAuaK0VYgB7V3UXfgSVTVqBcgzSyFqJQEJSGEqMk0DX79VVWPvvtO3TdqFIVTZvLZ8b4sXqTj6FEICICPP4a77tI4cGEPj2xezhdxX5BbnEtwk2DeGvYW44LH0cixkUUvp76orCnDyJEjGTduHEOHDsXOTt6ZiiqQigpGpbezxvv9gAmoYBQOuFlkdELUOhKUhBCiJsrPhy+/VAHpwAFwd4fZs8m9ZxrLfvRl6URISYGuXeHbbyF8aBar47+g50fL2H9uP062TowJGsPkrpPp4dNDqkfV4GpNGZ566ilGjRqFi4uLpYco6pocYBvm6XSHjPd7oKbR3YgKRy0tMjohaj0JSkIIUZMkJ8N778GyZXDxIgQHw/LlXBo2lrc/dOKNfuruAQNg5UoN18A/WL53GRNeX01ecR6dvDvx7k3vMjZ4LK4Orpa+mjpPmjKIalUCxGJu270TKAbsgf6Yq0ahqCl2Qoj/RIKSEEJYmqbB9u2qerRmjfo6MhIefpjU9gN47XUd7z0KOTkwYgRMf+wyR5w/YXbsMuJ+j8PZ1plxweOY3HUyXZt2lepRFZOmDKLaaMBRzBWjaFS3OoAuwKOoYNQXcLTEAIWo2yQoCSGEpRQUwOrVKiDt2wdubvDYYzB1Kie0Vrz8Mnz4IRQXw+jRGkMm7mdL/hvcuuNr8kvy6dq0Kx+M+IC7Ot5FQ3vZ3KQqSVMGUW3SUfsYlTZhOGW8vyVwB2o6XQTQ2CKjE6JekaAkhBDVLSVFTa/74ANIT4egIPX5uHHEn3Rm0dNqeZKVFdw1vgDfYav57sLLfPl7Ag3tGjIxdCKTuk6iS9Mulr6SOk+aMogqlw9sxzydbp/xfldgIDAHFY7aIW27hahmEpSEEKI6aBrs3KmqR99+C3o9jBwJDz8M4eH8sVvHS+Nh7VpwctK47d4USnou4atzyyhMKKSHTw9W3LyC0R1H08CugaWvpk6TpgyiShmA/ZgrRr8BBYAt0Bt4HjWdrivyLk0IC5MfQSGEqEqFhfDVVyogxcaq3V9nzoSpU9Fat2HLFlg4CDZvBrdGBgbdt4sT7R/j64LfcUl34YEuDzCpyyRCvUMtfSV12tWaMixdupQxY8bQrFkzSw9R1GanMFeMNgMXjfd3xLzR6w2A/B+IEDWKBCUhhKgKZ8/C+++rKXXnz0OHDmq63fjxGJwasH49LLwL/vgD3D0L6TThG+JbPswmmwx6N+7N/K4fcUfgHTjbOVv6SuqsypoytGrVSpoyiP8uE9iCuQnDEeP9TYHhqIpRhPFrIUSNJUFJCCGup127VPXo66/V9Lrhw1UFKSKCEr2Or76Cl16C+Hhwb5qJ552vcsFvCYaGjkwJmcCkLpMI9gq29FXUWX/VlGH8+PH06dNHugaKf64I1aq7dDrdbtQUO2cgDJiGCkcdkHVGQtQiEpSEEOK/KiqC//s/FZD++ANcXGD6dJg2Ddq1o6AAPv4AlizROHFCh4tvMta3PUVG4Cr6te7N0i7LuT3wdhxtpb9vVZGmDOK6KgF6Qs9zPaETsBXIBayBHsB8VDDqCchfLSFqLQlKQgjxb507p6bWvf+++tzfH95+G+6+Gxo25PJleP9leGWpnvNp1ti3PABj/od16HZmdJrApK4HCfSU6V1VRZoyiOvmIvA7sMN4+wPIA0cc1bqie1DrjMJR3eqEEHWCBCUhhPindu9W1aOvvlKbHN10k+peN2gQWFlx8SK88YzGa2+WkJNli65NDNz9Ij3DDDzYbTKjOnyFg42Dpa+iTpKmDOI/MwCHUVPpSoNRovGYNdAZuB/4BbLIwjVBkpEQdZUEJSGEuBZFRaqt95tvwu+/Q8OG8NBDaoqdnx+gtkd67qUcPv7QjqJ8Owj4HpcJ7zLp5lAmdXkP/8b+Fr6IukmaMoj/JBtVIdqBCkc7gSzjMQ+gD6pi1Bvohlp3ZLQvZh9hhFXbUIUQ1UuCkhBC/JW0NFi2THWsS01VoejNN2HiRLUWCUhM0vPI0yls/LYpmuYAHb+kx+gtPDZyCLcEfI+9jb2FL6LukaYM4l/RgGOUrxYdQlWRdEAQMBoVjnoDfkjzBSHqMQlKQghRmdhYFYhWr1bVpKFDYeVKGDIErKwA2LQjjVlPXyBuSwewaoJDj8+5e0oajw+/DT+PCRa+gLpJmjKIfyQf2IO5WrQDuGA85gL0Am5FBaOeyPoiIUQ5EpSEEKJUcTGsWaMC0o4d0KABTJ6sptf5q2lzeoOeV1dvZ+kSW9L29QA7J1oO+5b5Tzgxsd847Kzljfr1VllThoiICGnKICpKpny1aB+qQx2o6tBNmKtFgag1R0IIcRUSlIQQ4sIF8/S6lBRo2xZefx3uuQdc1X8xn8o8zVPLt/L1B+0oOtYXndNF+t+zidefbkeXNndadvx1UGVNGbp06SJNGYRZEbCf8tWiM8ZjjkB34HFUMOoFeFpgjEKIWk2CkhCi/tq3D956C774AgoLVde699+HYcPA2poSQwnrE6J4YVk8e/9vMJydgH2jdO6de4BXnwzEzWWQpa+gTrlaU4Ynn3yScePG0aFDB0sPUVjSecyBaCdqU9cC47EWQD9UpagPEArYWmCMQog6RYKSEKJ+KSmBtWvV9LpffwUnJ7jvPjW9ztgd7WTmSZb98RHvfZRF5i8PQnokjXwu8sQb6Tz6YGPs7Rtb+CLqDmnKICqlRzVZKDuN7pjxmC3QBXgI8zQ6HwuMUQhR50lQEkLUD+npsGIFvPMOnDkDrVvD0qUqJLm5Uawv5vvD3/He7x+z6f9awI7HIaslrfyzePFNPaPv9MBa1jNcN9KUQZSTiXlD153ALuCy8ZgXKgw9iApGXQHZhkwIUQ0kKAkh6rYDB9T0ulWroKAAIiJUWBo+HKytOX7pOCs2L2Hlzm84HzMKq10rIMeTrj0LWfA03HSTK1LQuD6kKYMAVIvuJMyVop1AvPGYFRACTMA8ja410qJbCGEREpSEEHVPSQmsW6em123dCo6Oat+j6dOhY0eK9EWsS/yOZbHL2HRwP+x6BJs9+yDfmRsHG5g/H/r3t5eAdB1IUwZBLmpD17LrizKMx9xQgWgMKhR1BxpaYIxCCFEJCUpCiLojI8M8ve70aWjZEl5+WU2vc3fnaMZRlm+aw0f7P+LCWQcaxC7A9o8fKCmy4ZbbdMydC127Wln6Kmo9acpQj2nAKcpXiw6g1hwBdABuQYWiPoA/qookhBA1kAQlIUTtFxenptd9/jnk50N4OLzxBtx8M4VaCWv/XMuy75cRfSIaq4sdaB73Jda/hVOAjvHjdcyZAwEBlr6I2u1qTRnuuecexo0bJ00Z6qpCYC/mYLQDOGc85ozaxPVJVNWoF+BugTEKIcS/JEFJCFE76fWwfr2aXrdlCzg4wIQJMGMGBAeTmJ7I8s1z+OTAJ6TnpdP08nA6xiYQvzWA8/Y6pj4Ejz8OLVpY+kJqt6s1ZRg/fjxDhgyRpgx1TSrl9y2KRe1nBNAGiMBcLeqIvMsQQtRq8k+YEKJ2uXQJVq5U0+tOngRfX1i0CB54gAJXZ9YcXsOyj2ew9dRWbKxs6GuYS270TPZsa0yuC8ydC488Ak2aWPpCai9pylBPlAAHKT+N7qTxmD3QDZiJqhb1Bryrf4hCCFGVJCgJIWqHhARVPfrsM8jLgxtugFdegchIEi4lsXz3C3x68FMy8jNo7daGe5y+JmFNJFt/t8PTExYuhKlTwdXV0hdSO0lThnrgIioMlVaL/gDyjMeaoapED6NCUWdUWBJCiDqsSoOSTqcbCrwBWAMrNE1bdMVxe+BT1K4IF4HRmqad1Ol0rYDDQKLx1N81TZtSlWMVQtRAej1s2KAC0i+/gL09jBsHM2aQH+TPNwnfsOyzcH47/Ru2VrZEth+Ff9p8vv+wIx8f0OHrqx56//1qX1nxz0hThjrMgPotW7ZaVPob1xoVhO7HPI3OF2nRLYSod6osKOl0OmvgHWAQcAbYrdPp1mmallDmtPuBS5qmtdPpdGOAxcBo47FjmqZ1qqrxCSFqsMxM+OgjePttOH4cfHxUSWjSJA4ZzrE8djmfbvyUzIJM/Nz9eClsKfbxD/De0y58cwT8/dXDx44FWSLzzxgMBhISEvjmm2+kKUNdko2qEJUGo9+BLOMxD1QYugdVLeqGasQghBD1XFVWlHoARzVNOw6g0+lWA5FA2aAUCTxr/Pwb4G2d/AYWov46fFiFo08+gdxc6NcPFi0ib/hgvk76jmVRI9l5Zid21nbc1uE2JnSYwp8b+/PqeB1nzkCXLvDNN3DLLWBtbemLqR00TeP48eNs3ryZzZs3891331FcXCxNGWozDThG+aYLccb7dUAQ6r8k+6CCkR9SLRJCiEpUZVDyAZLLfH0G1Si00nM0TSvR6XRZqP/bAmit0+n2of4f7ClN036twrEKISwgzG0/+mInfv36BzVH7uefVQlo7FiYMYMDzaxZvnc5n785iazCLAIaB7B08FJGtpjI6o88mPAgXLyoliutWAGDByObxF6D1NRUoqOjTeHo9OnTAPj4+ODu7o6dnR2HDh2Spgy1RT6wh/LT6C4Yj7mg2nLfigpGPQFZpyeEENdEp2la1TyxTncHMETTtAeMX08AemiaNqPMOfHGc84Yvz6GqkTlAA00Tbuo0+m6AmuBIE3Tsq/4HpOByQBeXl5dV69eXSXX8m/k5OTQoEEDSw9DlCGvSQ2i19Pg6FH2zIhjeMk6fLVkChs3JiUykhNDI/ipeC/fp37Pn5f/xFZnS5hnGCOajsBH35VvvvFl3bpm5OXZ0KvXRcaOPUVwcPbff896LCcnh/3797N371727t3LqVOnAGjYsCGdOnWiS5cudOnSBV9fX3Q6nfys1FClr4v9eXtcDrngmuCKS7wLDY40wEqvdm3Na55HdlA2WUFZZAdlk9syV605ElVCflZqJnldap6a9pqEh4fHaprW7e/Oq8qK0hnU8s9SzYGzVznnjE6ns0H9P1eGptJbIYCmabHGANUe9X9mJpqmLQOWAXTr1k0LCwurgsv4d2JiYqhJ4xHymliUwQCHDqn9jqKjYWO7yZkAACAASURBVNs2yMykGxBnFYzvly8T37sVyw9+zKq4B7lcdJlAz0Be7/M6E0InkJ3mzssvwxMrobgY7rhDtfnu1MkDcxFalMrPz2f79u2milFsbCwGgwEnJyf69+/PtGnTGDhwIJ06dcK6kjmK8rNSg1wG9gH3QVF6EXYN7dRvTgBH1H8t3oKqFvUCJ08nnHDCW3p1Vwv5WamZ5HWpeWrra1KVQWk34KfT6VoDKcAYYOwV56wDJqImCtwORGuapul0Ok9UYNLrdLo2qBnUx6twrEKI60nTIDFRhaItWyAmBtLT1bG2beH222HgQCKnOxHvvwu3rJeJ/SgWBxsHRgeNZnLXyfRu3pvDh3U88iB88QVYWcHEifDEE+DnZ9Grq3FKSkrYvXu3KRjt2LGDoqIibGxs6NWrF0899RQRERH06tVL1hrVZFmoUBRrvO0FklBriwAbWxsYhnltUShga4mBCiFE/VBlQcm45mg6sBFV+P9Q07R4nU73HLBH07R1wErgM51OdxTIQIUpgBuA53Q6XQmgB6ZompZRVWMVQvxHmqa605VWjLZsgXPn1DFfXxg+HMLDITyc1Ea2fJ/0PVGJq/hh2iawLiJYH8xbw95iXPA4Gjk2YvduGPUwrF2r2no//DA89hg0b27Zy6wpDAYDhw4dYvPmzURHR7N161YuX74MQKdOnZgxYwYRERH079+/Rk11EGVkooLQXszB6EiZ481RG2eMNX58EbLzsnH70q26RyqEEPVWle6jpGnaBmDDFfc9U+bzAuCOSh73LfBtVY5NCPEfnT6tAlHpzdgQAG9vFYoGDoTwcLTWrUlIP0xUYhTrfr6TXSm7AGjt1hqfs1NxPHYTB6JvBHTExKgu4L/8Am5u8PTTKiQ1bmyxq6wRSjvTlTZgiI6O5sIFtVrfz8+PcePGERERQVhYGI3r+x9WTXSJ8oEoFtWVrlQLVBi62/ixK9DkiucYDvtj9hNGWJUPVwghhFKlQUkIUYecO1e+YnTM+E7Pw0MFozlzVDjy96dE07P99HaiEt9h3Q/rOHZJndu9WXdeCH+ByIBIgjyDCA/XcelSJuvX61i4EHbtAi8vWLIEHnwQ6nPTtXPnzpXrTFfagKFZs2YMHTqUgQMHEhERga+v7988k6hWF6kYik6UOd4SFYTuM37sAnhW8xiFEEJcEwlKQojKpaertUWlFaPDh9X9rq4wYADMmKECUseOYGVFTlEOG49uJGrtQn448gMZ+RnYWdsR0TqC2X1mc7P/zTRr2Mz09BkZKnudOtWQyEho1QrefRfuvRccHCxyxRaVmZnJ1q1bTcEoIUFtOefm5kZ4eDizZ88mIiICf39/2fC1pkinfCDaC5wsc7w1KgxNxhyKpPeIEELUGhKUhBBKZqbqRldaMTp4UN3v7Kw2Krr3XhWMOnc27eZ69vJZ1u9dTlRiFJtPbKZIX4S7ozvD/YYT6R/J4LaDaWjf0PQtUlPVuqM1a1QGKykBe3v47DMYMwZs6tG/SKWd6UqrRnv27MFgMODo6Ej//v2ZOHEiERERV+1MJ6rZecxhqDQYnS5zvC2qA91DqFDUGXCv5jEKIYS4rurR2xIhRDmXL8Nvv5krRnv3qjbeDg7Qty+8+KIKRt26ga1qraVpGvEX4on6M4qoxCh2n90NQJtGbZjWfRqR/pH0bdEXGyvzPy3HjsF336lw9Pvvqu9D+/bw+OOwcSPo9ZcZP77uL1AvKSlhz5495TrTFRYWYmNjQ8+ePZk/f76pM529vb2lh1u/naPi9LkzZY77oTrPzUBViboAdf+vsBBC1DsSlISoL/LzYccOc8Vo925V0rG1hd69VeeE8HDo1UuVeYxKDCX8emIL6xLXEZUYxYlMteCip09PXhz4IpH+kQR6Bpqmg2kaxMWpYPTdd3DggHqezp3huedg1Cjo0AF0Oti5UxWy6iJN00yd6TZv3lyuM11oaCjTpk0zdaZr2LDh3zybqDKplA9EsZh3/NOhdvC7ARWGSitFrtU/TCGEENVPgpIQdVVhoeqOUNqA4fffoahITZvr3l1tSBQeDn36qB7cZVwuvMxPR39iXdI6fkj6gUsFl7C3tufGNjcyt99cbm5/M00bNjWdbzCob1Uajo4eVUGob1949VW45RZo3bq6/wCq3/Hjx01d6aKjozl//jwA7dq1Y+zYsURERBAeHi6d6SxBQwWgK0ORsYs9OiAACMfcea4zIBlWCCHqLQlKQtQVJSWwZ4+5YrR9u6oi6XTQpYvqsx0eDv37QyUVjJTsFNYlrmNd0jqiT0RTpC/Cw9GDkf4jGek/ksFtB9PAzrwnT3GxWtL03XfqdvasWmMUEQGzZ8PIkapTeF127tw5tmzZYqoanTx5EoCmTZsyaNAgIiIiiIiIoEWLFpYdaH2joabKlW2yEAukGY9boULRIMyhqBMgW04JIYQoQ4KSELWVXg/795vXGG3bBjk56lhwMEyapNp133ADNGpU4eGaphF3Po6oP6NYl7SOPWf3ANDOvR0zesxgpP9I+vj2KbfeKD8fNm1SwWjdOtW5ztERhg2DW2+FESPU/kd1VVZWVrnOdPHx8YDqTBcWFsasWbOIiIggICBAOtNVFw3VVOHKRgsXjMetgEBgKOZQFAo4V/tIhRBC1DISlISoLQwGiI83V4y2bjUv8AkIgAkTVMUoLAw8K9+YpVhfzK+nfzWFo5OZJ9Gho2fznrwU8RIj/UfSoXGHcm/ys7NhwwY1rW7DBsjNVR3CR45U4WjIkAoz9+qMgoKCcp3pdu/ebepM169fPyZMmEBERASdO3eWznTVQQNOUbEld7rxuDUQBIzA3I47FKijfz+FEEJULQlKQtRUmgaJieaK0ZYtam8jgDZt4LbbVMUoLAyaNbvq02QXZvPT0Z+ISoxiw5ENZBZk4mDjwI1tbmR+//mMaD8C7wbl58hduKAqRmvWwC+/qKVNXl4wfrxqxhAWBnZ2VXfpllJSUkJsbKypYrR9+3YKCwuxtramZ8+ezJs3j4iICHr37i2d6aqahtqo9cpQlGE8bgN0BCIxh6IQwLHaRyqEEKKOkqAkRE2haXDihLlitGWL2ngIoHlzuOkmVTEKD4eWLf/yqZKzklmftJ6oxCi2nNhCsaGYxk6NuSXgFiL9IxnUZhDOduXnHiUnm9t4//qrKmC1agXTp6tw1KuXafukOkPTNOLj48t1psvOzgYgJCSEqVOnEhERwQ033CCd6aqSBhyjYigq7YhoCwQDt2HuPhcM1MONiYUQQlQfCUpCWFJysjkURUfDaeMOll5eKhANHKg+tm2rmjJchaZpHEg7YJpStzd1LwB+7n7M7DmTyIBIejfvjbVV+aSTmKiC0Zo1qg8EQFAQzJ+vwlFo6F9+2/8sJgZiYvYDYVX3Ta5w4sQJUzAq25mubdu2jBkzhoiICMLCwmjSpEm1jaleMQBHKR+I9gJZxuN2qMrQnZjXFHUEpIAnhBCimklQEqI6nTtXfird0aPqfg8PNZ/tiSdUOAoI+NuEUqwvZuupraZwdDrrNDp09PbtzaKIRUQGRBLQOKDcYzQN9u0zh6PDh9X9PXrAokVqzVH79lVw3RaUlpZmate9efNmTpxQ+0B5e3tz4403mjrTtfybKp34FwxAEuWbLOwDso3H7VGh6C7MoSgIFZaEEEIIC5OgJERVunhRlU1KK0alycTFBQYMgGnTVMUoOBisrP726bIKsvjx6I9EJUbx45EfySrMwtHGkUFtB/G/Af9juN9wvBp4lXuMXq/2mS3d4+jUKfWtBgyAqVPVHkfNm1fBtVtIdnZ2uc50hw4dAsDV1ZWwsDAeffRRIiIi6NChg3Smu570qFBUdvrcPsDYiBEHVGOF8ZhDUSBqWp0QQghRA0lQEuJ6ysxUbbpLK0YHDqj7nZ3V/kX33KMqRp07X/OCn9NZp1mXuI6oxChiTsZQYijB08mT2zrcxkj/kQxqOwgn2/JtvYqKVC5bswaiouD8edV8YfBgeOYZ1bGurux5WlBQwI4dO0xT6Xbv3o1er8fBwYF+/foxbtw4U2c6Gxv5J++60AN/Uj4U7QdyjccdUfsS3YO50UIg8htHCCFErSK/toT4L3Jy4LffzBWjvXtVFwQHB+jTB154QVWMuncH22v7r3NN09h/bj9RiVFEJUax/9x+APw9/Hms12OM9B9Jr+a9Kqw3ys2FjRtVOPr+e8jKggYNVA+IUaPUXkcuLtf9T6DalXamK51Kt337dgoKCrC2tqZHjx7MnTvX1JnOwUFW+/9nJcBhyu9TtB/IMx53AjoD92NutBCA/HYRQghR68mvMiH+ifx82LnT3Jnujz+gpESFoF694KmnVMWoZ08Vlq5Rkb6ImJMxrEtcx7rEdSRnJ6NDRx/fPiy5cQkj/Ufi39i/wuMuXVKhaM0aFZLy89Vyp1Gj1O3GG//RMGokTdNISEgwTaWLiYkxdaYLDg5mypQpps50LnUhCVpSBpAE3j96wzeoUHQAyDceb4AKRZMwT5/zR+1fJIQQQtQxEpSE+CtFRbBrl7litHOnus/aGrp1g9mzVcWoTx81ve4fyCzIZMORDaxLXMePR38kuzAbRxtHBrcdzIKwBYxoPwJP54obx6amqul0a9aoYZWUgI8P3H+/Ckf9+0Ntn2F28uTJcp3p0tLSAGjTpg2jR48mIiKC8PBw6Uz3b+Sgus4lGW9Hyny8qE4JIAAaokLRFMyhyA8JRUIIIeqNWv52SojrrKQEYmPNFaPfflNlGp1OrSuaMUNVjPr1+1fz2E5lniIqMYp1ievYemorJYYSmjg34Y7AO4j0j+TGNjfiaFtxx8zjx817HO3cqbrX+fnBrFkqHHXrdk29IGqs8+fPm6bSRUdHc/z4cQC8vLwYOHCgqTNdq1atLDvQ2qIQOE7FIJQEnL3i3OZAe+B248f2sCtzFz3H9oRa/HdKCCGE+K8kKIn6Ta9XDRdKK0a//gqXL6tjHTvCpEmqYnTDDeDu/o+fXtM09qbuNYWjA2mquUOHxh2Y1XsWkf6R9GzeEyud1RWPg/h4c6e6/WqZEp06wYIFKhwFBlbtHkdVJScnh0OHDnHw4EEWLFhARkYGBQUFALi4uBAWFsbMmTOJiIggMDBQOtNdjR44hTkAlQ1Dp1CtuUt5oqpBg1FhyM/4sR1qjdEV8mPyJSQJIYSo9yQoifohLIxOmZlqE6H4eHPFKCZGdaoD8PeHceNUxWjAAPiX07oKSwqJORljCkcpl1Ow0lnR17cvLw96mUj/SPw8/Co8zmCA3bvN4ejIERWE+vSBpUvVHketW/+HP4NqptfrOXbsGAcPHuTgwYPExcVx8OBBU7UIwNraGkdHRxYuXMjAgQPp2rWrdKYrSwNSqRiEklAVo6Iy5zZEhZ9ewARM1SH8ALfqG7IQQghRV8g7ElF3GQxw4oQKRqdP45SRAV5ecOGCOt66Ndx2m6oYhYdDs2b/+ltdyr/EhiMbiEqM4qejP3G56DJOtk4MaTuEkf4jGe43vNL1RiUlqpv4d9+pW0qKWl80cKCaVhcZCd7e/3pY1ebChQumIFT6MT4+nvx81QXAysoKPz8/unbtyj333ENISAghISG0bNmSbdu2ERYWZtkLsLSLVAxCR4y33DLn2aOCTwcgkvLVoSaAFN+EEEKI60aCkqj9NA1On1aBKD4eDh1SHw8fhrw802k2trZqA6HSYPQf17ucuHTCtL/RtlPb0Gt6vJy9GNNxDJH+kQxsPbDS9UYFBbBpkwpG69apPWkdHWHoUFU1GjECGjX6T0OrMoWFhRw+fLhClejcuXOmczw9PQkJCWHKlCkEBwcTEhJCYGAgjo4V/yzqlRwqnyaXBFwqc5410BoVfsIwByE/wBeZEieEEEJUEwlKovbQNDh7tmIgSkgwrysCaNpUrS+aPBmCgtTnjz9Odk4Obp9++q+/vUEzEHs21hSO4s7HARDoGcgTfZ8g0j+S7j7dK6w3AjW8DRvUtLoNG9T2S66ucPPNKhwNGfKPm+ZVKU3TOH36dIUqUWJiInq9HgB7e3sCAwMZMmQIISEhplDk5eVl4dFbUCFwjMqrQ6lXnOuLCkCjKV8Zag1c25ZbQgghhKhCEpREzaNpcP58xUAUH29eTwTg6alC0MSJ5kAUFFR5Oea339gfE0PYPxxKYUkh0SeiiUqMYn3Ses5ePouVzop+LfqxdPBSRvqPpJ17u0ofm56uKkZr1qgKUlGRWvY0dqxqxhAeDnZ2/3BAVSA7O9vUXKE0FMXFxZGVlWU6p1WrVgQHB3PrrbeaApGfn1/9XE9UgmqWUFlHuVOodUWlmqAC0FDKh6G2VNpEQQghhBA1Rz18lyNqlIsXK4ahQ4fU/aUaNVIhaMwYcxgKClJBqQpk5GfwQ9IPRCVGsfHYRnKKcnC2dWZIuyFE+kcy3G84Hk4elT42ORnWrlXhaNs2tUyqVSuYNk2Fo9691RZMllBSUsKRI0dM1aHSUHTy5EnTOS4uLoSEhDB27FhTlahjx464urpaZtCWogEpVAxCpU0Uisuc64IKP32AiZgDkTRREEIIIWo1CUqiemRlVR6IjBuJAmpfoqAgNRetbCDy9q7yPtjHLx0n6s8oohKj+O30b+g1PU0bNGVsx7FEBqj1Rg42DpU+NilJBaM1a1TXOlCtu+fNU+GoU6fqb+OdlpZWIRDFx8dTWFgIqG5z/v7+9OzZk0mTJplCUYsWLepPO26Nv26ikFfmXAdU8AkCbsVcGWqPar1dT/7IhBBCiPpEgpK4vnJy1JqhKwNRSor5HGdnlSSGDSsfiJo3r7ZEYdAM7E7ZbVpvFH8hHoCOTToyp+8cIgMi6dasW6XrjTRN7WtUGo4SEtT93bvDSy+pnOfvXy2XQX5+PgkJCRVC0fnz503neHt7ExISwvTp002BqEOHDjg4VB786pxszOHnylBUZiYnNpibKIRTvr12c6SJghBCCFHPSFAS/05enuoqd+U6olOnzOc4OECHDmoxTtlA1LIlWFX/u84iQxE/JP3AusR1rE9aT2pOKtY6a/q37M+rnV9lpP9I2rq3rfSxej3s3Gne4+jkSXUJN9wAU6bALbeAr2/Vjd1gMHDq1KlyjRXi4uJISkrCYFA7izo4ONCxY0dGjBhhWkcUHByMZxVNUaxRCjA3Ubhy7dC5K85tgQo/d1F+3VArpImCEEIIIUwkKIm/VlAAiYkVA9Hx46q0Aqojgb+/WoAzaZI5ELVpY7EFOZcLLxN3Po6DaQc5mHaQA2kH2JuylwJDAQ3sGjC03VAi/SMZ1m7YVdcbFRWpPWnXrIGoKDVL0M4OBg2Cp59WHeuqIoNkZmaaGiqUVokOHTrE5TKd/dq0aUNISAh33HGHaU+itm3bYm2pBVDVoQQ4SeVNFE5TvomCFyoA3UT5aXJtgXrepVwIIYQQ10aCklCKi9VimyvXER05ojoSgAo97dtDly4wYYK501y7dmqXVAswaAZOXDrBgbQD5ULR8UvHTee42rsS4hXCsKbDmDRgEgNbD8Texr7S58vNhY0bVdVo/Xq1tMrZGYYPV+uNhg1TS6muh+LiYpKSkipUiU6fPm06x83NjZCQECZOnGiqEgUFBdGwYcPrM4iaxkD5Jgplw9BxVFgq5YoKP32BeynfRKGe9Z4QQgghxPUnQam+KSmBY8cqBqLERHUM1Jyytm1VCLrjDnMgat/eov2sswuziUuLM4WiA2kHiEuLI7c4FwAdOtp7tKdr067c2+leQr1CCfEKoYVrC8LDdRzPzGTYAxXbkF26BN9/r8LRTz9Bfj64u6tgdOutqoL0X5bzaJrGuXPnygWigwcPcvjwYYqKigCwsbEhICCAfv36lduTyMfHp+41V8gBks231tGt4W3M64jyy5zrCLQDgoHbKF8daow0URBCCCFElZGgVFcZDHDiRPkwFB8Pf/4Jxs5ngJoeFxSk5pGVBiJ/f3C03Pwkg2bgWMYxUxgq/Xgy86TpHDcHN0K9Qrmv832EeIUQ6hVKUJMgnGyvbXOac+fUdLo1ayA6WmVEHx+4/34Vjm644d8VyfLy8oiPj68Qii6WaXfu4+NDcHAwQ4YMMQWigIAA7GrCpkr/VQFwhnJBqMIts/xDWtDCHH4iKN9EwQdpoiCEEEIIi5CgVNtpGpw+XbHL3OHDqjRSqkULFYQGDTI3VujQQc0rs6DMgsxyVaKDaQeJOx9HXrHqzWyls6K9R3t6+vRkUpdJplDU3KX5P6q0aBoUFlrx6qsqHO3Yoe5r1w4ee0xVj7p3v/YeEwaDgRMnTpTrNHfw4EGOHj2KZly75eTkRMeOHbn11ltNVaLg4GA8PCpfE1XjFQNn+esQdKGSxzUGfFEd5W4wfl7mtu3YNgZEDKjy4QshhBBC/BMSlGoLTYOzZysGooQE1ZK7VLNmKgQ9+KA5EAUGXr+FNf+S3qDnaMbRclWig2kHOZVl7pLXyKERod6hpkAU4hVCkGcQjrbXXt3KzFTLqpKS1MfSz/ftA73ehVmz1L5Gzz6rwlFQ0N93JM/IyCi3hqi0uUJurnHKn05Hu3btCA4OZty4caZQ1KZNG6ws0N3vXzGgusP9VQhKpXzDBFBrgUpDTzcqhCCa87fNE7STVz6pEEIIIYTlSVCqaTRNtVcrO12uNBxlZZnPa9JEvcu/557yrbcbNbLY0Etdyr9UrrHCwbSDHDp/iPwSVeGy1lnj39if3r69mdJtiqlK1Kxhs2uqEuXkwNGjFcPQkSOQnm4+T6dThbT27cHLC3S6PLZtc6JNm8qft6ioiMTExApVopQye0C5u7sTGhrK/fffbwpEQUFBOFu4MveXNCCdvw5BKZRvlADghDnwDKHyEGTZ/C2EEEIIUWUkKFlSenrFMBQfD2XWs+DurgLQ2LHmMBQUVDV9qf+hEkMJRy4eqRCKkrOTTed4OHoQ6h1qCkQhXiEEegbiYPPX3REKClTPicqqQ6mp5c9t1gz8/NTaIj8/dWvfXi2/Km3CEBYGmZlFtGnjhKZppKSkVNik9fDhw5QYG1rY2toSGBhIeHi4qf12cHAwTZs2rVnNFTQgi78OQWdQa4fKskMFHV+gPxVDkC/QCGmWIIQQQoh6S4JSdcjMrDwQpaWZz3FxUQGodD5YaWMFVQqx3NiNLuZdNAWi0lAUfyGeghL1DtzGyoaAxgH0b9nf1G0uxCuEpg2uHiyKi1W/iSurQkeOqGVXWpkZWZ6eKgANGWIOQ35+ao1RgwYVn1uv15OamkpycrLplpWVSFiYasd96dIl07m+vr6EhIQwfPhwUyhq3749trY1YPfRXP46BCWjusiVZQ00Q4WdrsAtVAxBnkiTBCGEEEKIvyBBqSp8+SVt16yBl15SgajM1C2cndWaoZtuKh+IfHxqRCAqMZSQdDGJA+cOlKsSpVw2X4Onkyeh3qFM7TaVUG8Vijo07lDp3kR6PSQnVz5N7sQJdbyUq6uqBPXtC/feWz4QuZXp6m0wGEhLSyM5OZmffz5TLgyV3lJTU9GXfXLAysqKoqKe3HnnnaZucx07dqSRpaYrFvL3HeIuVfI4b1TY6QAMpmII8kZ+soUQQggh/iN5O1UVpkyh+eXL0LkzDBxoDkNBQWrRTA1Z4J+el67C0LkDHDyvPiZcSKBQr9qH21rZ0sGzA+GtwwlpEmIKRd4NvMs9T2mficrC0LFjYNwqCFA50c9P/dHceacKRqVhqHFjAI309HRT4Nm1K5lvvy0fhlJSUiguLi43BgcHB3x9ffH19WXgwIGmz8ve9u3bR3h4eBX/qRqV8Pcd4s5X8jh3oAXQEuhHxRDkg5o2J4QQQgghqpQEpapw7BhbDxwgLCLC0iMBoFhfTOLFRFOVqDQUpeaYF/t4OXsR6h3KjNYzTIEooHEAdtbqXbmmwYULcOQA/HhFIDp6FPLyzN/P3l5NifP3hxEjzGGoXTsNR8dMzpwxh56kpGQ2b1afnzlzhjNnzlBQUH5Bja2tLc2bN8fX15e+ffuagk/pfb6+vnh4ePzt2qHrtrbIAKTx9x3iDFc8riHmwNOZytcFXds2UEIIIYQQoopJUKoKjRuDtbVFvvX53PPlqkQH0w6ScCGBIr0q69hZ2xHoGcigtoNMVaLgJsF4NfAC4NIlFYDifoFvrwhE2dnm72NjA61bqxA0cKAKQj4+2Tg5JVNUlExqqrkKtG+fOQiVttQuZW1tjY+PD76+vnTt2pVbbrmlQiXI09Oz+tpsa8BF/r5DXPEVj3PEHHYGUXkIkg5xQgghhBC1hgSlWqpIX8Sf6X9WmDqXlmtuENG0QVNCvUMZ3GawasHtHYq/hz+F+bamALRrC3xWJhBd2V67ZUsVgsaMycPDIxln52SsrZPJz0/m7FkVfjZtSubDD5PJLpukUBWcpk2b4uvrS3BwMDfddFO5KpCvry/e3t5YV2eovJYOcflXPMYWc4e4vlQegtyRDnFCCCGEEHWIBKVa4FzOuQotuA9fOEyxQZU17KztCPIMYpjfMEKaqG5z7V1DyD7nqdYK7YOYI7DMGIgqttcuoHnzM/TqdYYGDVQQKilJJjs7mZSUZPbsSWbTpopdBby8vGjevDl+fn4V1gU1b96cZs2aVW3nOAOQidojKB24UObzK2/7YUDRgIrT4awwd4jrDIykYghqgnSIE0IIIYSoZyQo1SCFJYUcTj9cYerc+Vzzqn+fhj6EeIVwU7ubCHQPxaOoG8XnW3H8mA1HNsKGI/B6kuo0p9prFwMpuLkl0+T/27v7IKvq+47j7w9LgCJPwuID3GUXIpooWo1otGqKiXE0sT7FRGnS0QnGSZWQVBPTTtKM2ia1rVPbaRyrSc2DiRLF2pLURKthM9WCxapgJWioqHdFp7s8ijwki9/+cc6Wy9ldOMty7z3r/bxmdvacc3/n3O/ly7n3fvf3O79zSJkpU8q0tnawa1eZrVvLdHaWWbeuk3XrUpW3fAAADiVJREFU9oxl0qRJtLS00Nrayumnn96rJ2jq1KmMHNl7lrv9FiRTYe+t2Mk+tp7ehU+PUSRTYDenPxfDazteo3RKKSl+ppH8PhyfBWZmZmbWi78i1kFE8PrW13v1Eq3uWk3328kNT0c2jWTWIbM4d8Z5TON0xmw9gbe7juD1V8bwq0fh/hdh7dpu3n77DWA5UGbUqDLjx5cZMaLMlCkdvPVWmc2b3yAi2LQpuZ0TwIQJEyiVSrS1tXDGGbN79QSVSiVGjx7krAI7yV/w9Pzs7OdYTewueCYDx1SsN2ce61nuI/w17WsozSkN7nWZmZmZWUNwoVRlO7p3sKpzVa+iqGvb7ouBSmNbOPJdZ3Lc6M8zestv0905g67yeFav7uSHL5fp7u4AfgH8gKamMiNHlokoE/E6sPteQTt2wPDhY5g4safomdVrYoRSqcTYsWMH9iJ2ARvIV+z0/Ly5l+MdzO6ippXkpqj9FTzNwHh8/Y+ZmZmZ1ZQLpSqY+clv0vVb7UxZdQ0vdL3ArtgFAaN2TqNt19m8Z/snaepsYcurw+hat5k31q2j4zdlYAnwfaCM9BoR/d8rqKXlQ31Okz1+/Pi9T4MdJBMa5Cl4eh7bmO7XlzHsWdQcRf8FTzPJpAf+X2dmZmZmBeevrFXw+q+fZHt5BKNXfZRDNlzE9vXb2Lqpkx3dHaxmCXA32XFmw4ePYPLkEq2tLcyYcRrTpvW+YerEiRN7F0Hb2V3Q/Cf5hrp19xP4u9izuDme/gueZmASybTYZmZmZmbvMC6UquCtRcuBF+iZH0Fq4qCDpjJ5cgvTpp3EzJkXc8wxLbS2lva8V9CuYckEBZVFzWvACvrv+dmWffaeJyUpZHqKmiOAU+m74OkphsbgIW5mZmZmZlS5UJJ0DvB3JJfjfzsibs48PpJkrNmJJCXCpRHxcvrYnwDzSK6QWRARD1cz1gNpxoyb2bF9Cwu/dRQzxpU4jMNo2ti0Z+/OCuAx9ix6Nu3loOPYXdQcDhxL/wVPMzCB5F/dzMzMzMwGrGqFkqQm4DbgwyS38VwuaXFErKpoNg/YGBFHSLoM+EvgUklHA5eRzG82BXhU0pERsYsh4IH1F3Ls5qDpvH66Z0aSFDQ9Rc109j6D2yRgRNXDNjMzMzOzVDV7lE4G1kTESwCSFgIXAJWF0gXADenyIuCbSi7CuQBYGBE7gbWS1qTHW1rFeA+Y478GrzzzKq0ntvZ9fc9oPMTNzMzMzKzAqlkoTQXKFesdwPv7axMR3ZI2k/SfTAWWZfadWr1QD7BrYW37WlrntNY7EjMzMzMz2w/VLJT66jPJTjLdX5s8+yLpKuAqgEMPPZT29vYBhlg9W7duLVQ85pwUlfNSPM5JMTkvxeOcFJPzUjxDNSfVLJQ6gJaK9RL8/0Rw2TYdkoaT3Fp0Q859iYg7gTsBZs+eHXPmzDlQsQ9ae3s7RYrHnJOicl6KxzkpJueleJyTYnJeimeo5mRYFY+9HJgpabqkESSTMyzOtFkMXJ4uXwL8PCIi3X6ZpJGSpgMzSe4SZGZmZmZmVnVV61FKrzmaDzxMMlH1XRHxvKSbgKciYjHwj8Dd6WQNG0iKKdJ295FM/NANXDNUZrwzMzMzM7Ohr6r3UYqIh4CHMtu+VrG8A/h4P/t+Hfh6NeMzMzMzMzPrSzWH3pmZmZmZmQ1JLpTMzMzMzMwyXCiZmZmZmZlluFAyMzMzMzPLcKFkZmZmZmaW4ULJzMzMzMwsw4WSmZmZmZlZhgslMzMzMzOzDBdKZmZmZmZmGS6UzMzMzMzMMlwomZmZmZmZZbhQMjMzMzMzy3ChZGZmZmZmlqGIqHcMB4SkTuCVesdRoRnoqncQtgfnpJicl+JxTorJeSke56SYnJfiKVpOWiNi8r4avWMKpaKR9FREzK53HLabc1JMzkvxOCfF5LwUj3NSTM5L8QzVnHjonZmZmZmZWYYLJTMzMzMzswwXStVzZ70DsF6ck2JyXorHOSkm56V4nJNicl6KZ0jmxNcomZmZmZmZZbhHyczMzMzMLMOF0iBJOkfSC5LWSPrjPh7/gKSnJXVLuqQeMTaaHDm5VtIqSSslPSaptR5xNpocefmspOckPSvpcUlH1yPORrKvnFS0u0RSSBpyMxYNNTnOkyskdabnybOSrqxHnI0mz7ki6RPpZ8vzku6pdYyNJse5cmvFefKipE31iLPR5MjLNElLJD2Tfg/7SD3izMtD7wZBUhPwIvBhoANYDsyNiFUVbdqAccAXgcURsaj2kTaOnDk5E3gyIrZJ+kNgTkRcWpeAG0TOvIyLiC3p8vnA1RFxTj3ibQR5cpK2Gwv8KzACmB8RT9U61kaR8zy5ApgdEfPrEmQDypmXmcB9wAcjYqOkQyLif+sScAPI+/5V0f5zwAkR8enaRdl4cp4rdwLPRMTt6R9EH4qItnrEm4d7lAbnZGBNRLwUEb8GFgIXVDaIiJcjYiXwdj0CbEB5crIkIralq8uAUo1jbER58rKlYvUgwH/Fqa595iT1Z8BfATtqGVyDypsTq608efkMcFtEbARwkVR1Az1X5gL31iSyxpYnL0HSgQAwHlhXw/gGzIXS4EwFyhXrHek2q5+B5mQe8NOqRmSQMy+SrpH0PyRfzBfUKLZGtc+cSDoBaImIn9QysAaW9/3rY+mQlUWSWmoTWkPLk5cjgSMlPSFpmST3hldX7s/6dHj9dODnNYir0eXJyw3ApyR1AA8Bn6tNaPvHhdLgqI9t/it4feXOiaRPAbOBv65qRAY58xIRt0XEu4EvA1+telSNba85kTQMuBW4rmYRWZ7z5MdAW0QcBzwKfK/qUVmevAwHZgJzSHovvi1pQpXjamQD+f51GbAoInZVMR5L5MnLXOC7EVECPgLcnX7eFFJhAxsiOoDKv+aVKHgXYgPIlRNJZwFfAc6PiJ01iq2RDfRcWQhcWNWIbF85GQvMAtolvQycAiz2hA5Vtc/zJCLWV7xnfQs4sUaxNbI8718dwL9ExG8iYi3wAknhZNUxkM+Uy/Cwu1rJk5d5JNfzERFLgVFAc02i2w8ulAZnOTBT0nRJI0hOxsV1jqnR7TMn6XCiO0iKJI8jr408ean8UvFR4Fc1jK8R7TUnEbE5Ipojoi290HYZyTnjyRyqJ895cnjF6vnAL2sYX6PK81n/z8CZAJKaSYbivVTTKBtLru9fko4CDgaW1ji+RpUnL68CHwKQ9F6SQqmzplEOgAulQYiIbmA+8DDJh9V9EfG8pJvSWbuQdFI6DvPjwB2Snq9fxO98eXJCMtRuDHB/Om2oi9sqy5mX+em0us8C1wKX1ynchpAzJ1ZDOXOyID1PVpBcx3dFfaJtHDnz8jCwXtIqYAnwpYhYX5+I3/kG8P41F1gYnuK5JnLm5TrgM+l72L3AFUXOj6cHNzMzMzMzy3CPkpmZmZmZWYYLJTMzMzMzswwXSmZmZmZmZhkulMzMzMzMzDJcKJmZmZmZmWW4UDIzs0GRdJGkkPSeGj7nFySNrtXz7Q9JcyT9Tr3jMDOz/eNCyczMBmsu8DjJzQVr5QtA3QslScP38vAcwIWSmdkQ5ULJzMz2m6QxwGnAPDKFkqTrJT0naYWkm9NtR0h6NN32tKR3p9u/JGm5pJWSbky3tUlaLel76fZFkkZLWgBMAZZIWpK2vV3SU+nNWG+siOFlSTemz/VcT6+XpDGSvpNuWynpY+n2syUtTdvfn76+7Gtul/QNSb8APi/p9yQ9KemZ9LUdKqkN+CzwR+mNrc+QNFnSA+nrXC7ptAObDTMzO5D29pcwMzOzfbkQ+FlEvChpg6T3RcTTks5NH3t/RGyTNDFt/0Pg5oh4UNIoYJiks4GZwMmAgMWSPgC8ChwFzIuIJyTdBVwdEbdIuhY4MyK60uN+JSI2SGoCHpN0XESsTB/rioj3Sboa+CJwJfCnwOaIOBZA0sGSmoGvAmdFxFuSvgxcC9zUx+ueEBG/27MvcEpEhKQrgesj4jpJ/wBsjYhb0nb3ALdGxOOSppHcvf69g/z3NzOzKnGhZGZmgzEX+Nt0eWG6/jRwFvCdiNgGkBYxY4GpEfFgum0HJL04wNnAM+lxxpAUTq8C5Yh4It3+A2ABcEsfcXxC0lUkn2uHA0cDPYXSP6W//wu4OF0+i4oesIjYKOm8dL8nJAGMAJb287p/VLFcAn4k6fB0n7X97HMWcHR6bIBxksZGxJv9tDczszpyoWRmZvtF0iTgg8AsSQE0ASHpepKeocju0t+hgL+IiDsyx2/r4xjZdSRNJ+kpOikteL4LjKposjP9vYvdn3v9xfdvETG3nzgrvVWx/PfA30TEYklzgBv62WcYcGpEbM9xfDMzqzNfo2RmZvvrEuD7EdEaEW0R0ULSm3I68Ajw6Z6Z6SRNjIgtQIekC9NtI9PHH07bjkm3T5V0SPoc0ySdmi73TBoB8CYwNl0eR1K4bJZ0KHBujtgfAeb3rKTD55YBp0k6It02WtKROY41HngtXb68YntljH095/E5jm1mZnXiQsnMzPbXXODBzLYHgN+PiJ8Bi4GnJD1L0uMD8AfAAkkrgf8ADouIR4B7gKWSngMWsbvA+CVwedp+InB7uv1O4KeSlkTECpJhe88DdwE9Q/X25s+BgyX9t6QVJNc7dQJXAPemz7cMyDPl+Q3A/ZL+Heiq2P5j4KKeyRxIhg3OTiePWEUy2YOZmRWUInqNYjAzM6u7dOjdTyJiVp1DMTOzBuQeJTMzMzMzswz3KJmZmZmZmWW4R8nMzMzMzCzDhZKZmZmZmVmGCyUzMzMzM7MMF0pmZmZmZmYZLpTMzMzMzMwyXCiZmZmZmZll/B8UMq/6T3GrnQAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 1008x576 with 1 Axes>"
       ]
@@ -692,20 +683,20 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[[0.005264   0.002192   0.00982052 0.0024     0.00374226]\n",
-      " [0.020592   0.00848    0.02420321 0.01774236 0.0128507 ]\n",
-      " [0.045072   0.017448   0.04904311 0.04793028 0.02959571]\n",
-      " [0.081872   0.033168   0.08121554 0.07111066 0.05171983]\n",
-      " [0.126304   0.04644    0.12945698 0.11302403 0.07829868]\n",
-      " [0.182592   0.068232   0.18199805 0.18157928 0.12062678]\n",
-      " [0.246712   0.089384   0.24644845 0.25673201 0.16885112]\n",
-      " [0.320464   0.11408    0.32160807 0.32028404 0.23373392]]\n",
+      "[[0.005      0.00196    0.01253451 0.00392556 0.0037947 ]\n",
+      " [0.020544   0.008712   0.02705131 0.01643575 0.01346139]\n",
+      " [0.046904   0.018432   0.04896482 0.04382398 0.02875426]\n",
+      " [0.081032   0.03104    0.08585004 0.08461993 0.05115088]\n",
+      " [0.126584   0.04808    0.13369051 0.13937302 0.08179428]\n",
+      " [0.181336   0.067416   0.17873205 0.16580761 0.12189836]\n",
+      " [0.2462     0.090424   0.24897104 0.25789903 0.17408225]\n",
+      " [0.32052    0.114464   0.33116351 0.29375169 0.23064471]]\n",
       "\n",
       "Mean absolute errors:\n",
-      "0.081181\n",
-      "0.0022437312620555002\n",
-      "0.005478239914242801\n",
-      "0.04118162396552446\n"
+      "0.08094900000000001\n",
+      "0.005505709619057343\n",
+      "0.00982942433322089\n",
+      "0.04031739816805024\n"
      ]
     }
    ],
@@ -879,7 +870,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 11,
    "metadata": {
     "scrolled": false
    },
@@ -888,12 +879,12 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[1] 0 1 2 3 4 [2] 0 1 2 3 4 [3] 0 1 2 3 4 [4] 0 1 2 3 4 [5] 0 1 2 3 4 [6] 0 1 2 3 4 [7] 0 1 2 3 4 [8] 0 1 2 3 4 "
+      "[1] 0 1 2 3 4 5 6 7 8 9 [2] 0 1 2 3 4 5 6 7 8 9 [3] 0 1 2 3 4 5 6 7 8 9 [4] 0 1 2 3 4 5 6 7 8 9 [5] 0 1 2 3 4 5 6 7 8 9 [6] 0 1 2 3 4 5 6 7 8 9 [7] 0 1 2 3 4 5 6 7 8 9 [8] 0 1 2 3 4 5 6 7 8 9 "
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHwCAYAAACYFJ/XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8j/X/x/HHe4ccZoYccqicksxmDptDYQ6hHKKIyik5lgoR+UlTKpUQKV8qlJyPJZVDG1FyTiGHsnIcxtaGmW3X74/rs/UxGxvm88Hzfrt9bj7Xdb2v9/W6rvdn9Xl93tf7fRnLshAREREREZH/eLg6ABEREREREXejRElERERERCQdJUoiIiIiIiLpKFESERERERFJR4mSiIiIiIhIOkqURERERERE0lGiJCIuZYz5xBgz1PG+sTEm0sUhiVw3xpiyxpj4S2z3MsZYxpjS1y+qnGeM6W6MiXB1HJdyuRiNMWuNMV2vX0Qicr0pURKRa8IYE2mMOWuMiXd6lbjcfpZldbcs663rEePVMsaMNMZMc3UcGXEkmZYxZoCL4yhvjLnhH9B3vRIUy7L+siwrn9Nxr9uXb3f+PIuIuAMlSiJyLbW0LCuf0+vw9TqwMcbLlfu7gS7ASce/chk3QXvLZaiNReRqKVESkRxljPEwxsw3xhw1xsQYYyKMMfc5bZ9hjAnLYL+LftF3Lpt6m54xZqgx5igwxbG+lTHmV8ex1hpjKmcSV2r9zxpj9gF/ONZ/aIw5aIz51xiz0RhTx7G+BfAy8JSjt2yzY30BY8xUY8wRx36vG2Mu+m+rMeZOY8wZY4yf07pgY8wxRywVjDFrjDGxxpgTxpiZ2bjG+YBHgT5AJWNMULrt9Ywx6x11HzDGdHKsz2uMGWuM+cexbY0xJpdj2/2OfWKMMduMMfWc6ltrjHnTGLPJsd8iY0xBx+Y1jjKpvYrBxph7jDHhxphox7l9ke46HDTGDDDG/Oaob1ZqHI7tjzpi+NcYs88Y0yQ7195RdqQxZo6j7jigozGmttM5HjHGjDfGeDufB7DDcR6POerJ6ufrTWPMWMf7XMaYBGPMW6nt5Vj2M049cMaYd4DawCTHMcc5VdnUce6njDHjnY7jYYwZboz52/FZmmaMye/YdtGtrI7rFJrZ5zld2az+Db5sjDlujDlsjOnsVLaAo/xxR7lXjDHG6RAexpiPHG2+yxjTwGnfZxz7xBlj/jLGdHDa1t0Y84fjWnxrjLkzXbxpf9PGvrV3VLrz+sYY84Lj/TBH/XHGmB3GmFbpLkOmMWZwvTKLy8Px2TrmqGe7MaZSZvWIiBuxLEsvvfTS66pfQCTQOIP1HkBXwBfIDXwIbHLaPgMIc7xvDEQ63nsBFlD6EmWTgLeA24A8QDAQ5fjXE+gG/AnclkFcqfV/BxQE8jjWdwIKObYPBg4BuRzbRgLT0tWzFPgIyAvcAWwGnsnkGq0BnnZaHgt86Hg/z3E8D8d1uj8b1/5p4KBj32+BMU7bygBxwOOOcyoMBDm2/Q9YBRR3XK8HAG/gTiAaaOqosxlwArjdsd9a4ABQCfABFqdeF6C8/b+WC+KrADRytFNRYB0w2mn7QWC94/rdDuwBuju21QFiHPt7OGK79wqu/UggEWjpqCf181LTcV3KOo7b9xKfv+x8vpoAWx3v6znKrXPatjmj6+W4tl0z+JwuAfyA0tg9h40d23s64i6D/Te2BJia/u8p3bUOzezznMnfyOX+Bl9zfG5aAaeB/I7tM4GFjrjKAvuALo5t3R37vuDY90lHOxcA8gOxwD2OssWBSo73bYHdwL2O+MKAHzP7mwYaYv+3yTjK3A6cBYo5lh931O/hiCHeaVumMaZvq8vE1RzY4Gg/D+y/mztc8d9pvfTSK3svlwegl1563Rwvx5eReMcXiRhgcSblCju+zPg4lq8mUUrA6Usqdq/Sa+mO9ycZJB1O9de7xDkZ7CTD37F8wRdLoKTjS1cup3WdgBWZ1NcbWO547wEcBuo4lmcCHwMlr+DaR+BIPBzHjwK8HMuvAvMy2McTOJd6bum2/R+OL9tO61YBTznerwVGOm0LdLSFIYNEKYP62wIbnZYPAh2clsfwXwL5KfBeBnVk99qPBH64TFwDU69VJp+/7Hy+fBzXtwAwDDsJPoyd1L2JI5lNf73IPFGq5bRuITDQ8X410NNpm7/juB5cn0QpHvB02n4SqIGdWCQBFZy2PQesdLzvjp1sG6ftW4AnsBOlGKANkDtdTCtwJFtOMZ5zfB4u+pt2XIdD/Pd31gfH32Am5/w70PxyMaZvq8vE1QS7x7om4JHdv2+99NLLdS/deici11Jry7IKOF6tAYwxnsaYdx23t/yL/asy2AnT1YqyLCvRafluYLDjtqgYY0wM9q/FJS9RxwHnBcdtRH8YY2KBU9hfeDOL9W4gFxDldLyJQLFMys8D6hpjigENgATLsn5ybHsJ+8vlJmPfgtblEjE7x1sau8fiS8eqRUA+7F4gsHtg/sxg12LYPTwZbbsbeCLddawFOE/O4Xzd/sa+DoUyifEOY8xcY8whx2dgGhdf06NO7884zuFS8Wf32qePGWNMRcdtWEcdcb2eQVzpj5mlz5dlWaeBrdhtUw87mV2PfWtdfewEJzsyuz4lsK9/qr+x27VINuu/Uicsy0rOILai2Ml4+ticr9VBy7KsdNtLWJb1L3bC9Bxw1Biz1BhTwVHmbmCi0/U/AaQApZzqSWtny7JSgDmO+sDuFUr9W8EY09X8dytlDFCRCz8DGcaYwXXINC7LspYDk7B/CIkyxkwyxvhmUIeIuBklSiKS0zoDD2PfAuOH/Qs62L0PmbIsKwn7F9m8TqvvSF8s3fIBYIRTslbAsqy8lmXNvdShUt84xh8MAB7D7gkoiP2LuUlf1ul4Z4BCTsfLb1lWYCbnFA38ALTD/sI2y2nbEcueAbA49hfEycaYMpeIO1VnR3zfGnus1j7sL8qpY0UOAOUy2C8K+1a0jLYdwO5Rcr6OPpZlvedU5k6n93dht9VJLr5GAO84tgdYlpUf+1bMS7Z/ulgyizHL194hfWz/w+5BKO+IaziZt3XqMbPz+VqN3esSgH1b4GrgIaA68GMWY7ycw9hf0lPdhd2ux7Fvg0v7+zH25Aa3Z/VYWfwbzMwxIDmD2A45LZfiQndhnw+WZX1rWVZj7ER0H3Zbgd0Gz6RrgzyWZf3iHHq6emcBjzv+nqph/5iAMaYsdvLSB/u20gLYPT/On81MY0znknFZljXOsqxqQGXsW+9cOjuliGSNEiURyWm+2F+2ovnvtqOs+hV7sLmnMaY59hiaS5kMPGfsCQSMsQfNtzTG+GQj1iTsX4O9sccZOO8bBZROHZBuWdYB7C+/o40x+R2Dtssbp4kPMjATe2a6Rx3vATDGPG6MSf21PQb7y17yxbtfpDP2F/wgp1d7oJWxJ1iYATQzxjzmGOxe2BhTxdELMA0Y5+jx8TT2BA7ewBdAG2PMg471uY0xDcyF0713dvTI+AAjgLmOX96PAZbjS2gqX+wv7bGOAe4Ds3BeqT4FujuO72GMKWWMufcKr316vthjYU4be4KRXqkbHNcnGntsTarsfr5WYyeF2x1JRwSOMUWWZZ3MZJ+odMe8nFnAAGNMaUcvxZvALEdPyh+ArzGmqaNdU8cSOR8r7fOciez+DQJgWdZ5YD7wluM6lQH6Y38eUxU3xvR1fC47YCfE3xljijuua17spO80//0tTAL+z9FeqRNGtL1MLBux23kysMzRYwV2z5eFnVQaY0x37B4lZxnGmMFhMo3LGBPieHk5ziWRrP1ti4iLKVESkZw2FfsX2MPADuCnSxe/wAvY4xRisHthvrpUYcevt32wfyU+hT3IvWM2jrcMWAnsxR5z9S9wxGn7HOzempPGmA2OdR2xk6mdjmPO49K/ui/G/kX5H8uydjitrwlsNMacxh6D8pxlWf8AGGN2G2Pap6/IGPMA9m1AEy3LOpr6wv7FPBJob1nWfuwJDAZj9/hswe7hAPuL6y7s3o6T2BNjGMuyIrGv+6vYXyL/wb410Pn/GV9gf+k9gn2LVT8Ay7LigLeBXxy3IdXA/oIegv1l9StgwSWuzwUctyb2AMY79g/nv96s7F779F7CTlrjsHss5qTb/how03Eej17B52st9o8DqTPobQfOOy1nZBz/3fY4JgvnMMUR94/AX45zeRHAsqxTwPPAdOyenJNceAtfRp/n9LL1N5jOs9hJwX7spHE68LnT9p+wx1SdxP5R4jFHzJ7AIOzPVjT2hB59Hec0D3sM2zzH7ZLbsScduZxZ2L17aT9OWJa1HftztcFxrIrAL+n2yyzGC1wmrgLYCX8M9t/lEeyJXETEzaXOAiMiIpIlxpi1wCeWZU1zdSwiIiI5RT1KIiIiIiIi6ShREhERERERSUe33omIiIiIiKSjHiUREREREZF0lCiJiIiIiIik4+XqAK6VwoULW6VLl3Z1GGlOnz6Nj09WH90i14PaxD2pXdyP2sQ9qV3cj9rEPald3I+7tcnmzZtPWJZV5HLlbppEqXTp0mzatMnVYaSJiIggNDTU1WGIE7WJe1K7uB+1iXtSu7gftYl7Uru4H3drE2PM31kpp1vvRERERERE0lGiJCIiIiIiko4SJRERERERkXRumjFKGTl//jwHDx4kISHhuh/bz8+PXbt2Xffjii137tyUKlUKb29vV4ciIiIiIjegmzpROnjwIL6+vpQuXRpjzHU9dlxcHL6+vtf1mGKzLIvo6GgOHjxImTJlXB2OiIiIiNyAbupb7xISErj99tuve5IkrmWM4fbbb3dJT6KIiIiI3Bxu6kQJyHaSFDotlNBpoTkTjFw3So5FRERE5Grc9ImSK0VHRxMUFERQUBB33HEHJUuWTFtOTEy8ZsdZuXIlfn5+aXUHBQURHh6e7XqSkpIoUKDAFcfx2WefcfTo0bTlp59+mt27d19xfSIiIiIirnJTj1Fytdtvv51t27YBEBYWRr58+Rg4cOAFZSzLwrIsPDyuLmdt0KABixcvvqo6rtZnn31GtWrVuOOOOwCYOnWqS+MREREREblS6lFygX379lG5cmV69+5NtWrVOHDgwAU9ObNnz6Z79+4AREVF8eijj1KjRg1CQkJYv359lo/z0ksvMXny5LTlYcOG8cEHH/Dvv//SsGFDqlWrRmBgIEuXLr1o35UrV9K6deu05d69ezNjxgwAXnvtNYKDg9POwbIs5syZw7Zt22jfvn1aj9kDDzyQlijOmDGDgIAAKleuzNChQ4H/erCGDBlClSpVqF27NseOHcvGlRQRERERyRm3TI9Sv+/6se3otsuWSy2TlXFKQXcEMa7ZuCuKZ+fOnUydOpVJkyaRlJSUabkXXniBl19+mVq1ahEZGUmLFi34/fffLyoXHh5OUFBQ2vLixYvp0KEDQ4YMoWfPngDMmzeP8PBw8uTJw5IlS/D19eXYsWPcf//9tGjRIsuxv/jii4wYMQLLsnjyySf57rvvaN++PRMmTODDDz+8IA6wZx8cNmwYmzZtws/Pj8aNG7N06VKaNWtGbGws9evXZ9SoUQwYMIDPPvuMIUOGZDkWEREREZGccMskSu6mXLlyBAcHX7bcypUrLxjnc+rUKc6ePUuePHkuKJfRrXelS5fmwIEDREVFcfDgQe644w5KlChBYmIigwcPZu3atXh4eHDgwAFOnDiR5fFJq1at4r333iMhIYETJ05QvXp1HnrooUzL//LLLzRs2JDChQsD8OSTT7JmzRqaNWtGnjx50vatXr06P/74Y5ZiEBERERHJSbdMopTVnp/UnqSIrhE5Fwzg4+OT9t7DwwPLstKWnae1tiyLDRs2cNttt13RcR577DEWLFhAZGQkHTp0AODzzz8nNjaWLVu24OXlRalSpS6aStvLy4uUlJSLYjpz5gx9+/Zly5YtlCxZkmHDhl12Gm7nc0vP+bw8PT0v2bsmIiIiInK9aIySG/Dw8KBgwYLs3buXlJQUFi1alLatcePGTJw4MW05dcxPVnXo0IHZs2ezcOFCHnvsMQBiY2MpWrQoXl5erFixgkOHDl203913382OHTtITEzk1KlT/PDDDwCcPXsWDw8PChcuTFxcHAsWLEjbx9fXl7i4uIvqqlWrFuHh4URHR5OUlMTs2bOpX79+ts5DREREROR6UqLkJt555x2aNWtGo0aNKFWqVNr6iRMnsm7dOgIDA6lUqRJTpkzJcP/UMUqpr9Rkq0qVKhw/fpwyZcpQtGhRADp16sRPP/1EjRo1mDdvHvfcc89F9ZUpU4bWrVsTEBBA586dqVatGmDP5NelSxcqV65MmzZtqFmzZto+Tz/9NN27d79o+vNSpUrx+uuvExoaSlBQELVq1aJ58+ZXf9FERERERHKIudRtUTeSGjVqWJs2bbpg3a5du7jvvvuyVc+1uvUuLi4OX1/fq6pDrk769o+IiCA0NNR1AUmG1C7uR23intQu7kdt4p7ULu7H3drEGLPZsqwalyt3y4xRyqqcHpskIiIiIiLuL0dvvTPGNDPG7DbG7DPGXDTnszGmtzHmN2PMNmPMWmNMJcf60saYs47124wxk3IyThEREREREWc51qNkjPEEJgIPAgeBjcaYryzL2ulUbKZlWZMc5VsBY4Bmjm1/WpZ14QN5RERERETkhhEaCjExQWRzPjK3kJM9SiHAPsuy/rIsKxGYDTziXMCyrH+dFn2Am2PAlIiIiIiI3NBycoxSSeCA0/JBoGb6QsaY54ABwG1AQ6dNZYwxW4F/gWGWZV30JFJjTE+gJ0CxYsWIiIi4YLufn1+G01VfD8nJyS47ttgSEhIu+EzEx8df9BkR11O7uB+1iXtSu7gftYl7Uru4l5iYIJKTk2/INsnJRMlksO6iHiPLsiYCE40xTwLDgC7AEeAuy7KijTHVgcXGGP90PVBYljUZmAz2rHfpZ9PYtWtX9meeS60iInu7padZ71wvd+7cVK1aNW3Z3WZcEZvaxf2oTdyT2sX9qE3ck9rFvRQoADExMTdkm+TkrXcHgTudlksBhy9RfjbQGsCyrHOWZUU73m8G/gQq5FCcOSpfvnxZLhsWFsbo0aNzrP4rPUZGIiMjmTlz5lXXIyIiIiLijnIyUdoI3GOMKWOMuQ3oAHzlXMAY4/yk0+bAXsf6Io7JIDDGlAXuAf7KwVglm5QoiYiIiMjNLMcSJcuykoC+wPfALmCuZVk7jDGvO2a4A+hrjNlhjNmGPU6pi2N9PWC7MeZXYD7Q27KskzkV6/X29ddfU7NmTapWrUrjxo2JiopK2/brr7/SsGFD7rnnHqZMmZK2/r333iM4OJjAwEBee+21DOvNrMybb77JvffeS+PGjdm9e3eG+/799980atSIwMBAGjVqxD///ANA165dmT9/flq51B6sIUOG8OOPPxIUFMTYsWNJTk5m4MCBBAQEEBgYyIQJEwBYtWoVVatWJSAggG7dunHu3DkASpcuzdChQ6lduzY1atRgy5YtNG3alHLlyjFp0n+zwWd0TqdPn6Z58+ZUqVKFypUrM2fOnKxffBERERGRLMjRB85alrUMWJZu3XCn9y9mst8CYME1DaYfkJVpCVPLhGahbBAwLvuhPPDAA6xfvx5jDJ988gnvvvsu77//PgDbt29n/fr1nD59mqpVq9K8eXN+//139u7dy4YNG7Asi1atWrFmzRrq1auXVufy5cszLOPj48Ps2bPZunUrSUlJVKtWjerVq18UU9++fencuTNdunThs88+44UXXmDx4sWZnsOoUaMYPXo0S5cuBeDjjz9m//79bN26FS8vL06ePElCQgJdu3Zl1apVVKhQgc6dO/Pxxx/Tr18/AO68805+/vln+vfvT9euXVm3bh0JCQn4+/vTu3fvTM/p+PHjlChRgm+++QaA2NjY7DeCiIiIiOS8bdvId/48EOzqSLItRxMlydjBgwdp3749R44cITExkTJlyqRte+SRR8iTJw958uShQYMGbNiwgbVr17J8+fK0iQni4+PZu3fvRYlSRmXi4uJo06YNefPmBaBVq1Zk5Oeff2bhwoUAdOrUiZdffjlb57Ry5Up69+6Nl5f9kSpUqBC//vorZcqUoUIFe3hZly5dmDhxYlqilBpLQEAA8fHx+Pr64uvrS+7cuYmJicn0nOrWrcvAgQMZPHgwLVq0oG7dutmKVURERESujxr/tqK2FQ8pJ8AjJ0f9XHu3TqKU1Z6fUMe/ETkTBsDzzz/PgAEDaNWqFREREYSFhaVtM+bCyQKNMViWxSuvvEKvXr0yrTOzMuPGjbuozqxI3cfLy4uUlJS0YyQmJmZ6/PTHsaxLPxYrV65cAHh4eKS9T11OSkq65Hlv3ryZZcuW8corr9CkSROGDx9+URkRERERcZHz56FfP0ZbB1jk5QPnzkGePK6OKlturLTuJhEbG0vJkiUBmD59+gXblixZQkJCAtHR0URERBAcHEzTpk357LPPiI+PB+DQoUMcO3bsgv0yK1OvXj0WLVrE2bNniYuL4+uvv84wpjp16jB79mwAvvzySx544AHAHku0efPmtNjOnz8PgK+v7wXPiWrSpAmTJk0iKSkJgJMnT1KxYkUiIyPZt28fAF988QX169fP8nXK7JwOHz5M3rx56dixIwMHDmTLli1ZrlNEREREctipU/DQQ5z76CPuv93waJHTxFoZ/9juzm6dHiUXOXPmDKVKlUpbHjBgAGFhYbRr146SJUtSq1Yt9u/fn7Y9JCSE5s2b888///Dqq69SokQJSpQowa5du6hduzZgT6gwY8YMihYtmrZfkyZNMixTrVo12rdvT1BQEHfffXemt6mNHz+ebt268d5771GkSBGmTp0KQI8ePXjkkUcICQmhUaNG+Pj4ABAYGIiXlxdVqlSha9euPP/88+zZs4fAwEC8vb3p0aMHffv2ZerUqbRr146kpCSCg4Pp3bt3lq9dZue0b98+Bg0ahIeHB97e3nz88cdZrlNEREREctDu3dCyJX9F7qdOIQ+iolPwLJSfvN55XR1ZtpnL3R51o6hRo4a1adOmC9bt2rWL++67L3sVhTr+jbi6ePTAWddL3/56AJ17Uru4H7WJe1K7uB+1iXtSu7jQihXw+OMsOH+ODufPkuLpwW35y+AZfwfx8WtdHV0aY8xmy7JqXK6cbr1LL4IcHZ8kIiIiInLTmTiR882a8VxKAm1PnyVv8fxs3LiRXAmlLr+vm9KtdyIiIiIicmUckzYc/ugjHvbx4td/EwhqHsTauWvxyetDUFAEMTExro7yiqhHSUREREREss8xacMPH31ERW/Dr4lJPD/qebYu3YpPXh9XR3fV1KMkIiIiIiLZs3s3KS1a8MZffzEC8Lrdi4Vz5tCmXhtXR3bNKFESEREREZGsW7GC423b8sSZeFalpFC8TnF+WfILdxa+M8PiN+rccbr1Lr3QUPslIiIiIiIXmjiRn5o1I/B0HKusFJq82IS/1/ydYZJ0/jz88w/880/eGzJZUqKUw/Lly3fB8rRp0+jbt6+LoskZoaGhpJ+aPasiIiL46aef0pYnTZrE559/fq1CExEREZFr4fx5rGefZWzfvtRLSeFYfnhr1lt8P+57vD29Lyq+cSMEB8P+/XaPUkKCC2K+Srr1TlwqIiKCfPnyUadOHYBsPZBWRERERK6DU6eIad2abmvWsAjIG5CH7+Z/T90KdS8qGhcHw4bBhAlQogT4+4OX1xny5Lnt+sd9ldSj5EJdu3Zl/vz5acupvU8RERHUr1+fxx9/nAoVKjBkyBC+/PJLQkJCCAgI4M8//wTg66+/pmbNmlStWpXGjRsTFRUFQFhYGN26dSM0NJSyZcsyfvz4DI+/fPlyateuTbVq1WjXrh3x8fF8++23PP7442llIiIiaNmyJQB9+vShRo0a+Pv789prr2VYp3MP2vz58+natWumsUZGRjJp0iTGjh1LUFAQP/74I2FhYYwePRqAbdu2UatWLQIDA2nTpg2nTp0C7B6swYMHExISQoUKFfjxxx+zfe1FREREJAt272ZLlSpUX7OGxQbKP1GeyJ//zjBJ+uorqFTJTpKeew527oTChV0Q8zVy6/Qo9esH27ZdvlxqmayMUwoKgnHjLlnk7NmzBAUFpS2fPHmSVq1aXbbqX3/9lV27dlGoUCHKli1L9+7d2bBhAx988AETJkxg3LhxPPDAA6xfvx5jDJ988gnvvvsu77//PgB//PEH4eHhxMXFce+999KnTx+8vf/rFj1x4gQjR45k5cqV+Pj48M477zBmzBiGDh1Kr169OH36ND4+PsyZM4f27dsD8Oabb1KoUCGSk5Np1KgR27dvJzAw8PLXCTKNtXfv3uTLl4+BAwcCsGrVqrR9OnfuzIQJE6hfvz7Dhw9nxIgRjHNc76SkJDZs2MCyZcsYMWIEK1euzFIcIiIiIpI11vLl/K91a/qdPYvlA+3f6MAXL36Bl8eFKcThw/DCC7BgAVSuDPPmQa1aLgr6Grp1EiUXyZMnD9ucErRp06ZlaTxPcHAwxYsXB6BcuXI0adIEgICAAMLDwwE4ePAg7du358iRIyQmJlKmTJm0/Zs3b06uXLnIlSsXRYsWJSoqilKl/nsy8vr169m5cyf3338/AImJidSuXRsvLy+aNWvG119/Tdu2bfnmm2949913AZg7dy6TJ08mKSmJI0eOsHPnziwnSpeKNSOxsbHExMRQv359ALp06UK7du3Stj/66KMAVK9encjIyCzFICIiIiJZc3rMGHoPHMgMyyJvacP70z6id/0Lh0ikpMDkyTB4MCQmwttvw0svgffFQ5ZuSLdOonSZnp80qT1JERE5FUkaLy8vUlJSALAsi8TExLRtuXLlSnvv4eGRtuzh4UFSUhIAzz//PAMGDKBVq1ZEREQQFhaW4f6enp5p+6SyLIsHH3yQWbNmXRRX+/btmThxIoUKFSI4OBhfX1/279/P6NGj2bhxIwULFqRr164kZDAqzxiT9t55+6VivRKp55fRuYmIiIjIFTp/np2dOtFuzhz+AIo8mJ9lU1dRo2SNC4rt2AE9e8JPP0GjRjBpEpQv75qQc4rGKLlQ6dKGPswvAAAgAElEQVSl2bx5MwBLlizh/Pnz2do/NjaWkiVLAjB9+vRs7VurVi3WrVvHvn37ADhz5gx79uwB7DFAW7ZsYcqUKWm33f3777/4+Pjg5+dHVFQU3377bYb1FitWjF27dpGSksKiRYsuG6uvry9xcXEX1ePn50fBggXTxh998cUXab1LIiIiIpIDTp7ki6pBBM+Zwz/eEDgokB2L9l2QJCUkwKuvQtWqsHs3TJ8OK1bcfEkSKFFyqR49erB69WpCQkL45Zdf8PHxydb+YWFhtGvXjrp161I4myPlihQpwrRp03jiiScIDAykVq1a/PHHH4DdS9OiRQu+/fZbWrRoAUCVKlWoWrUq/v7+dOvWLe2WvfRGjRpFixYtaNiwYdqtg5eKtWXLlixatChtMgdn06dPZ9CgQQQGBrJt2zaGDx+erXMUERERkaxJ2L6dXmVK03nHTvLdDu2nPsOGtzdRxKdIWpmICAgMhJEj4Ykn4I8/oHNncLqh6KZirBvx6U8ZqFGjhpV+7M+uXbu47777slfRNbr1Li4uDl9f36uqQ65O+vaPiIggVA8TdjtqF/ejNnFPahf3ozZxT2qX7Ptz+nTaduvGtpQU7gz0YMRnn/B09afTtp88CYMGwWefQdmy8L//QePGWas7NBRiYmLYtq1AzgR/BYwxmy3LqnG5crfOGKWsug5jk0RERERE3MHinj3pOmUKloF72xdgxpgV1Chh5xCWBbNm2ZNHnzwJQ4bYt93lzevioK8TJUoiIiIiIreY82fOMLh2bcZu3849ueCO/6vKvP7fUixfMQD274c+feD77yEkBFautG+7u5VojJKIiIiIyC3k4G+/Ub94ccZu307t4vDgzF6sGvoLxfIVIykJRo8Gf39Yt85+eOxPP916SRKoR0lERERE5Jax/NNPeapnTxJSUmgQbOj0v095uqo9HmnTJujRA7Ztg1at4MMP4c47XRywC6lHSURERETkJpecnMxrnTrRrHt3ilgphDxVgLcX/szTVZ8mPh7694eaNSEqChYsgMWLb+0kCdSjdJHr+LxZEREREZEcd+zYMZ6sW5dVe/bwSG7g/6oyqd8y7sh3B998A88+CwcO2GOS3noL/PxcHbF7UI9SDjt69CgdOnSgXLlyVKpUiYcffjjtwa7ZNW7cOM6cOXNN4oqMjGTmzJlpy5s2beKFF164JnU7Cw0NJf207SIiIiJyffwYHk6VMqVZt2cPzxeD0tO7MfeV9RB/B+3bQ4sW4OsLa9fCxIlKkpwpUcpBlmXRpk0bQkND+fPPP9m5cydvvfUWUVFRV1TfpRKl5OTkbNWVPlGqUaMG48ePv6K4RERERMS9pKSk8G5YGA0aNsT3zFn6VDUEfjWJMW0/Zdqnt1GxIixZYj88dssWqFPH1RG7HyVKOSg8PBxvb2969+6dti4oKIi6detiWRaDBg2icuXKBAQEMGfOHOC/h6S1bduWihUr8tRTT2FZFuPHj+fw4cM0aNCABg0aAJAvXz6GDx9OzZo1+fnnn3n99dcJDg6mcuXK9OzZk9SHCe/bt4/GjRtTpUoVqlWrxp9//smQIUP48ccfCQoKYuzYsURERNCiRQsATp48SevWrQkMDKRWrVps374dgLCwMLp160ZoaChly5bNdmI1a9YsAgICqFy5MoMHD05b/+mnn1KhQgVCQ0Pp0aMHffv2vfKLLiIiInKLO3XqFK0bN2bwiBG0NtDo0fy0W7KOOvl6Ua8e9OoF1arB9u3wf/8Ht93m6ojd0y0zRqlfP3sGj8tJLZOVBzoHBcG4cZlv//3336levXqG2xYuXMi2bdv49ddfOXHiBMHBwdSrVw+ArVu3smPHDkqUKMH999/PunXreOGFFxgzZgzh4eEULlwYgNOnT1O5cmVef/11ACpVqsTw4cMB6NSpE0uXLqVly5Y89dRTDBkyhDZt2pCQkEBKSgqjRo1i9OjRLF26FLATtFSvvfYaVatWZfHixfzwww907tyZbY4L88cffxAeHk5cXBz33nsvffr0wdvb+7LX6vDhwwwePJjNmzdTsGBBmjRpwuLFiwkJCeGNN95gy5Yt+Pr60rBhQ6pUqXLZ+kRERETkYhs3buTxli05FBXFm94Q2b8SgwauYPqHJXj7bfs2u6lToUsXMMbV0bo39Si5yNq1a3niiSfw9PSkWLFi1K9fn40bNwIQEhJCqVKl8PDwICgoiMjIyAzr8PT05LHHHktbDg8Pp2bNmgQEBPDDDz+wY8cO4uLiOHToEG3atAEgd+7c5L3M45TXrl1Lp06dAGjYsCHR0dHExsYC0Lx5c3LlykXhwoUpWrRolm8j3LhxI6GhoRQpUgQvLy+eeuop1qxZw4YNG6hfvz6FChXC29ubdu3aZak+EREREfmPZVlMnDiRB2rXJiUqis8KQtxHHWjXdCsP1y3B66/D44/Drl3Qtev1S5IiImDcuCz0VrihW6ZH6VI9P86u5ax3/v7+zJ8/P8NtqbfFZSRXrlxp7z09PUlKSsqwXO7cufH09AQgISGBZ599lk2bNnHnnXcSFhZGQkLCJY+TmYz2MY6/pqzGlpU6L7VeRERERLImLi6Ont27M3vuXJoDT5WHE2M/5sSS3jTpAWXKwHffQdOmro70xqIepRzUsGFDzp07x5QpU9LWbdy4kdWrV1OvXj3mzJlDcnIyx48fZ82aNYSEhFyyPl9fX+Li4jLclpCQAEDhwoWJj49PS9Dy589PqVKlWLx4MQDnzp3jzJkzl6yrXr16fPnll4B9S17hwoXJnz//JWNr1KgRhw4dynR7zZo1Wb16NSdOnCA5OZlZs2ZRv359QkJCWL16NadOnSIpKYkFCxZc8jgiIiIi8p/ffvuNGlWrMnfuXN4GHqyXhz3P72TkM72ZOhVefhl+/11J0pVQopSDjDEsWrSIFStWUK5cOfz9/QkLC6NEiRK0adOGwMBAqlSpQsOGDXn33Xe54447Lllfz549eeihh9Imc3BWoEABevToQUBAAK1btyY4ODht2xdffMH48eMJDAykTp06HD16lMDAQLy8vKhSpQpjx469oK6wsDA2bdpEYGAgQ4YMYfr06ZeMKyUlhX379lGoUKFMyxQvXpy3336bBg0apE0q8cgjj1CyZEmGDh1KzZo1ady4MZUqVcLPMS/lV199lTbmSkREREQuNH36dGqGhBCz/y++84Coxx5gSa6ThL14H3fdBZs2wTvvwGVGXUhmLMu6KV7Vq1e30tu5c+dF6y6nfn37dbX+/fffq6/kBvHbb79Z/fv3v+L94+LiLMuyrPPnz1stWrSwFi5ceE3iSt/+4eHh16ReubbULu5HbeKe1C7uR23inm6Fdjlz5oz1zDPPWIBVz8NYW3N7WA8/PMXKmzfF8vGxrHHjLCspydVR/sfd2gTYZGUhv7hlxihl1bUYm3SrqVy5MmPGjLni/cPCwli5ciUJCQk0adKE1q1bX8PoRERERG4ee/fupW3btmzfvp2hQGW/IFoXXMrfy0rQooX90Ni77nJ1lDcHJUricqNHj3Z1CCIiIiJub/78+XTr1g2vcwksJBczCo1iVMyLFM1lmDcPHntMU35fSxqjJCIiIiLixhITE3nxxRdp164d5VMSGZt4Pz1y72XhyX706GHYtQvatlWSdK2pR0lERERExE39/fffPP7442zYsIGn8uQn4fSHdKUTFUunsHgKPPCAqyO8eSlREhERERFxQ9988w2dO3fm/NmzdPNszIKzcznt5cuIVy0GD/bA6fGWkgN06106oaGhhKY+dVZERERE5DpLSkpi6NChtGjRAj/jzb1np/BZ8grKBp3n99+9GD7cKEm6DpQo5bCjR4/SoUMHypUrR6VKlXj44YfZs2dPjh83IiKCFi1a5OgxIiMjqVy58lWXERERERHbkSNHaNy4MW+//TYV/R7gYPQf7PZ8mHffO8TmLUW5915XR3jrUKKUgyzLok2bNoSGhvLnn3+yc+dO3nrrLaKiolwdmoiIiIi4mfDwcKpWrcr69Rso7PUOf8T+SO1S69j+520MGlhSkzVcZ0qUclB4eDje3t707t07bV1QUBB169YlPj6eRo0aUa1aNQICAliyZAlwcQ/M6NGjCQsLA2D8+PFUqlSJwMBAOnToAMCGDRuoU6cOVatWpU6dOuzevfuSMU2bNo3WrVvTsmVLypQpw4cffsiYMWOoWrUqtWrV4uTJkwBs27aNWrVqERgYSJs2bTh16hQAmzdvpkqVKtSuXZuJEyem1ZucnMygQYMIDg4mMDCQ//3vf9m6VjNmzCAkJISgoCB69epFcnIyAPny5eOll16iWrVqNGrUiOPHj2erXhERERF3l5KSwptvvknjxo05e9qXc+c24pPUjpEdRhHxz8OUvtvH1SHekm6ZyRz69evHtm3bLlsutUxWxikFBQUxbty4TLf//vvvVK9ePcNtuXPnZtGiReTPn58TJ05Qq1YtWrVqdcnjjRo1iv3795MrVy5iYmIAqFixImvWrMHLy4uVK1cydOhQFixYcMl6fv/9d7Zu3UpCQgLly5fnnXfeYevWrfTv35/PP/+cfv360blzZyZMmED9+vUZPnw4I0aMYNy4cTz99NNp6wcNGpRW56effoqfnx8bN27k3Llz3H///TRp0gSThZ8+du3axZw5c1i3bh3e3t48++yzfPnll3Tu3JnTp09TrVo13n//fV5//XVGjBjBhx9+eNk6RURERG4E0dHRdOrUiW+//ZbbvB4nLn4yz3pPocMneajbeYirw7ul3TKJkruxLIuhQ4eyZs0aPDw8OHTo0GVvyQsMDOSpp56idevWtG7dGoDY2Fi6dOnC3r17McZw/vz5yx67QYMG+Pr64uvri5+fHy1btgQgICCA7du3ExsbS0xMDPXr1wegS5cutGvX7qL1qX/UAMuXL2f79u3Mnz8/La69e/dSoUKFy8azatUqNm/eTHBwMABnz56laNGiAHh4eNC+fXsAOnbsyKOPPnrZ+kRERERuBOvXr+exxx7n6NEo4GP8k6rzapFmBK98j1KBmvfb1W6ZROlSPT/OUnuSIiIirvqY/v7+aYlDel9++SXHjx9n8+bNeHt7U7p0aRISEvDy8iIlJSWtXEJCQtr7b775hjVr1vDVV1/xxhtvsGPHDl599VUaNGjAokWLiIyMzFJPWC6naVI8PDzSlj08PEhKSsp0P8uyMu0hsiyLCRMm0LRp0wvWR0ZGXjYey7Lo0qULb7/99mXLZqWHSkRERMSdWZbFuHHjGThwIJZ1J178wGjmU6f6WwQs30jeQsVcHaKgMUo5qmHDhpw7d44pU6akrdu4cSOrV68mNjaWokWL4u3tTXh4OH///TcAxYoV49ixY0RHR3Pu3DmWLl0K2PeuHjhwgAYNGvDuu+8SExNDfHw8sbGxlCxZErDHH10Lfn5+FCxYkB9//BGAL774gvr161OgQAH8/PxYu3YtYCd7qZo2bcrHH3+c1qO1Z88eTp8+fUG9hw4dolGjRhcdr1GjRsyfP59jx44BcPLkybTrkZKSkpZszpw5kwf0VDURERG5gcXGxvLgg+0YMKAfKSnNCc7zDnutJ7n/qW2ErP9LSZIbydEeJWNMM+ADwBP4xLKsUem29waeA5KBeKCnZVk7HdteAZ5xbHvBsqzvczLWnGCMYdGiRfTr149Ro0aRO3duSpcuzbhx4/D396dly5bUqFGDoKAgKlasCIC3tzfDhw+nZs2alClTJm19cnIyHTt2JDY2Fsuy6N+/PwUKFODll1+mS5cujBkzhoYNG16z2KdPn07v3r05c+YMZcuWZerUqQBMnTqVbt26kTdv3gt6j7p3705kZCTVqlXDsiyKFCnC4sWLL6jzyJEjeHld/JGrVKkSI0eOpEmTJqSkpODt7c3EiRO5++678fHxYceOHVSvXh0/Pz/mzJlzzc5RRERE5Hr6+edtPPxwO2Ji9pMnz5u87fkrvc48zr53BhLy8nuuDk/SMZZl5UzFxngCe4AHgYPARuCJ1ETIUSa/ZVn/Ot63Ap61LKuZMaYSMAsIAUoAK4EKlmUlZ3a8GjVqWJs2bbpg3a5du7jvvvuyFfe1uvUuLi4OX1/fq6rjZvPhhx9y1113XXbSCmf58uUjPj7+io6Xvv0jIiL0MGE3pHZxP2oT96R2cT9qE/fkju1i/8j9KR980BcoTHX/V5i3bxh+3nGcnTuTkg897uoQc5S7tYkxZrNlWTUuVy4ne5RCgH2WZf3lCGg28AiQliilJkkOPkBq1vYIMNuyrHPAfmPMPkd9P+dgvMC1GZskGevbt6+rQxARERG5rv766zSNGj1LZOTn5M3bmO51ivL+qr4cutOP3Cu2U6hCJVeHKJnIyR6ltkAzy7K6O5Y7ATUty+qbrtxzwADgNqChZVl7jTEfAusty5rhKPMp8K1lWfPT7dsT6AlQrFix6rNnz74gBj8/P8qXL58j53c5ycnJeHp6uuTYYtu3bx+xsbFpy/Hx8eTLl8+FEUlG1C7uR23intQu7kdt4p7cpV0sC2bMOMO0aYNISdlFpYBevJRnHt02RPNr0F3EjvyIFJ9b4/lI7tImqRo0aODyHqWMpie7KCuzLGsiMNEY8yQwDOiSjX0nA5PBvvUufZferl27XHb7m269c73cuXNTtWrVtGV36/YVm9rF/ahN3JPaxf2oTdyTO7TLnj3QuvUsdu3qgbd3Xl76v7dpPutV6v92nr96tKXKx7PhFvpB3R3a5Erk5Kx3B4E7nZZLAYcvUX420PoK981UTvWYiXtTu4uIiMj1lpgIYWHnuO++Z9m160nKlQvi7THt6f7REGpHJhE1YRRlJ8+7pZKkG1lO9ihtBO4xxpQBDgEdgCedCxhj7rEsa69jsTmQ+v4rYKYxZgz2ZA73ABuyG0Du3LmJjo7m9ttv1/N3biGWZREdHU3u3LldHYqIiIjcItatg65d97NvXztgMz179eeuwlvpNuhDPG7LRdLyrynW4EFXhynZkGOJkmVZScaYvsD32NODf2ZZ1g5jzOvAJsuyvgL6GmMaA+eBU9i33eEoNxd74ock4LlLzXiXmVKlSnHw4EGOHz9+jc4q6xISEvRF3YVy585NqVKlXB2GiIiI3ORiYuCVV2DSpK8wpgs+PjBu8hROfD2CgZMPEl2mGEVX/owpU8bVoUo25ehzlCzLWgYsS7duuNP7Fy+x75vAm1dzfG9vb8q46EMZERFxwfgYEREREbl5WBYsWAB9+54nKmooMJqgoOoMeu8Fzr7aiyE/JxDVIIRiS1aCxq3fkHI0URIRERERudkcOADPPQdff30IH58OwFr69OnDfQ8Vo2jPLjT6C04+351iYydpPNINLCcncxARERERuWkkJ8MHH0ClSrB8+Qp8fIKArUz7fBq+/odp2jWMev94cHbyRxQaP0VJ0g1OiZKIiIiIyGVs2wa1a0O/fsnccccIEhObUrp0Mb4O/5oNm9/klZeWUDLFB8/wCPL06OPqcOUa0K13IiIiInJTCA2FmJggtm27dnWeOQMjRsD770OBAscICOjIb7+toHPnzjw55Em+H9qKD76K50z5u/H5PgJKl752BxeXUqIkIiIiIpKB5cuhd2/Yvx+aN1/L5s3t2bMnmsmTJ5NY6TT7uzzEqI0WcU0bkH/eEk3acJPRrXciIiIiIk6OHYOOHaFpU/DysujdezTffReKj08eVq9dzfY8EdzbqT+9N1qcG/Aivt+sUJJ0E1KiJCIiIiKCPeX3tGlw330wdy4MHHiKe+9tw6RJg2jdujVfhX/F6O968PyLMwk96EnKZ5+S6/1xmrThJqVb70RERETklrd3L/TqBeHhcP/98OKLmxk8uB0HDhxg3LhxVGtdjbA37mfKFzHkyZsfr/BldkG5aSlREhEREZFbVmIivPcevPEG5MoFH39skZw8iY4d+1GsWDHWrFnDr96/Mu+5UGZ+m0LSvRXItex7TdpwC9CtdyIiIiJyS/r5Z6hWDYYNg5YtYdOmeNaseYq+fZ+lUaNGrN+4nulHPiGlTx/Gf5OC9VAzcv+ySUnSLUI9SiIiIiJyS4mNhaFD4eOPoWRJWLIEypXbQatWbdmzZw8jR46kS98uPD3tEQZ9sInG+yFl0EC83x6l8Ui3ECVKIiIiInLLWLQI+vaFI0fghRfsW+4WL/6CkJDe+Pr6snLlSnKXz02Ht6oy9dNoyv7rBVOn4NG1q6tDl+tMt96JiIiIyE3v4EFo3RoefRSKFIFffoG33z7LgAE96Ny5M8HBwWzdupV9+ffx+rC6LJtwkjIUxDM8ApQk3ZKUKImIiIjITSs5GSZMsKf8Xr4c3n0XNm6EggX3UadOHT755BNeeeUVln2/jBGbR7BteE+Wzkghb7mKeG3arJntbmG69U5EREREbkrbt0OPHrBhAzRpYo9JKlsWFixYQLdu3fD09GTp0qVUr1+dh6Y3pv2Un3l2E1gtmmNmztRDZG9x6lESERERkZvK2bPwyitQvTrs3w8zZsB330GpUon079+ftm3bUrFiRbZu3UrhKoVpNK4qYe/+wrObgJdfxixerCRJ1KMkIiIiIjePuDgvAgLgzz/h6aftZyTdfjv8888/tG/fnvXr1/P8888zevRoZuyYwdhpvflmpsVd/3rC1E81HknSKFESERERkRve6dPwxx8QFZWP8uVh1Spo2NDe9u2339KxY0fOnz/P3Llzaf1oa/p/35/dsyfy8wIv8uYtgMcPizUeSS6gW+9ERERE5IZ2+DDUrw9RUVC0aALbt9tJUnJyMsOGDePhhx+mVKlSbNq0iXoP1aPR542wJk7kuy8NPuUq4rFxo5IkuYgSJRERERG5YW3ZAiEhsHs3VK4MxYsnkCcPHD16lAcffJA333yTZ555hvXr1xPrE0utSdXpOOknJi4Dz+YtMOt+gtKlXX0a4oaUKImIiIjIDWnJEqhbFzw8YN06eywSwOrVq6latSrr169n2rRpfPLJJ8zdPZdWEx/gi8nR9NyQDC+/bD99VpM2SCY0RklEREREbiiWBe+/b+c6NWrYCVPx4rB1a33Onv2bhg0PUL58eZYvX07FShV58dsX+W7ZeDbOy0PJU8kwdaombZDLUqIkIiIiIjeMxER49ln49FNo1w6mTyftVrszZ34nKekk7du3Z8qUKSR4JPDgFw/i/cNqti3MRe68+TA/LNJ4JMkS3XonIiIiIjeEkyehWTM7SRo2DGbPhty5LWbOnIm/vz9JSae47bayzJo1i73xe6kxpQZBC9bx/UwP8pStgNmwQUmSZJkSJRERERFxe3v3Qu3a9likzz+HN96A48ejeOyxx3jqqae45557yOdRidxJBfjyty+pP6UOb8yLZtzSJDwebm7vqEkbJBuUKImIiIiIW1u9GmrVguhoWLkSOna0mD17Nv7+/ixbtox33nmHdevWUS3/NPI9XJEXvuxExJw8dP7ptCZtkCumMUoiIiIi4ramToVevaBcOVi6FHx9j9G2bR8WLlxISEgI06ZN47777uOf2H/Y2qYXxX22sG2GH4VPnNGkDXJV1KMkIiIiIm4nJQWGDIFu3eyHyf78M2zePBd/f3+WLl3KqFGjWLduHfdWvJcPN3yI/0f+1E74jY0f56LI+dswP/ygJEmuinqURERERMStnD4NnTrZd8z16gXDhx+nR49nmT9/PjVq1GDatGn4+/uz6/guun/dnQO//cSijcVpvC6efaY8+Tes0HgkuWpKlERERETEbRw+DK1awZYtMHYslCgxjypVnuXff//lrbfeYtCgQaSYFN5Y/QYTlr/BsHWePPezNx4ep/gy19NM8+zCCiVJcg0oURIRERERt7B1K7RsCTEx8MUXJ/jqq+eYO3cu1atXZ9q0aVSuXJkNhzbQe2E36i7bwb51t+Ebfw7TqROMHMmUgGiSkpJcfRpyk1CiJCIiIiIut2QJPPkk3H47jBixgP79+xATE8PIkSN5+eWXSbQSGfBdfw5N/YCFqzwoHQ00rgfvvQdBQY5aol15CnKTUaIkIiIiIi5jWfD++/Ys3lWqnODuu59n4MDZVKtWjVWrVhEQEMDKv1Yy+YPODFhwhFqHILnyvTDjfWjaFIxx9SnITUqJkoiIiIi4RGIiPPccfPIJ1KmziH37erNjxyneeOMNBg8eTHxSPEM/eozgCQuZ+wecK1YYPnsXz86dwdPz4gqDgoiPibn+JyI3JSVKIiIiInLdnToFjz0G4eHR+Ps/z08/zSIoKIgVK1YQEBDA0rWfcWLw87z+y1mSct/G+deHkuulQZA3b6Z1RkRARMQ2IPR6nYbcxJQoiYiIiMh1tXcvtGgBf/21BD+/XuzeHc2IESN45ZVXOHHyH77sUIlWi/8gbxKc6vw4Rd6ZAEWLujpsucXogbMiIiIict2sXg0hISeJjOxIUlJrypQpzqZNmxg29BXWjexOSoV76Dj3D47Wqgy//06RqXOUJIlLKFESERERketi6lRo1Ogr4uL8SUmZw2uvvcYvv/xCkb1b2F+mIKGvf05s4Xwc/GYWFVb/htd9/q4OWW5huvVORERERHJUSgoMGHCKDz54kf9n787jdK76P46/zsyYse9MsmeLkC2klJ0IlUT2nRh7RIXsS9kZe6SUUDeyJGEIN9l3Zd9G9rHNmPX8/vjO3Q9ZhlxzzYz38/HwMNd1fc/3+pzHueN+O+d7DnzNCy8U5uuvl1HIRnLq1YLk3HKIY2k9+HVYGyr2mITx0L/li/spKImIiIiIy9y8CZUqLWHTpjYYc57evfvQr0VTbvTugseCJaRMDDOaFOKNUYuplC6Hu8sV+ZuCkoiIiIi4xIEDQZQt24VLl74iU6ZC/PTddxReugQKPE/SqAj8X09K1qH+tCjVBKPzkCSOUVASERERkSdu/PhldOnSmqioc7z3bi9mv5wB805tEl2+yteFYbgLOqMAACAASURBVLdfXXo3mkzaJGndXarIPSkoiYiIiMgTExQURJ06XVm9ehZeXi/wdcePqbdkFJ4LjrIqJ4xp/iyd239F4+cqubtUkQdSUBIRERGRJ2LZsuU0aNCaq1f/IlO6D9mYfT85xvpx8BkvPmxoyNeoC3MrDCSZdzJ3lyryUApKIiIiIvKvXL16lS5dujFr1pdAASpk6M9PFzpyK8rSqiZsq/I8U96eQcnMJd1dqkiMKSiJiIiIyGNbsWIFLVq0IjAwEOhFTxIz4EZHRlaGz0tH0r3SQPxf6Ym3p7e7SxV5JApKIiIiIvLIrl27Rvfu3Zk+fTrennnxZB0zzDTSlV9FtmIh5M5fho01p5M/Q353lyryWBSUREREROSRrFy5kpYtW3Lm9BkS05mkkR8ysfAnjKgwn0MZPRlacTztX2qPh9HBsRJ/ufR/vcaYasaYP4wxh40xve7xeTdjzH5jzG5jzCpjTPbbPos0xuyM/rXYlXWKiIiIyMNdu3aNtm3bUqVKFSLOhmBsANl9OlGlVUvef2c2z5Qox772+/Ar6aeQJPGey2aUjDGewESgMnAa2GKMWWyt3X/bZTuAEtbaYGPMB8AIoF70ZyHW2iKuqk9EREREYu7XX3+lZZMmnD57lpK8xu8RP1Mo5yEOvleSi2nhm2rf0KBQAx0cKwmGK6N+SeCwtfaotTYMmAvUvv0Ca+0aa21w9MtNQBYX1iMiIiIij+j69eu0a9yYypUr43P2L8p6juB31pKuzCL2NCrOeyWrcaDDARoWbqiQJAmKsda65sbGvAtUs9a2in7dGChlrfW7z/UTgL+stYOiX0cAO4EIYJi1duE92rQB2gD4+voWnzt3rkv68jhu3LhB8uTJ3V2G3EZjEjdpXOIejUncpHGJe56GMdm5YQNfDB1K4M2btDYpWJ/qv+y/mh+qdCfD69/SLW9XSqcr7e4y7/A0jEt8E9fGpHz58tustSUedp0rN3O41z8p3DOVGWMaASWA1297O5u1NtAY8xyw2hizx1p75I6bWTsVmApQokQJW65cuSdS+JMQEBBAXKpHNCZxlcYl7tGYxE0al7gnIY/JjStX6Fm7NpN++408wIxSjel5ZBKXrgH1a9OhUXaGVjxMCp8U7i71HxLyuMRX8XVMXBmUTgNZb3udBQi8+yJjTCXgE+B1a23o/9631gZG/37UGBMAFAWO3N1eRERERJ4Qa1kzcCAtBg7kREQEXbNkoVDrebQeUoxIn3Pk6NaJbz7oxSvZXnF3pSIu58pnlLYAeYwxOY0x3kB94I7d64wxRYEpQC1r7fnb3k9jjPGJ/jk98Apw+yYQIiIiIvIE3Vi9Gr/MmanQrx9exhAwdBjn31tMi89KEZl+N52nf8eBgXMVkuSp4bIZJWtthDHGD1gBeAJfWmv3GWMGAFuttYuBz4HkwPzoh/9OWmtrAfmBKcaYKJwwN+yu3fJERERE5Ek4fJi1rVrRfO1ajgOdK1SgzfQJVGt5klNripKm2CqWL8hIqZwfubtSkVjl0gNnrbXLgGV3vdf3tp8r3afdRqCQK2sTEREReapdvMjNvn3pNWUKE6KiyJUmDWu++5atXmcoXOkckUerUqnpJpZNL0ciL093VysS63QSmIiIiMjTJCQEhg9nXY4cFJ40iQlRUXRq2ZL5O1bx4Y7ZfFjvVaJOvMLn/udZOau0QpI8tVw6oyQiIiIicURUFMyZw83evfn4zBnGAzmzZuXXWTPZnGgzpQb0JGLu9yT3TsrS1V689lpGd1cs4lYKSiIiIiIJ3apV0KMHv+3YQXMfH44Afn5+1OtcD79f/dj1c1HMkuXkygU/L/MiVy53Fyziflp6JyIiIpJQ7d0L1asTXKkSXQ8f5nVjiMyUieUrl5OkVhJe+6Ych+e1gkUzqVDOiy2bFZJE/kczSiIiIiIJTWAg9O0LM2eyIWlSmqdPz6GLF2nfvj01PqiB32o/jpw7S441mzn+3+K0bQvjx0OiRO4uXCTu0IySiIiISEJx/boTkPLkIWT2bLoXLUrZmzcJT56cRcsXEVY1jBo/1CDiakbyLj7LiU3FGTUKJk1SSBK5m2aUREREROK7iAiYPh369YPz59lYqRLNjxzhz23baNeuHWVblqXd2nacu3mOJhlH8+vgTlwM8mDRIqhZ093Fi8RNmlESERERia+shUWLoGBB+OADQvLkoUfDhry6ahW3IiOZ99M8LpS/QMOlDcmYLCOfZ/uDBR92wcN4sGGDQpLIg2hGSURERCQ++v136NED1q2D559n04gRNJsxgz82bKBNmzYUblyYNhvaEBIewuDyQ/Dc1JMP23tSooSTrTJlcncHROI2zSiJiIiIxCdHj0L9+lCqFBw8yK1x4+hZowav9OpFcHAwX/3wFUdeOYLfKj8KZSzE1pa7OPZ1b3p95EmdOhAQoJAkEhOaURIRERGJDy5dgsGDYcIEZ+eFPn3YXK4czTp04ODBg7Rq1Yqc9XLSbnM7vDy8mFRjEnWfa8N7dT1YvRo++QQGDAAP/TO5SIzoPxURERGRuOzWLfj8c8idG8aOhaZNubVnD73CwihTuTI3btzA/zt/dpXcxScbPqHicxXZ32E/lVK3o8zLHvz2G3z1FQwapJAk8ig0oyQiIiISF0VFwXffOVNBJ05A9eowfDhbQkJoVrMm+/fvp1nzZqR/Kz2ddnUiTeI0fFfnO+q9UI916wzvvAPGwKpVULasuzsjEv/o3xVERERE4po1a6BkSWjUCNKmhVWrCP3xR3rPmUPp0qW5evUqX3z1BZuKb+KLHV/wfsH3OdDhAPUL1uerrwyVK0PGjLB5s0KSyOPSjJKIiIhIXLF/P/TsCUuXQrZs8PXX0KABW7dvp1nx4uzbt49GTRqRuEZiehzoQdZUWVnecDnVclcjKgp694Zhw6BiRViwAFKndneHROIvzSiJiIiIuNvZs9CmDRQqBOvXw/Dh8McfhNatyyd9+lC6dGmuXLlCv6n9CCgSwIwDM+hYsiP72u+jWu5qBAdD3bpOSGrbFpYvV0gS+bc0oyQiIiLiLjduwBdfOL/CwqBjR+jTB9KlY9u2bTRr1oy9e/dSv1F9IqpE0P9ofwpkKMC8FvN4OevLAAQGQq1asH07jBoFXbo4zyaJyL+joCQiIiIS2yIi4MsvoV8/+OsvZzpo6FDIlYuwsDAG9unD0KFDyZgxI93Hd2dW8CyuHb9Gv9f70fvV3vh4+QCwYwfUrAlBQc4hsjVrurlfIgmIgpKIiIhIbLHWef6oZ084cABefRUWLnQOjwW2b99Os2bN2LNnD3Xq1+Fq+auMPDuSUplLMaPWDF7I+MLft1q8GBo0gDRpYMMGePFFd3VKJGHSM0oiIiIisWHrVqhQwZn2iYyE//wH1q2DUqUICwujX79+lCpViosXL9LmizasKLyCjRc3MqbqGDa02PB3SLIWRo6Et96CAgXg998VkkRcQTNKIiIiIq50/Dh8/LFzJlKGDDBxIrRuDYkSAbBz506aNWvGrl27qPluTf4q+xdTr0ylSq4qTHlzCjlS5/j7VuHh0KEDTJsG777rHCSbNKl7uiWS0CkoiYiIiDyqcuUoEhQEO3fe/5orV2DwYBg/Hjw9nYNje/aElCkBCA8PZ8iQIQwaNIj06dPTYHADFkQtIPmt5Hz11lc0LtwYc9uuDFeuOOFo9WrnVgMGgIfWBom4jIKSiIiIyJMUGurMGg0a5Oyy0KyZk2qyZPn7kl27dtGsWTN27txJtbercaLMCb69+S31XqjH2Gpj8U3ue8ctDx+GGjXg2DFnFqlJk1juk8hTSP8OISIiIvIkREU5y+uefx66d3c2aNi509ndLjokhYeHM2DAAEqUKMGZwDPU7FuTX4r8wjWPayyqv4i57879R0hau9a51aVLsGqVQpJIbNGMkoiIiMi/tXYt9OgBW7ZAkSKwciVUqnTHJXv27KFp06bs2LGD8jXLc6T0EX4K/4l2xdoxrNIwUiVO9Y/bzprlnEObKxcsWeL8LiKxQzNKIiIiIo/rwAHntNdy5eDsWWdd3LZtd4Sk8PBwBg0aRPHixTl95jTlPyrPmuJr8EnhQ0DTACa9OekfISkqCnr3hubN4bXXYONGhSSR2KYZJREREZFHFRZGktOnoVAhSJbMOSy2c2dIkuSOy/bu3UvTpk3Zvn07Zd4ow6FSh1hn1tGrTC/6vt6XJImS/OPWwcHQuDH8+KMzmzRhwt8b5IlILFJQEhEREXkUixfD1q14h4dDx47Qp4+z7fdtIiIiGDFiBJ999hkpU6XkpS4vsTH1RoplKsaKmisomqnoPW8dGOhMUG3fDqNGQZcucNvGdyISixSURERERGLi+nXo1g2mT4dkybieMycpx437x2X79u2jWbNmbN26leKVivNnqT/Zk2QPw8sNp9vL3fDyuPf//dqxwzmLNigIFi1yfhYR99EzSiIiIiIPs3Gjs0nDjBnQqxeVPVdT/cycOy6JiIhg6NChFCtWjCPHjlCgfQG2vbqN4nmKs7vdbnq+0vO+IWnxYihb1pk92rBBIUkkLlBQEhEREbmfsDDndNeyZZ0dFtatg6FDCTfed1y2f/9+ypQpw8cff0zeMnkJbh3M6aynmfrmVFY1WUWedHnueXtrYeRIeOstKFAAfv8dXnwxNjomIg+jpXciIiIi97J/PzRq5KyJa9ECRo+GlCnvuCQiIoKRI0fSt29fkiZLSo5WOdibeS9v5X+LidUn8myKZ+97+/Bw6NABpk2Dd991NsxLmtTVnRKRmFJQEhEREbldVBSMGwe9ejnBaOFCqF37jkt23mhFRFQIr76ags2bN5P31bwcfvkw3hm9mV99PnXy18E8YBeGK1eccLR6tTNhNWAAeGidj0icoqAkIiIi8j+nTkGzZk6CefNNZ+MGX987LgkLC+OW1yVCQ09w4I8UPNP0Gf7M8SfNijZjZJWRpE2S9oFfcfgw1KgBx445s0hNmriwPyLy2BSURERERAC+/Rbat4eICGc9XMuW/9ibe82aNbRv357Q0OOQyZtrDa6RNmtafnnzFyrnqvzQr1i3Dt5+27ntqlXOo08iEjdpkldERESebpcvQ/360LChs6PCrl3QqtUdIencuXM0atSIChUqcOHaBajjAa3D6Fq5K3s/2BujkDRrFlSqBBkzwubNCkkicZ2CkoiIiDy9Vq6EQoXghx9g8GBnyidXrr8/joyMxN/fn3z58vH9vO9JXy09l5pfwtP3RRIvn82oqqNI5p3sgV8RFQW9e0Pz5vDaa85O47d9hYjEUQpKIiIi8vQJDoZOnaBKFUiVypni+fhj8Pr/pxK2bt1K6dKl6dChA15ZvIhoG0HKN1KyoMECXtm3jXxhDz/sKDgY6taFYcOgTRtYvhzSpHFlx0TkSVFQEhERkafL1q1QvDiMHw+dO8O2bVCs2N8fBwUF4efnR8mSJdl/ZD/mXUNYwzBG1B/B/vb7qVOgDob772j3P4GBzgzSf/4Do0bB5MmQKJErOyYiT5I2cxAREZGnQ0SEM7XTv7+zk93Klc5DQ9GstXz33Xd069aN8xfOk6h0IkLKhdC2TFv6l+9PxmQZY/xVO3dCzZrONuCLFjk/i0j8oqAkIiIiCd+hQ84+3Js2wfvvw8SJd6yBO3jwIB06dGD16tX4ZPPBtrKUK1uOkVVGUjBjwUf6qsWLoUED5/YbNsCLLz7pzohIbFBQEhERkYTLWpg6Fbp1A29v+O47Z4e7aCEhIQwePJjhI4ZDIqAGZK+SndFvjOaN3G888NDYe33VqFHQo4ezsm/xYsiUyQV9EpFYoaAkIiIiCdNffzlnIS1b5iyxmzkTsmT5++OlS5fS3q89J4+fhMKQulZqBrw5gHYl2pHI89EeJgoPhw4dnOOX3n3XOUg2adIn3SERiU0KSiIiIpLw/Pijs83czZswbpyTYjycPaxOnTqFXyc/Fi9cjEcGDzyae9DpvU70fb0vaZI8+pZ0V6444Wj1amfjvIED//4qEYnHFJREREQk4bh2zdnJbtYsZye7b76B/PkBCA8PZ/To0fT9rC9hEWFQEao3q87IN0aSN13ex/q6w4ehRg04dsyZRWrS5An2RUTcSkFJREREEoZ165ykcuoUfPop9OnjPJcErF+/nmatmnHkjyOQF55v8jwT3p9AxecqPvbX3bjhSalSYAysWgVlyz6pjohIXKCJYREREYnfQkPho4+gXDnnwNj16531b97eXLhwgXqN61G2bFmO/HWEVE1TMe27aeztvfexQ9LZs84M0tGjycmQwdlITyFJJOGJcVAyxiRzZSEiIiIij2zPHihZEkaMgNatnQOMXn6ZqKgoJkyaQPbc2Zn37Tw8y3rS7etunJxyklbFWuHp4fnIX7VtmzNhlT07nDwJKVOG89//Qu7cLuiXiLjdQ4OSMaaMMWY/cCD69YvGGP+Y3NwYU80Y84cx5rAxptc9Pu9mjNlvjNltjFlljMl+22dNjTGHon81fYQ+iYiISEIXGQlffAElSji72/30E0yZAsmTs2PnDvIVzUfH9h0JSRNC1S+qcnjxYUbWHElKn5SP9DUREbBggTNjVKIE/Oc/8MEHTjbLkSP49qOYRCSBicmM0migKnAJwFq7C3jtYY2MMZ7AROANoADwvjGmwF2X7QBKWGsLAwuAEdFt0wL9gFJASaCfMUZ/FImIiAicOAEVKzoHFlWvDnv3wptvcv36deq1qkex4sU4fPgwOZvn5Le1v/Fz15/JkTrHI33FlStODsuVC+rWhTNnnDOSTp+GsWMhSRLXdE1E4o4YLb2z1p66663IGDQrCRy21h611oYBc4Had913jbU2OPrlJuB/hxtUBVZaay9ba68AK4FqMalVREREEihrYfZsKFwYtm93zkX68Uds+vRMnDmRjNkzMm/GPJKWSsqknydxeMZhXs3+6iN9xR9/ODuJZ8ni5LDnnnNmkQ4dgq5dIVUqF/VNROKcmOx6d8oYUwawxhhvoBPRy/AeIjNwe8A6jTNDdD8tgeUPaJv57gbGmDZAGwBfX18CAgJiUFbsuHHjRpyqRzQmcZXGJe7RmMRNT/u4JLp6lbyjRpFh3TqCChfmYK9e3MqUiUOzp9P3i778tfcvzDOGGp/WwK+cH4kjE7Nu7boY3dta2Lo1DT/8kIXNm9ORKFEUFSueo06dM+TOfQOA3367s01QUBEiIyOf6jGJq572/1biovg6JjEJSu2AsThB5TTwC9A+Bu3MPd6z97zQmEZACeD1R2lrrZ0KTAUoUaKELVeuXAzKih0BAQHEpXpEYxJXaVziHo1J3PRUj8vy5dCuHVy6BMOHk7p7dwqF3qJ+1/os+XIJeMBLLV9i/oj5ZE+b/eH3ixYcDF9/7ZxHu38/+PpC//7Qtq0Hvr6ZgEz3bZs6NQQFBT29YxKHPdX/rcRR8XVMYhKU8llrG97+hjHmFWDDQ9qdBrLe9joLEHj3RcaYSsAnwOvW2tDb2pa7q21ADGoVERGRhOLmTWf926RJULAg/PwzvPgiw2cPp++HfQm7EEb6kumZPWk2bxR7I8a3PX0aJk6EqVPh8mXnXNrZs+G998DHx4X9EZF4JSbPKI2P4Xt32wLkMcbkjF6yVx9YfPsFxpiiwBSglrX2/G0frQCqGGPSRG/iUCX6PREREXkabN4MRYvC5MnQvTts2cI6z6s8+/Kz9Graiyii+HTap5zfdD5GIcla+O9/oX59yJHD2U28fHlnSd3WrdC4sUKSiNzpvjNKxpiXgTJABmNMt9s+Sgk89PABa22EMcYPJ+B4Al9aa/cZYwYAW621i4HPgeTAfGMMwElrbS1r7WVjzECcsAUwwFp7+TH6JyIiIvFJeDgMGgSDB0PmzLB6NeeLF6Bu56qs+2odRELllpWZN2YeqZOnfujtwsKc7b3HjoXff3c2Y+ja1dmwIUcO13dHROKvBy2988YJMV5Aitvevwa8G5ObW2uXAcvueq/vbT9XekDbL4EvY/I9IiIikgD88Qc0avT3FE/4mFF89J8hjGtQicizkWQpmoX5M+dT+sXSD73VxYvO0rqJEyEwEPLmhQkToGlTSJ48FvoiIvHefYOStXYtsNYYM8taeyIWaxIREZGnibXg7+88j5QkCXbePOZmj+CDWrm5uuEqPml8GD5tON1adiN6Bcp97d3rzB598w3cugVVqsC0aVCtGnjE6FAUERFHTDZzCDbGfA68ACT+35vW2gouq0pERESeDoGB0KIFrFgB1aqxf9iH1J3Yif1z9sMteKv5W3w15itSpkx531tERcGyZTBmDKxa5RwG26QJdOoEL7wQi30RkQQlJkFpDvA98CbOVuFNgQuuLEpERESeAvPnO9t+h4RwffRwWnj9zoLaleAE5CiUg/mz5lOiWIn7Nr9+HWbNcrb3PnzYeaRp6FBo3RrSpYu9bohIwhSToJTOWjvDGNP5tuV4a11dmIiIiCRQQUHQsSN88w1RJYrj/8ErdP+qD2Hrw0icLDHDJg6jY7uOeNxnrdyxYzB+PMyYAdeuQenSzv4P77wDiRLFcl9EJMGKSVAKj/79rDGmBs5ZSFlcV5KIiIgkWGvWQNOm2MBA9rWvS5XgAM523QbXoE6DOkweO5n06dP/o5m1sG6d8/zRokXO80Z160LnzlCqlBv6ISIJXkyC0iBjTCqgO875SSmBri6tSkRERBKWW7fg449h9GhuPZeNFh/k5btf5sOfkCNvDr5e+jWvvvrqP5qFhsLcuc7zRzt3OkvqevWC9u2dpXYiIq7ywKBkjPEE8lhrlwBXgfKxUpWIiIgkHDt3Ott+79vH8qp5qXXrTyKmgI+XDwM/H0iXzl1IdNeaub/+cs6anTQJzp93NmWYNg0aNnQ2axARcbUHBiVrbaQxphYwOpbqERERkYQiMhI+/xzbty83UvhQrUoiNm77Ey5Czdo1mTh+IlmzZr2jyfbtzvK6uXOdw2LffNNZXlexIjxkZ3ARkScqJkvvNhpjJuDsfHfzf29aa7e7rCoRERGJ344exTZpgtmwgW/y+9DK3CDsF8iaPSuTv5pM9erV/740MtJ57mjsWOc5pGTJoE0bZ7+HvHnd2IcHCAiAgICdQDk3VyIirhKToFQm+vcBt71nAZ2jJCIiIneyFmbOJLKTHzciQqn8Imz/MwIT4cWnn/bi448/Jkn02rmgIGfnugkT4PhxyJEDRo50jlVKndqtvRAReXhQstbquSQRERF5uPPnCW7eiKTLVjItE3THi+BdUVSo8Dr+/v7ky5cPgEOHnLOPZs6Emzfhtddg1CioVQs8Pd3cBxGRaDGZURIRERF5oOAfvyeyZQuCrwXzajbDjlMWX990TP92NPXr1wcMv/7q7F63dCl4e8P77zvPHxUt6u7qRUT+6d4nuYmIiIjEQOS1qxx45zWS1KnPhKhgciXzYddpg18HP/44+AdvvfU+06cbChWCypVhyxb47DM4eRJmzVJIEpG4SzNKIiIi8li2zh+Hb/se2IthFEznw/5LoZQoUYjJkyfzzDPFGT4cpk6FS5egSBEnGNWvDz4+7q5cROThHhqUjDFJcQ6bzWatbW2MyQPkiz5bSURERJ4yf57dy6727/DGwkN8nNgwydODZBGJ8fcfzYsvtmHkSE/mz4eoKHjrLWd5Xdmy2t5bROKXmMwozQS2AS9Hvz4NzAcUlERERJ4iV0KuMGV2Z6r2/5pkZ+H5JN6cCQmjYcNGlC37ObNm+bJpE6RMCZ06gZ8f5Mzp7qpFRB5PTIJSLmttPWPM+wDW2hBj9G9CIiIiT4vwyHAm/+5P4NCPabE0mO4eHvxEFHmz5qL16/4sW1aOOXMgTx4YPx6aNoUUKdxdtYjIvxOToBRmjEmCc3YSxphcQKhLqxIRERG3s9ay7NAyPp/XmV4zjhB6HIp6ehDp6cNLRfuwZ093pk3zplIlmDIF3ngDPLRNlIgkEDEJSv2An4Gsxpg5wCtAM1cWJSIiIu619/xeuv/SnbQLf6HXT4YPww37sKRPU4OLF8exZ08OGjd2ltgVLOjuakVEnrwHBqXoJXYHgXeA0oABOltrL8ZCbSIiIhLLLty8QN81fZm/fgojlniyZp8XbxCBl2c2iByHt3dthgyB1q0hfXp3Vysi4joPDErWWmuMWWitLQ4sjaWaREREJJaFRoQybvM4Bv02iNL7r9NhgS8dQq5xizDgI14s0ofu3ZPx7ruQKJG7qxURcb2YLL3bZIx5yVq7xeXViIiISKyy1vLjgR/p+WtPAv86SuvFlZmz7wS/8CfwGtWq+dOv3wuULu3uSkVEYldMglJ5oK0x5gRwE2f5nbXWFnZpZSIiIuJS2wK30e2Xbqw7soliW9pyfWUQ46O+xZCGGm/MwH9yc7Jl00a3IvJ0iklQesPlVYiIiEisCbweyCerP2HW+mUk29GF5L81Y3vYp8BZXitUlznLJpElS1p3lyki4lYxCUrW5VWIiIiIywWHBzNy40iGzF9G2MZ2eOzuyc3IrsAKciXPxDc/rKB0lcruLlNEJE6ISVBaihOWDJAYyAn8AbzgwrpEREQkWrlyEBRUhJ07H699lI1izs65dB2/mkurG8GJHiTyHEJUZCuSEcWQJk1oP2MGXl4x+b8FIiJPh4f+iWitLXT7a2NMMaCtyyoSERGRJ2blvt9pNWADJ3+pDUENSJP2JzwTZedi+HnqZczIqKVLebZECXeXKSIS5zzy+dnW2u3ASy6oRURERJ6QtdvPkLf6cqoUy8/JeV15Lss1Xs5XiSuXa5Em4gK/fPABc8+eVUgSEbmPh84oGWO63fbSAygGXHBZRSIiIvJYrIUlPwfTfeAJDm3KBx4ZKFR+F+Xz/sLMaf05Ex5O/0yZ6Ll0KYmLFnV3uSIicVpMZpRS3PbLB+eZpdquLEpERERiLiQEpk2LImuey9SqnpRDu9JR6N2FzPz2slODogAAIABJREFUZzyPN2Cc/6e8Eh7Ovvbt6Xv8uEKSiEgMxOQZpf6xUYiIiIg8msBA8PeH8f5hXLviDb4nydXcnzHtS/HT5GW0qDeDZ4H5vr7U+eEHzCuvuLtkEZF4475ByRjzEw/YGtxaW8slFYmIiMgDbdkCY8bAvHmWiEgL+ZaSscF3jGnzDqHbs9CiSj0uX7lCV+CzZs1IMX48JE/u7rJFROKVB80ofRFrVYiIiMgDWQvz5sHYsbBxI3gnvUXUS5NJ+soMPqn1PlVTfERXv6789ttvvGwMk9Kk4cXZs+HNN91duohIvHTfoGStXRubhYiIiMg/3boFp07BqVMpqVcP0me5StJawwgu4E/Ll+vycalFTBk1hdKjSpMSmAa0qFULj2nTIEMGd5cvIhJvPWjp3Txr7XvGmD3cYwmetbawSysTERF5ilkLP/4IPXrAsWOQOM1FfN/7jNO+Uyj/3OuMrBLAic0nKPdSOU6dOkWLRIkY7u1N+qlToVkzMMbdXRARidcetPSuc/TvmrMXERGJRTt2QNeusHYt5MkfgsebPblVYgKJ0+ZmYeUfKexTmE5tOrFkyRIKpkzJt8CrpUrB7NmQM6e7yxcRSRDuuz24tfZs9O8n7vUr9koUERF5Opw7B61bQ/HisGdvJKXbzeJQ3RTYQrPx3tqFHa12sO/Hfbzwwgus+fVXvkiRgu3Bwbw6bBgEBCgkiYg8QTE5cLY0MB7ID3gDnsBNa21KF9cmIiLyVAgNdTZpGDQIQkIsxd/5jd356rIjyVV6lOrGhuG9OXd8PS8Ve4mDBw/yTs6cjDl2jKy5csE330CRIu7ugohIgvPQoARMAOoD84ESQBMgtyuLEhEReRpYC4sWwYcfwpEjUOCVI5wuXZ9tKbbR+MXGDCw/kPCL4YxZnZtwe5mczz7L0mefpfrx49CtGwweDIkTu7sbIiIJ0n2X3t3OWnsY8LTWRlprZwLlXVuWiIhIwrZ7N1SsCG+/DbcIImO7RuyvnJuXi6RjR9sdDCg6gIEfDiRfvnyE2yuUJxn7/vqL6p6esGoVjBypkCQi4kIxmVEKNsZ4AzuNMSOAs0Ay15YlIiKSMF24AH36wLRpkDxVGFnqj+R0nj4UzVyYOZVXkt8nP4MHDGb69OkYY2hfoQL1fz1CGXsUGjaGceMgdWp3d0NEJMGLyYxS4+jr/ICbQFagjiuLEhERSWjCwpxJoNy5YcYMS5bK/+FaG1+8Sk9lTt3ZLKm1hCXjlpArVy6mT59Oy4IFOZIsGeNWriSLiaSPz1BnVzuFJBGRWPGgc5SyWWtP3rbD3S2gf+yUJSIikjBYC0uWQPfucOgQPFtsJ9defp8b2c4zqmxf6uaoy9hRY2k1sRVhoaE0zZKFPqdOkWPXLqhZEzp0oOm76QiPjHJ3V0REnioPWnq3ECgGYIz5wVqrWSQREZFHsHevs+fCypWQNus5vJq04nLeX/moVGfaFmjL9InTeX7s84QEB9MweXL6hoSQOyQEevWCdu0gWzYA1hQtR1BQELDTvR0SEXmKPCgo3X6k93OuLkRERCShuHgR+vWDyZMtPslukaTmZ1wuMppmxRvyYdGtzP9yPkXeLsz1Gzd4z9OTftaS/4UXoEMHqFsXfHzuvGFAADsDAijnlt6IiDydHhSU7H1+FhERkXsIDwd/f/jsM8u165akZWZzo0x33ihcij6l17J6zkpebViKoJs3eQf4zNubQo0aOQGpWDF3ly8iIrd5UFB60RhzDWdmKUn0z0S/tjpwVkRE5P8tW+Yss/vjD0ie/79ENWhNvheTMODVr9n37UZqtanExeBg3gQGZM5M0S5doEULSJvW3aWLiMg93DcoWWs9Y7MQERGR+OjAAScg/fwzJH3mFDRoR/qXDjDx1X5cnvU7LTq9w7nQUKoC/cuUodQnn0C1auARo6MMRUTETWJyjtJjM8ZUA8YCnsB0a+2wuz5/DRgDFAbqW2sX3PZZJLAn+uVJa20tV9YqIiLyKC5fhs8+A39/i4dPMFT9lMSvzWVIUT88Ziald49WBEZEUN7LiwX16/PqoEGQK5e7yxYRkRhyWVAyxngCE4HKwGlgizFmsbV2/22XnQSaAR/e4xYh1toirqpPRETkcYSHw5Qp0LdfFEFBYEpMw6PiQD7PUY2kc/Iw/NM+nLSWV5Il45uuXSnfvz8kSeLuskVE5BG5ckapJHDYWnsUwBgzF6gN/B2UrLXHoz/T4RAiIhLnrVgBXbpEcfCgB5651uFZtxMjU6Yj6Q9JGfrnDI4CJdOlY1qfPlTu2BGj5XUiIvGWsdY1G9oZY94FqllrW0W/bgyUstb63ePaWcCSu5beReAcGBEBDLPWLrxHuzZAGwBfX9/ic+fOdUVXHsuNGzdInjy5u8uQ22hM4iaNS9yjMfmnkyeT4D8pF5s3pccj7TFSvNaFIaHbSLI+iGHXb/In8EK6dDRp25aXKlXCGPPQez4qjUvcozGJmzQucU9cG5Py5ctvs9aWeNh1rpxRutffEo+SyrJZawONMc8Bq40xe6y1R+64mbVTgakAJUqUsOXKlXvsYp+0gIAA4lI9ojGJqzQucY/G5P9duQL9+1smTLRYr5tkf+lDxkZ9Q+hPFxgQGcU+oGC2bPw4ahRvvfOOSwLS/2hc4h6NSdykcYl74uuYuDIonQay3vY6CxAY08bW2sDo348aYwKAosCRBzYSERF5AiIiYNo06P1JBFeDPMiXdTpTQ/sTtCWQvh4e7IqK4vnnnmPukCHUrVsXDy2xExFJcFz5J/sWII8xJqcxxhuoDyyOSUNjTBpjjE/0z+mBV7jt2SYRERFX+fVXeKFwGO3bQ/rI31ibqBijT7al+7Ur1AZu5szJ119/zd4//6RevXoKSSIiCZTL/nS31kYAfsAK4AAwz1q7zxgzwBhTC8AY85Ix5jRQF5hijNkX3Tw/sNUYswtYg/OMkoKSiIi4zKFD8EaNW1SuDNcOnWYBb+N/vSIfpThFdeCiry8zZszgwMGDNGrUCE9PHTcoIpKQufQcJWvtMmDZXe/1ve3nLThL8u5utxEo5MraREREAK5ehX69rjFxahJ8osIZRj/yJvZnZJrUbDhlyZIkKZMnD6F58+Z4e3u7u1wREYklLg1KIiIicVVkJEz79CifjErDlbBUNGcmRbMM5PuUPqzff4Nnkidn3LhxtG7dmsSJE7u7XBERiWUKSiIi8nS5dYvV/QLoNC4H+249z8vmN0o8351tKUL5cssJMmTIwMiRI2nXrh1JkyZ1d7UiIuImCkoiIvJ0OH6co0O/p9vMAiwKr8mzHsepXOgtrqY5xfh120mbNi1Dhw7Fz88vTp33ISIi7qGgJCIiCVdUFKxcybUxXzLo5+KMpQseJpxcBf1Inm4jK9fuIFWqVAwYMIDOnTuTMmVKd1csIiJxhIKSiIgkPFeuwKxZRE6czKwjr/KxGcd5fEmWZwRZfefyx4adJEuWjE8//ZRu3bqRJk0ad1csIiJxjIKSiIgkHDt3wsSJMGcO60JK0CHxD+ylIMZ3HtmyDuf0tp2cPJOYnj178uGHH5I+fXp3VywiInGUgpKIiMRvYWHwww8wYQJs3Mgxn3x8kG4pK0LKg9d/Sf9CaYL+2Mb5IC86d+7MRx99hK+vr7urFhGROE5BSURE4qfTp2HKFJg2Dc6d4/pzhen+8hKmb6mEPX+SZDnKE3pmPdcOedCuXTt69+7Ns88+6+6qRUQknlBQEhGR+MNaWLPGWV63aBFERRFV/U2GP+vHZ/OKE3Y0gkS+dbGXfyb0tKVFixZ88sknZMuWzd2Vi4hIPKOgJCIicd+1azB7Nvj7w4EDkC4ddO/O/Hzv0XZIKq4sTY1Him4k8v6eqIsRNGnShD59+pAzZ053Vy4iIvGUgpKIiMRd+/Y54Wj2bLhxA156CWbNYnuRStTvdJZDI54D78/w8p5K5I1Q3mvQgH79+pEnTx53Vy4iIvGch7sLEBERuUN4OCxYAOXLQ8GCMGMG1KkDv//O+RVrKLc6J8WLe3Jo/UI8EmWBsHG8Xbsme/fu5ZtvvlFIEhGRJ0JBSURE4oa//oIBAyBHDqhbF44dg2HD4PRpwqZPp8XyGzyT/SxrZ2/AmLwQNZhaNaqwa9cu5s2bR4ECBdzdAxERSUC09E5ERNzHWtiwwdmcYcECiIiAqlVh8mSoXh3r4cHn3/9G34+8CT25DTzqAFeoXrUG/fv3p3jx4u7ugYiIJFAKSiIiEvtu3oQ5c5yAtHs3pE4NHTvCBx9A9NK5Rb9vo6XfWS5tOQpmMHCeShUqM3DgAEqXLu3e+kVEJMFTUBIRkdjz55/O5gyzZsHVq1CkiHMO0vvvQ7JkAOw6dYj6XTZzcOEliBoBBPLKK68xdMgCypYt69byRUTk6aGgJCIirhUZCUuXOrNHv/wCiRLBu+9Chw5QpgwYA8Bf18/RoN8i1ky6CrcmAicoUrQ0I7/4mvLly2OirxMREYkNCkoiIuIaFy44O9ZNngwnTkCWLDBwILRuDb6+f192I+wGXabP4cu+gdhLc4Aj5M5blPFjJ1O1alUFJBERcQsFJREReXKshd9/d2aPvv8ewsKgQgUYNQpq1QKv//9rJzwynM+Xf8tnnbYTfmwF8AeZMhfEf8Jiatd+UwFJRETcSkFJRET+vZAQmDvXCUjbtkGKFNCmDbRvD/nz33GptZbvti+kbZvF3Ni+GThAqrT5GD9mAQ0bvo2Hh06uEBER91NQEhGRx3fsGEya5Cyxu3wZChRwwlLjxk5Yustvx9dT/4PxBP6yF6L2kzhpLoYN+ZaOHespIImISJyioCQiIo8mKgpWrHAC0bJl4OEBb7/tbM7w+ut/b85wuwMXDlC/56fs/vYAhB3AM1EOuveYyeBBjfDy0l9FIiIS9+hvJxERiZnLl2HmTGcG6cgReOYZ6NPHWWKXOfM9m5y9fpYmg7vw64TtcPMwxmTj/YaTmDG9JYkTJ4rlDoiIiMScgpKIiDzY9u3O7NF33znPIpUtC4MHO7NI3t73bHI99DrtJ3RhzuBV2CsngMy8Vn4MC77/gAwZ7t1GREQkLlFQEhGR/1euHEWCgmDzZliwwAlI//0vJE3qPHfUoQMULnzf5uGR4Xz81ceM/vRbIs8GAr7kzT+CH+Z1pGDBxLHXDxERkX9JQUlERP5fWBiJz56FrFmdc5Dy5oUxY6BpU0id+r7NrLV8/sPn9PtoFLeOngPSky7DYL6a2YUaNZLGXv0iIiJPiIKSiIg4oWjECG79dweJCIPaNZ3Zo4oVnc0aHmDWz7Po0qMXV/eeA9Lgk3gAQwZ3plOnlGifBhERia/0V5iIyNPs8mX44gsYNw5CQghIVJ2ZXi34fuHbD2360/qfaNv9A87+fgZIifHoR9u2nRk6JM2DJp9ERETiBQUlEZGnUVCQs6Ru9Gi4fh3q1YN+/RhW+hYREREPbLp+x3qadW3OkbWHgWTAJ1Ss3IWJ49OTL1+sVC8iIuJyCkoiIk+T69ed2aMvvnDCUp068NlnULCg83kRuBEUdM+muw/upnHXxuxesRvwAXqQK083Jo5/hqpVY6sDIiIisUNBSUTkaXDzprOD3YgRcOkS1KrlBKSiRR/a9MjxIzTp2oSNizeC9QLbmZSpejB4UGbatUPPIYmISIKkv95ERBKykBCYMgWGDoXz56FaNRgwAF566aFNz5w5Q8ueLVnx/S8QZTAerTH0xa9jFvr1g7RpY6F+ERERN1FQEhFJiEJDYfp0GDIEAgOd3esGDIAyZR7YbOfOcoSHB/NeqxwsmL0AGwEePvWIujWMqpWzMWqUIX/+WOqDiIiIGykoiYgkJOHhMHMmDBoEp05B2bLw7bfw+usPbXro0CGuRu2G0CvM/3ILHimqYa9NJE/2nIwebXjjjVioX0REJI548OEYIiISP0REwKxZkC8ftG0LmTPDypWwdu0DQ5K1lhW/rKBk+ZLkzZcXbl6BVCUxZj8pPZYxZsxz7NmjkCQiIk8fBSURkfgsMhLmzIECBaB5c+fBoWXLYONGqFQJjLlns+DgYCb4TyBL7ixUq1qNLZt34OVbF6KOw+WNfNAuP4cOGTp3hkSJYrdLIiIicYGW3omIxEdRUfDDD87Odfv3Q+HCsHChs5vdfcIRwMmTJ/li7BdMnzadkOshkDo13hkGEHahJ0m8vEmZ2ZAixTUmTkwZe30RERGJgzSjJCISn1jrBKKiReG995z35s+HHTugdu17hiRrLevXr6d67erkyJmD8aPHE5I4K94pFkPQZbKm/JQxY3w4fdqQOzf4+ETFbp9ERETiIM0oiYjEB9bC8uXQty9s2wZ58jhL7urVA0/PezYJDQ1l3rx5DPliCAd3HwQfD8hQBY/L44i6kJeyFaFzZ6he/b63EBEReWopKImIxGXWwq+/OgFp0yZ47jln04aGDe970uu5c+eYNGkSYyeOJehiEKRMhknfBXtxED5Xk9K4qaFTJyhUKHa7IiIiEp8oKImIxFUBAU5A+u03yJoVpk6FZs3uu7vC9u3bGTV6FN9//z0R4RGQITseKccQda0xmTKD3xAPWreG9OljtRciIiLxkoKSiEhcs3Ej9OkDq1fDs8/CxInQsiX4+Pzj0oiICBYuXMjI0SPZtHETJPKAtGUwV8ZhLxSlZOkounTx4J13tHudiIjIo1BQEhGJK37/3ZlBWrECfH1hzBjnTKTEif9x6eXLl5k+fTpjx48l8HQgJE8CGZrDhS/wvJSaeu85W3uXLKk9e0RERB6HgpKIiLvt2AH9+sFPP0G6dDBiBLRvD8mS/ePS/fv3M27cOL6a/RW3Qm5BukyQagxc9SONj6XDp1588IEzESUiIiKPT0FJRMRd9u51AtKPP0KaNDB4MHTsCClS3HFZVFQUy5cvZ+y4saz8ZSXGywObrgjYUXDpdfIXDOfDUZ40aHDPyScRERF5DApKIiKx7eBB56DYefOcUNSvH3TtCqlS3XHZ9evXmTVrFuPGjePw4cN4JksMGd/DXhiNOZ+JGjUj6N4VXn890YPOmH0kAQEQELATKPdkbigiIhJPKSiJiMSWw4dhwADn/KMkSaB3b+jeHdKmveOyo0ePMmHCBKbPmM71a9fxSJcR0gwg8spHJDHQtosXnToacubU7gwiIiKuoqAkIuJqx4/DwIHw1Vfg7e2Eox49IEOGvy+x1hIQEMDYsWNZvHgxeBhIXwAihhB1qSZZcgTTs38imjUzd6/MExERERdw6XZIxphqxpg/jDGHjTG97vH5a8aY7caYCGPMu3d91tQYcyj6V1NX1iki4hKnTkG7dpAnjzOL5OcHR486mzVEh6SQkBBmzJhBkSJFqFChAst+/QWbsTqWP7Hn9lCmZHmWLoUTR5LSsaNCkoiISGxx2YySMcYTmAhUBk4DW4wxi621+2+77CTQDPjwrrZpgX5ACcAC26LbXnFVvSIiT8zZszB0KEyZAtZCmzbw8ceQOfPfl5w5cwZ/f3+mTJnCpUuX8EmXAdJ9SPilAXhFePJ+0wh6dYcCBZK7sSMiIiJPL1cuvSsJHLbWHgUwxswFagN/ByVr7fHoz6LualsVWGmtvRz9+UqgGvCdC+sVEfl3zp+H4cPB3x8iIqB5c/jkE8ie/e9LNm3axNixY1mwYAGRkZEkeuZ5SD6G0EsNSeN7g26DPWnfzpu0ab3d2BEREZEnpBwUCSoCO91dyKNzZVDKDJy67fVpoNS/aJv57ouMMW2ANgC+vr4EBAQ8VqGucOPGjThVj2hM4qqEMC5eV6+Sdd48svz4Ix5hYZyrXJnjTZpw69ln4dgxIg4dYu3atSxYsICDBw/i5eNNVIbXsRdHEXa2MNmeP0Gzent5rexlPD0tu3e7tz8JYUwSIo1L3KMxiZs0LnFLkaAiREZGxssxcWVQutdmtfZJtrXWTgWmApQoUcKWK1cuxsW5WkBAAHGpHtGYxFXxelyCgmDUKBgzBm7cgPffh759eSZfPp4BLly4wNSpU/H39ycwMJBk6TJgMrYj4vwwzPmkVK19mUG9LSVKZH/oV8WmeD0mCZjGJe7RmMRNGpc4JjUEBQXFyzFxZVA6DWS97XUWIPAR2pa7q23AE6lKROTfunYNxo6FkSPh6lV4913nXKQXXgBg9+7djB07ljlz5hAaGkryzPkh5afcvNSWJKlu0KJHGJ92S8Qzz/i6tx8iIiKuEg4cBy5Domvx8zgLVwalLUAeY0xO4AxQH2gQw7YrgCHGmDTRr6sAvZ98iSIij+DmTZgwwdm17vJlqF0b+veHF18kMjKSnxYuZOzYsQQEBOCd2AevjK/A+YHcOFOGZ3IH8vHn12nTNBU+Pu7uiIiIyBMQDBwFjgCH7/r9BBDpXJbEK4l76vuXXBaUrLURxhg/nNDjCXxprd1njBkAbLXWLjbGvAT8B0gD1DTG9LfWvmCtvWyMGYgTtgAG/G9jBxGRWBcSApMmwbBhcOECVK/uBKQSJbh69SozRo1iwoQJHDt2jBRp05Po2RaEBQ4l7HQ6ipQ7xvBPQ6hc/lnMvRYVi4iIxGVX+WcI+t/vZ+66NjWQG2dLt/ejfx4D18Ovk4pUsVbyk+LSA2ettcuAZXe91/e2n7fgLKu7V9svgS9dWZ+IyAOFhsLUqTBkCPz1F1SqBAMGwMsv8+effzLOz49Z/9fefcdXXd1/HH+dbCAJI+w9w5QlioBoEAFxoqKAiqAooKXaVq1tte5W+2utYlUEIaCo4ISiWEWFaEVQ9t4bwzIQZkLW+f1xbpqbm4BBuCPJ+/l45JGbm3OTz/V4Sd455/s5U6Zw/PhxEuq3Jqza3zl68DeEVzzBdXfs4Z9/TqBpk+bBfhYiIiKnZoEDnDoM/eQzvjbQDLjc87651/tqxXz9KWDTS9qmILT4NSiJiJRKWVkweTI88wzs3g2XXgrvvovt2ZMvvviCsVddxaeffkpkZCRx9S/m+N6HSdvdj9i6uxj5zHaevL8ZsbHxwX4WIiIiTh5u9edUYeio11gDNMSFnxsoHIaaAeXoeD8FJRGRfDk58Oab8PTTsH07dOsGU6ZwvGtXpr71Fi+NHs26deuIr5JAfKPbObLraQ5ua0iD81fz2O93cefABoSFBftJiIhIuZSNuy4oPwB5h6GtwEmvsZFAE1zw6UnhMNQEOJfX0qbA8pTlJBXq01Y6KCiJiOTmwrRp7rqjzZuhSxcYN44drVrx8iuvMHHgQNLT06nVoCUxtZ/iyN7fw4lsLrhmDS8+XonundoF+xmIiEh5kEHh5gneYcireQIAFXDhpyVwFYXDUAOUAkpA/4lEpPzKy4P333etvdevhw4dsDNn8m3Vqox96SVmzJiBMYZaTS7haO6v2bdrABHVdnPD/Uv41yMdqVujpGdoi4iIlNBhXPgpLgz5Nk+oDLQALsA1T/AOQ3Uo/mRSKTEFJREpf6yFGTPg8cdh9Wpo25aT06YxPSODsU8+ybJly4iLr0KNpreyb/ufSN3civjEpYz+y/c8PfoCoiIb/Pz3EBGRwEuCjukdYXmwCzkNi2uQUNz1Qpsp2jyhFi789KZw44RmuOYJCkN+o6AkIuWHtTB7Njz2GCxbBomJ7H31VcalpvLa/fezf/9+6tRvQZWGj5G+82GOHg+n4cXzefIPmQy/onOwqxcRkdIiD0jl1GHIt3lCA1z4uZ7CYagpEBewqsWHgpKIlH3Wwpw5LiD98AM0bcriJ55g7MaNvHv//eTk5NA4MYmYnBfZs3swxO7lglu/4qVH23JRq8uCXb2IiISiHNx1QcWFoa1AptfYCFyThOZADwqHocZATKCKljOhoCQiZdvcuS4gzZ9PTsOGfDRqFGNXruS7J56gUqVY6jcfzI5tv2Xbhk5E1F/GjffMYOwDPalX9ZpgVy4iIsGWiQs9xYWh7RRtntAMSAT6UzgMqXlCqaQpE5Gy6dtv4c9/hpQUDtapw+sDBvDKkiXsGj+e2nWaULf5I6RufoBt6+OI7TiHe361gyeG9qNiVKdgVy4iIoF0hOLPFtoM7PYZWxkXfLoAgygchtQ8ocxRUBKRsuX7790K0pw5rElI4KXu3Zm6bBkZM2fSouUlVK7zFHv3DIUK6dS/cjaPP1iDO5OuIMzoACQRkTLJAmkU7SCX//6Az/iauOBzGYUbJzRHzRPKGQUlESkbli6Fxx4jb/ZsPo2PZ2yLFny5aRMxS5fSpMVAtmy7h00bukON1XQe+TrPP9iZpBa3BbtqERE5Fywu8KRDVFoU/InCYeiI11gD1McFnwEUDkPNUPME+R8FJREp3VauhMcf5+jMmUyuUIF/JSSwOS2NmjFxNGvzR7as/zXrVtUirOVnXDv0Xzw/+kqaJ4wOdtUiIvJL5OCuGVpfzNshN6QiFeHvuOYJzYDuFA5DTVDzBCkRBSURKZ3WroUnnmDL++/zr6gokqOjOZqRQYv6HagT9yx7tg9nf3omFbpPZ9Q9WTw6YDAJFa8MdtUiIlISR4ANwDoKh6HNQLbXuNpAK9z1Qq2BiXAk+wjxq+L1W66cNf0vJCJBk5QE6ekdWX4mBwNu2oR94gnmvfMOL4aH8wkQYS2tW9/A1l0j2bSpF1TdQo0b/s4j99VlVI+hxEToT4ciIiHH4polFLc6lOo1LgK3GtQKuM7zvhXQEqji8zU/grz0PP2GK+eE/jcSkdJh2zYyHnuMt99+m7HAaqBaXFXaNR7B2rX3sHJFI2jyFW1v+yPPjOrOta3/oAYNIiKhIBO3ErSewitEG4DjXuMq4wJQHwrCUGvcoauRAaxXxENBSURC286d7P7jH3l12jQmWEsa0LTReTSLuZctG4ZzcLWF9m/T95Z1PDXoZrrWfzbYFYuIlE8/Ufzq0DYgz2tcI1wI6klBIGoF1EId5SSkKCiJSEiyP/7IwvvvZ+yMGXyQl4c1hnatr8Yc+jVbd/SBuFQi+zzLsDuz+GP542/dAAAgAElEQVS/u2la9a5glywiUvbl4g5azQ9B3itEaV7jonFb484HbqUgDCUClQJXrsjZUFASkeBZvpzYnBzcyX1O1q5dvD9yJGM//5xF1hIXGU2HNnezZuuvWbkuEeovoPKto/ndnY0Z0+1+qlWoFrz6RUTKqmO4rXG+q0MbgSyvcTVwAehGCq8ONQTCA1iviB8oKIlISNi/bh3jR45k3Pz57LGWBpVq0Lbew6zZOJKla2Ogzfs0vuIxHh3Sh1vbj1WDBhGRs2WBPRQOQvkrRLu9xoXh2mq3AvpTuJlCQgDrFQkwBSURCSqbu5Q7Ooxg2sqVnATaVW5LZKWn2Zl6HebHg9BzLN1uWMEjVw6nf4t31KBBRORMZVHQTMH37ajXuFhcAErCNVHID0TNcFvpSoMUWJ6ynCSSgl2JlAEKSiIScMePH+eD8ePZcfgPbCebZSsN7ar2Y1P2/7H6cHuIWYW5biQ33HSSP/S6ny51Hw12ySIioe8QRYPQOtwBrble4+rjAtAwCm+Xq4uaKYh4UVASkYCw1rLw229Jfuopps+bx7HcXBoSQ1MGsT1sLEvSq0DiLGIu/gMjb0zkt90epXGVxsEuW0QktOQBOyh+dWi/17gooAXQHriZglbbiUBcAOsVKcUUlETEr/bt28fUF18k+fXXWZeWRiWgfeR57I9/ki2HBkDUMej8OtV7vcsDV17PqPPfpmqFqsEuW0QkuE7gGif4hqENuHOJ8lXDBaBrKLw61Bj9lidylvQSEpFzLicnh0///W+Sn3uO2UuWkGMtHajEJdV+w6Jjj7AgqzomZgVcdQ/Rdb9l3D0PcMt53xAdUVo2wYuInAMW2Efxq0M7vMYZoAkuAPWmcCCqEcB6RcoZBSUROWfWr1/P5H/8gzenT2fv8ePUBC6PuZDtcX9lxYHemKMZ2LbTiO3xNrf0a8EPD19ExZQR3DHhgmCXLiLiP9m464SKC0TpXuMq4sJPD2AEBWGoBaBGnyIBp6AkImfl6NGjvPfWWyT/8598t3kzEcAlVKZDrT/zTfqDfJYZD3GrCbvyN/S7YT8jut3IVYmziYmIIel5SI9K/9nvISIScpKgY3pHWO5132GKD0ObgRyvcXVwAWgIhVeH6uNacYtISFBQEpEzZq1l/vz5JP/jH7w3ezbHc3JoiWFQ7CWsrvRX5u7rAWmZ0OZ9WvX7hntv7MDgdo9Qo5L2iIhIKWdxZwwdhKi0KLiXgkC0x2tcBNAcF4AGUNBuuyVQOaAVi8gvpKAkIiWWmprKm6+/TvKrr7Jp/37igCtNVbLrPchnaWPYcCweojdQ5bqnGX67YdQlA2lVfWiwyxYROXM5uO1y67ze1uIC0TE3pCIV4R1cCOpH4dWhpkBkoIsWkXNJQUlETisrK4vZn3xC8gsv8On8+eRZy8UYkqr04buYJ3l/bzfYk0VE24/pf/MWHrr1Qi5t/IgOhhWR0iED10lunc/bJtxBrfnq4gLRcM/78XA45zCVV1fW2UMiZZSCkogUa82aNSSPG8fUN97gwLFj1AVGhlfnQN3fMzvtTr5NT4CqW0m8eTK/vacKt/foT8XIisEuW0SkeOkUDUPrgG247XTgrg9qggtCVwJtKNgy57td7j2w6VYhSaQMU1ASkf85fPgw706fTvJLL/H92rVEAldjaJLQn9lRf+S1PT1hdw6VO3zN7bcf5vER3akbf0ewyxYRcSywl8Jb5fJv7/UaF4W7VqgLMBQXhvIPYy1pd7kUWJ6ynCSSzkXlIhKCFJREyjlrLV9//TXJ48bxwYwZZGRn0w54JLIGG+s9xL8P3EZWWh3Cq/xIj9s/58nfNaR3h97BLltEyrNcYDvFrxAd9hoXR8H1Q/lhqA1u1Sg8cOWKSOmkoCRSTu3evZs3pkxh8rhxbElNJR64HahR82reCR/DX/b0gR1Qr/NKRo3ay8PD2xMVWe+c1pCSAikpy0F/kRWR4pzEXSvkG4Y2AJle42riAtAtFASi1rjrirQ1TkR+IQUlkXLk5MmTzJo1i+Rx45iTkkKetfQC7omuyfza95GcNpTs/Q2JqpLGtXev5tmHmtGmRcdgly0iZd1RXDc5761y63Bd53K9xjXGBaDeFA5E1QJYq4iUGwpKIuXAypUrSZ40ibemTCHtyBHqA38CYur2ZzwjeXDP1bAjghYXbuOhX//E8EHViYxMCHbZIlKWWOAAxW+X2+01LgJoAbQHBlEQhloC6hcjIgGkoCRSRh06dIhp06aR/NprLFm1iijcmYf9K9Tkw1p38dzBEeSkNqVC5aMMvzeNR35Tk+bNmwS7bBEp7fKAXRQ9f2gdcNBrXCVcN7kkCq8ONUPnD4lISFBQEilD8vLymDdvHskTJ/LRRx+RmZVFB2AscKxub8aF3c17qdfD9ijO65rGw/fnMPCGOKKj44JduoiUNtnAZoquDq0HTniNS8AFoBsp3FChPq4dt4hIiFJQEikDduzYwZQpU5j8+uvs+PFHqhjDCGvpVak6r9e6nQcOjiQntSWVKmdy768sv74XWrXS1joRKYHjnPpA1hyvcQ1wIehuCq8Q1QhksSIi546CkkgplZmZycyZM0meOJEv584Fa7kc+CuwtV4PXgsfxau7b8ZujaJL10zuHwMDB8YQU9IzQkSkfDlI8ecP7fAaE47bGtcauI6CMNQK14pbRKQMUVASKWWWLl1KcnIyb0+dSvqRIzQKMzxuLd3i4nm+9jDuPHQPJ3e3plJcDveODmf0aGjXTulIRHANFX6k+IYK+73GxeCaJ3QDRlAQiJoD0QGsV0QkiBSUREqBtLQ03nnnHZInTmT5ypVEG8ON1jIUWNKgC69F3MvTu4aQuymaLl3yuOdvMGhQBJUqBbtyEQmKHGAbxQeio17jquAC0NUU3i7XCB3IKiLlnoKSSIjKzc3lyy+/JDk5mZkzZpCVnU3nsDBeAdrGV+QvdW7j5iO/5eiOllSKtdx1h2HUKOjUSVdHi5Q5SdAxvSMs97k/k+KvH9oIZHmNq4MLQLdT0EyhNVALHcgqInIKCkoiIWbr1q1MmTKFKZMns2v3bqqGh3FPbh63hsHnTTvwz6jfsnPrzWSvj6ZjRxj9GNxyiyFO1weIlF05EH48HCZTOBBtw7XjBhd4muICUH8KXz9UJeAVi4iUegpKIiEgIyODDz/8kOTkZObNm4cB+oQZngfqVonmL3Vv55rjD7FvczMqVLDcNsQwejRccAEY/TVYpOzIxXWTW+nztgPiiIM7gSggEegM3EpBIEoEKgSjaBGRsklBSSRIrLUsXryY5ORkpr3zDoePHKFRZDjPADeFw3st2vFs3OOsX3cNGauiaNsWHnkJhg41VNFfh0VKv5+AVRQORKtx2+nAXSOU31DBwDGOETsnFpqgn94iIgGgf2pFAuzAgQO89dZbJCcns3r1amLCw7jB5nE3EFE1gpeajSH5yINsXVOf6Gi46SYYNQp69NDqkUiplIW7jsh3lSjVa0wNoANwL9De89Ya130OIAly0nOgRYBqFhERBSWRQMjJyWHOnDkkJycza9YssrOz6RQVznigf1ge09p24qlqz7Jk6eUcWRBOYiI8/zwMGwYJOhdWpHSwwF6KBqJ1QLZnTBSukcLlFASi9rimCqeTAstTlpNE0jkvW0REiqegJOJHmzZtYvLkybzxxhukpqZSNTKce3NyuQtIrxnJ1DaPMO7QfSxflEBkJFx/PYweDUlJWj0SCWkZuENZfUPRT15j6uNC0JUUBKJEIDKglYqIyC/k16BkjLkCGIvbaT3RWvucz+ejgTeB84E0YJC1drsxpjHub3AbPEMXWmtH+7NWkXPl+PHjfPDBByQnJ/PNN98QZiApMoyXgW7huczo2pMnEv6Pr7/ryk9zDE2awLPPwh13QK2f+6uyiASWBXZSNBBtpKDbXAXgPGAABYHoPKBaoIsVEZFzyW9ByRgTDrwC9AF2A4uMMbOstWu9ho0ADllrmxtjBgN/AwZ5PrfFWtvRX/WJnEvWWhYuXEhycjLTp0/n2LFjNIgO5xkDd1jY2TCOTzo9zov7R/HN1xUJD4drr3XXHvXpA2E6+kgk+I7imin4hqIjXmOa4ILQzRSEoqbocFYRkTLInytKFwKbrbVbAYwx04HrcJsV8l0HPOG5/QHwsjHacCSlx759+5g6dSrJycmsW7eO6PAwrg3P4z6gZXgeX11xNc/U/AczPm/J3vehQQN46ikYMQLq1g129SLlVB6whaKBaKvXmDhcCLqVgkDUDogPaKUiIhJExlrrny9szEDgCmvtXZ6PhwJdrbVjvMas9ozZ7fl4C9AViAXW4DY3HAEetdb+t5jvMRIYCVCrVq3zp0+f7pfn8kscO3aM2NjYYJchXs7VnOTm5rJw4UL+85//sHDhQnJzc2lTwfCbDMtgYF3L6vy79R/5KvU2flhUA4CuXQ9y7bWpXHhhGuH6y3Mheq2EnrI0JxFHI6i0pRKxW2OptLUSsVtiqbS9EuGZ7oVowywZ9TI41vQYx5sd/9/7zFqZ7gDXEFKW5qWs0JyEJs1L6Am1OenVq9cSa22XnxvnzxWl4n7E+KayU43ZAzS01qYZY84HZhpj2lprjxQaaO0EYAJAly5dbFJS0tlXfY6kpKQQSvXI2c/J+vXr/9eYYd++fVSODmNkWB735UL16EiWDRjC3xL+xhsza7F7JtSpA488AnfdBY0aJQBqX1ccvVZCT6mckxzcn9Z8V4l2eY2phmvB3Y//rRKZNoaKFStSkYoBLvjMlcp5KeM0J6FJ8xJ6Suuc+DMo7QYaeH1cn8KnRniP2W2MiQAqAwetW+Y6CWCtXeJZaUoEFvuxXpEijh49ynvvvcekSZNYsGABYQYuquDSed+Teezs1ppll/yT6ev78vF7YeTmQt++8NJLcPXVEKnuViLn3n6KBqI1uPOKwP1kaw1cQuEW3HUIuVUiEREJXf4MSouAFsaYJsCPwGDgFp8xs4BhwAJgIDDXWmuNMTVwgSnXGNMUd8TeVkQCwFrL/PnzmTRpEu++9y4ZJzKoVcHweCSMzoao2Dh2DhvNC/F/4vX3qrDtb1CjBjz4INx9NzRrFuxnIFJGnMT1P/UNRfu8xtTBhSDvc4la4c4rEhEROQt+C0rW2hxjzBjgc1w/oGRr7RpjzFPAYmvtLGASMNUYsxk4iAtT4P4O+JQxJgfIBUZbaw/6q1YRgNTUVN58800mTJzAti3biIww9I2xPAJ0OWk50Ls7q3o9z+tLL2TmxDCys915R88+CwMGQHR0sJ+BSCllcX9O8w1E63E/AQCicc0UvM8kOg+oEehiRUSkvPDrOUrW2k+BT33ue8zrdiZwUzGP+xD40J+1iQBkZWUxe/ZsJkycwOeffY7NszSLg5cjYHiOJadqTY6MeYCXou9h/DtxbPoTVKsGY8bAyJHQqlWwn4FIKXMct03ONxQd8hrTCBeEvM8lao6OSBcRkYDSjx0pH5KS6JieDsuXA7BmzRomTprI5Dcmc/jgYSrGwNCK8MgxaJoZTsa1V7L0kicY/0Mn3v+nISsLevSAxx6DgQMhJibIz0ck1OUB2ykaiDZT0NanEkXPJGoHVAlwrSIiIsVQUJJy43BuLu+OH88rE15h1dJVmDDoGA9/ioABmZCV2ITM2x/k1bBhjH+rEms/gvh4t3I0ahS0axfsZyASog5TcFDrCs/7VcAxz+cNbkWoPXAbBaGoMaDDlkVEJEQpKEmZtnfvXj755BNGL1hKbs4xGD2aqrHwuzj4w1GomhkFQwaxpOeDvPbdebz7F0NGBlxwAUyaBIMGQaVKwX4WIiEiF7ci5LtKtN1rTBVcCBpOQSBqizsdT0REpBRRUJIyxVrLihUrmPnvmUz/aDobVm4AoGIFuCgOnjhsuPiYJbf9eWQMv4+J3Mprb1RgxVSIjYXbb3erR506BfmJiARLEnRM7whf4laFvAPRaiDTMy4caAlchDv2Oz8U1UctuEVEpExQUJJSLzMzk7lz5/LuR+/yyccfc3C/uyq8RQz8PgpuzYLzMuB4ZgVi7x7K0p73M/6b1rz9Z8Px49CxI7z2GtxyC8TFBfnJiARSNrANd1Br/tsKiD8WX7ibXA3cQa33UhCIWgO6Vk9ERMowBSUplfbu3cusj2cx7a1kFixYzMnsXCoY6GvhWuAqILZGbaIvvpSIHj257eE6/JDdgSrLmrFoAlSoAIMHw+jRbpud0V/ApazKA3YBmygIQ/m3t1HQfhugqvs4Jy6HqEeiCkJRrcCWLCIiEgoUlKRUsNayYtEiPnztFWb8ZzZr9qYB0AAYAfSLMLRq3YAql/amRu9ryercje+21GLOHPhiMiw5bgFD2xPw0kswdChUUWctKSsssJ/CISj/9mYKtssBVAQSgc7AIM/tRNyx3glAEpxIP0HUAzqxVUREyjcFJQlZmVu28NXEiXww6yM+37iFPTm5GOBC4MEYQ7vWtWnd53ISr7mdyhdeytpNkbzzBcyZAF9/DSdOQEQEXHQRNI7eS7xJZ/mq1lo9ktIrHRd+vMNQfiA64jUuEmiGC0D9KAhDiUAdTn8NUQosT1lOEknnuHgREZHSRUFJQkNWFixfzt7PP+fjWTOZtWo1c09mcQJ31ErnCnBFi1g6X9mTCwaN5Pzzr+bgTxF8+SWMmwRzBkFqqvtSiYlw553Qpw8kJbkW30lJdUhPr6CQJKEvA7cKVNzq0H6vcQZ3MGsi0A23IpQfhhqif91FRETOkn6USnDs2QMLFmC/+44VX37JrDWr+SQnl0WeTydEQouGYTS9tBW977yLazrdSM3ohsyfDx99APeMgmXL3NiqVeHyy6FvXxeOGjUK2rMSKZlsXEvt4sLQTp+xtXHh51oKh6GmqJmCiIiIHykoif9lZ8OKFbBgASxYQOb8+czduZOPgU+A3bg/jletBvU7xtPj+v4M7TuUXo0vY+vGCsyZAyOfg2++gYwMt52uRw945hkXjjp3hvDw05eQkgIpKctB24kkUPKAHynaQCG/iUKO19gquPBzCQXXC+W/VydGERGRoFBQknNv/34Xir77zr1fvJi9GRnMBmZGRfJlTg6ZQFgE0AwSuycy6PpBDL5oMFVzWvPVV4b3/gJ3f+EWngBatYK773YrRpdeqjbeEiIs8BPFh6HNuG10+Srggk8H4CYKrw4loLOHREREQoyCkpydnBxYufJ/q0UsWABbt2KB5RERfFSjGh/FhLM2/xfGmGxi2sZwWe/u3HH9HfRucjWrF1dhzhwY8qj7UgAJCYW30zVoEKwnKIJrlFBce+2NwGGvcZ7wTwugD4VXh+oCYYErWURERM6OgpKcmZ9+KhyKfvjBtZcDMmvX5ovGjXk7PorPtu/gcHoG7NkP9aBOzzpcffXVDO93BzFpFzL3q3De/APc/V/IzITISLj4YvjrX1046tQJwvRLpQRSJrCFot3kNgL7vMYZXLOEFsCtFA5DjdG/qiIiImWEfqTLqeXmwurVhbfRbd7sPhcRAZ06sXfIEKZlH2fq+uWsXL6J3L17IRLCm4fTaVAnbrvxNno1voVVC2rzxRdww59hn+eXzjZt3IGv+dvpKlUK3lOVciIH10ShuNWhnbitdPlq4QLQVRQ+a6gZbhudiIiIlGkKSlIgLQ0WLiy8WnTsmPtcrVrQrRv2rrtYklCN11Z+y+w5c9g7ydOnLh4qX1iZpH5JDO0/iuh9vZn3VRRTHoAHVrkh1au7UNS3r9tWV79+cJ6mlHF5QCrFd5TbQuEmCvFAS6AHcAcFYagFUDlwJYuIiEjoUVAqr3JzYe3aglD03XewcaP7XHg4dOgAw4ZB9+5kdu7MjDVLmfjuJBb+/SlOpLmtdqa+oekNTRlwzfVc3HAMmxY3Zs4cuPUZOHkSoqKgZ0947jkXjjp00HY6OUcskEbRMJTfROGE19gYXPBpB1xP4dWhGqiJgoiIiBRLQam8OHSo8GrR99/D0aPuc9WrQ/fucMcd0K0bdOnCniNHGPfOON5/9Wk2LtpIXlYeREJ0y2guHnIxA3qNplLaDfw3pQJTfw//POC+VLt28KtfuZWjSy6BihWD95SlDDhKQRDyXR065DUuHHeuUCJwGYXDUH3UREFERETOmIJSWZSXB+vWFW66sG6d+1xYGLRvD7fd5kJRt27QrBkW+G7Rd7z81st8dfdXHNjkST7xULN7TXpd1p8L6j3IrpVt+fJLw4Mvu0/XrOlWi/K309WtG5RnLKVVEnQ82BGmU/zq0F6f8Q1wAWgQBWEov4lCZGBKFhERkfJBQaksOHzYrRDlh6KFC9194PpsX3RRQTC64AKIjQUgMzOTqTOn8sbDw1mcspiTB08CEN4gnLY3t6Nnx7uplnUHC76OY8Yz8G4WREe7laJhw1w4Ou88baeTn5EH7MEdsur9th1YCJVPVoa2XuNr4MJPfwqfNdQM0AqliIiIBIiCUmmTl+euJcrvQrdggbvWyFqXWNq1g8GDC1aLWrQAU3ARxs4fdzL25ceZOWsm25Zsw2ZZiITY1rF0vaE/7Wo/wE+bujP3qzBee889pn17uO8+t52uZ0+ooI5f4i3/0FXvAOQdiHYAWT6PqQM0ASrDSXOSmOdjCrbKVQlQ3SIiIiKnoaAU6o4ccd3nvFeLDnkuzqha1a0WDRrkQtGFF0J8fKGHW2v5cv4XvPLWK3zzxTcc2uJ5bGWo36MJ5zW7nYS8e1j8XS2+mQjfALVrQ//+BdvpatcO7FOWEHSY4kNQ/n3HfcYn4IJQR2CA53b+W0MKtddemLKQpKQk/9UuIiIi8gsoKIUSa2HTpsKd6Favdvcb4w4eGjiwYLUoMbHYfW8nMk4w/oPxvP3B26z870qyD2UDENkgitZXXE7ThHtJ33kNP3wbwe55EBPjzjG66y4Xjtq1K7QIJeVBBkVDkPfHh3zGx+JCTzPgcgpCUGPP+zj/lywiIiLiTwpKwXTsWNHVorQ097nKld1q0Y03ulDUtau77xQ2bN/AC2++wKezP2XXsl2QDURClcQ6NOl6M/F597BqcSLrPjOsAzp2hN/+1m2nu/hiF5akDMvGHah6qlWhfT7joykIPV29bue/VUNttUVERKRMU1AKFGthy5bCnehWrnTXHAG0bg3XXefadHfrBq1anbZLQl5eHjNSZjBh2gQWzF3A0a2u1bepHE6d87pRO+4ODv94C1vXVGLZGteN7ppr3IpR797u/FgpQ3I5dcOEbcBuXFOFfOG4LXBNgKsoHIIaA7VRS20REREp1xSU/CEpiY5pafDyywVNFxYuhAP5Lbfj3QrRo48WrBZVrfqzX/bQ0UP8691/8f6M91n33Tpy03MBiK6TQKNOw4jOvost67qzZ2kY6RUgKQnG3OvCUZs22k5XqlngAKdvmJDt85i6uOBzCUW3xtVHr34RERGR09CvSv6wahWVDx50SQWgZUu46qqCa4vatIHw8BJ9qSUbl/Di1Bf54j9fsG/lPvfLcIQhvt55VKl9C4dSb+Ponnrs2AOdO8NDD7ntdD16uFbeUoqkc+pmCduAEz7jq+NCT2fgBoo2TNB2ShEREZFfTEHJH+LjORkRQczkyW61KCGhxA/Nzs3mrTlvMfm9ySxOWUzG9gwAwipVolqd6yBzGAf39+fIjhji68PAGwu209Wo4a8nJOfECQoHIe/b23BByVs8LvQ0B/pQOAg1Qg0TRERERPxIQckfGjUiMz2dmCuvLNHwHw/+yNjpY5kxawZbFm7BHrYARFVtQpVaN3LkwK3kHe9ApjX06uVWjPr2dZcxaTtdCMnCNUzYTvGrQr4NE2Io2ArXjcJb45oAVVHDBBEREZEgUVDyh5QUlqekkHSKT1trmbtqLq+8/Qpfz/mag2sOui114RFUiL+E3JhbyMq8luz02jQ/H/qOcOGoWzdtpwuqXCCVU7fQ/pHCDRMiKGiYcA1FO8fVQkFIREREJEQpKAXIsZPHmPTZJN56/y1W/HcF2Tvdlfdh0QlER97ByeybILcX1WNj6HtDwXa6M9i1J2fLAvs59da4nRRumGCAergAlETRznH10CtMREREpJTSr3F+tG7POl6a/hKzZ89m16LdcMRtqQuPbg9mINhrqRDRnssuM//bTpeYqO10fnWIU2+N207Rhgk1cMGnC3AThVeFGuLOGxIRERGRMkdByQ8Sel7HoT1zsTuOQ44FE40JuxrLdRhzJed3qEPfvm473UUXQVRUsCsuI3JwZwntLOZtHlyacWnhrXEAlXGhpyXQj6INE2IDU7qIiIiIhBYFJT84tGwz9kQ82KHANTRs0It+/WLo2xcuuwyqVQt2haXUYYoPQflvP+KuI/JWFbfycxmkhqdS7+J6hZsm/PzxVSIiIiJSDiko+UG1Ct+QFRbHs89G0bcvNG+u7XQ/KxvXKOF0QeiIz2MigAa4IHSp5733WwMKtdDelLKJekn1/PgkRERERKSsUFDyg3ZtE0hPT+dXv9KeOsA1SUjn9CEolaLb4hJwgacZ0IuiQagWULJze0VEREREzoiCkh+kpEBKynI4ZYPwMiYLt+3tdEHomM9joihYDepN8atBlQJQu4iIiIhIMRSU5PQscJDTh6A9nnHeauACT0ugD0WDUE0gzP/li4iIiIj8EgpK5d1JYDenD0K+LbOjKQg8/Sh+NahCAGoXEREREfETBaWyzAI/cfoQtLeYx9XCBZ62QH+KBqEauMNWRURERETKKAWl0iwT2MXpg1Cmz2MqUBB4rqJoCKoPxASgdhERERGREKagFKossJ/Th6D9xTyuDi7wdACuoWgQSkCrQSIiIiIiP0NBKVhOcPrVoF2464e8VQQa4QJPJ4qGoHq464dEREREROSsKCj5Qx5EpUXB95w6CP3k8xgD1MUFnvOB6ykahKqi1SARERERkQBQUPKHytD9WPfC98VSsBp0AUVDUF3c2UIiIiIiIhJ0Ckr+MMl6bCYAAAutSURBVBY2rthIYp/EgiBUGa0GiYiIiIiUEgpK/nAnpKakkpiUGOxKRERERETkFwgLdgEiIiIiIiKhxq9ByRhzhTFmgzFmszHmD8V8PtoY867n898bYxp7fe6Pnvs3GGP6+bNOERERERERb34LSsaYcOAVoD/QBhhijGnjM2wEcMha2xx4Afib57FtgMFAW+AK4FXP1xMREREREfE7f64oXQhsttZutdZmAdOB63zGXAe84bn9AdDbGGM890+31p601m4DNnu+noiIiIiIiN/5s5lDPdyxqfl2A11PNcZam2OMOQwkeO5f6PPYer7fwBgzEhgJUKtWLVJSUs5V7Wft2LFjIVWPaE5CleYl9GhOQpPmJfRoTkKT5iX0lNY58WdQKq4Zti3hmJI8FmvtBGACQJcuXWxSUtIZlug/KSkphFI9ojkJVZqX0KM5CU2al9CjOQlNmpfQU1rnxJ9b73YDDbw+rg+knmqMMSYCd9rQwRI+VkRERERExC/8GZQWAS2MMU2MMVG45gyzfMbMAoZ5bg8E5lprref+wZ6ueE2AFsAPfqxVRERERETkf/y29c5zzdEY4HMgHEi21q4xxjwFLLbWzgImAVONMZtxK0mDPY9dY4x5D1gL5AC/stbm+qtWERERERERb/68Rglr7afApz73PeZ1OxO46RSP/QvwF3/WJyIiIiIiUhy/HjgrIiIiIiJSGikoiYiIiIiI+FBQEhERERER8aGgJCIiIiIi4kNBSURERERExIeCkoiIiIiIiA8FJRERERERER8KSiIiIiIiIj6MtTbYNZwTxpgDwI5g1+GlOvBTsIuQQjQnoUnzEno0J6FJ8xJ6NCehSfMSekJtThpZa2v83KAyE5RCjTFmsbW2S7DrkAKak9CkeQk9mpPQpHkJPZqT0KR5CT2ldU609U5ERERERMSHgpKIiIiIiIgPBSX/mRDsAqQIzUlo0ryEHs1JaNK8hB7NSWjSvISeUjknukZJRERERETEh1aUREREREREfCgonSVjzBXGmA3GmM3GmD8U8/lLjDFLjTE5xpiBwaixvCnBnPzOGLPWGLPSGPOVMaZRMOosb0owL6ONMauMMcuNMd8aY9oEo87y5OfmxGvcQGOMNcaUuo5FpU0JXifDjTEHPK+T5caYu4JRZ3lTkteKMeZmz8+WNcaYdwJdY3lTgtfKC16vk43GmPRg1FnelGBeGhpj5hljlnl+D7syGHWWlLbenQVjTDiwEegD7AYWAUOstWu9xjQG4oEHgVnW2g8CX2n5UcI56QV8b609YYy5B0iy1g4KSsHlRAnnJd5ae8Rz+1rgXmvtFcGotzwoyZx4xsUBs4EoYIy1dnGgay0vSvg6GQ50sdaOCUqR5VAJ56UF8B5wmbX2kDGmprV2f1AKLgdK+u+X1/hfA52stXcGrsryp4SvlQnAMmvtOM8fRD+11jYORr0loRWls3MhsNlau9VamwVMB67zHmCt3W6tXQnkBaPAcqgkczLPWnvC8+FCoH6AayyPSjIvR7w+rATorzj+9bNz4vE08H9AZiCLK6dKOicSWCWZl7uBV6y1hwAUkvzuTF8rQ4BpAamsfCvJvFjcAgJAZSA1gPWdMQWls1MP2OX18W7PfRI8ZzonI4D/+LUigRLOizHmV8aYLbhfzO8LUG3l1c/OiTGmE9DAWvtJIAsrx0r679eNni0rHxhjGgSmtHKtJPOSCCQaY+YbYxYaY7Qa7l8l/lnv2V7fBJgbgLrKu5LMyxPAbcaY3cCnwK8DU9ovo6B0dkwx9+mv4MFV4jkxxtwGdAH+7teKBEo4L9baV6y1zYCHgUf9XlX5dto5McaEAS8ADwSsIinJ6+RjoLG1tj3wJfCG36uSksxLBNACSMKtXkw0xlTxc13l2Zn8/jUY+MBam+vHesQpybwMAaZYa+sDVwJTPT9vQlLIFlZK7Aa8/5pXnxBfQiwHSjQnxpjLgUeAa621JwNUW3l2pq+V6cAAv1YkPzcncUA7IMUYsx24CJilhg5+9bOvE2ttmte/Wa8D5weotvKsJP9+7Qb+ba3NttZuAzbggpP4x5n8TBmMtt0FSknmZQTuej6stQuAGKB6QKr7BRSUzs4ioIUxpokxJgr3YpwV5JrKu5+dE892ovG4kKR95IFRknnx/qXiKmBTAOsrj047J9baw9ba6tbaxp4LbRfiXjNq5uA/JXmd1PH68FpgXQDrK69K8rN+JtALwBhTHbcVb2tAqyxfSvT7lzGmJVAVWBDg+sqrkszLTqA3gDGmNS4oHQholWdAQeksWGtzgDHA57gfVu9Za9cYY57ydO3CGHOBZx/mTcB4Y8ya4FVc9pVkTnBb7WKB9z1tQxVu/ayE8zLG01Z3OfA7YFiQyi0XSjgnEkAlnJP7PK+TFbjr+IYHp9ryo4Tz8jmQZoxZC8wDHrLWpgWn4rLvDP79GgJMt2rxHBAlnJcHgLs9/4ZNA4aH8vyoPbiIiIiIiIgPrSiJiIiIiIj4UFASERERERHxoaAkIiIiIiLiQ0FJRERERETEh4KSiIiIiIiIDwUlERE5K8aY640x1hjTKoDf8zfGmIqB+n6/hDEmyRjTPdh1iIjIL6OgJCIiZ2sI8C3ucMFA+Q0Q9KBkjIk4zaeTAAUlEZFSSkFJRER+MWNMLNADGIFPUDLG/N4Ys8oYs8IY85znvubGmC899y01xjTz3P+QMWaRMWalMeZJz32NjTHrjTFveO7/wBhT0RhzH1AXmGeMmecZO84Ys9hzGOuTXjVsN8Y86fleq/JXvYwxscaYyZ77VhpjbvTc39cYs8Az/n3P8/N9zinGmL8aY74G7jfGXGOM+d4Ys8zz3GoZYxoDo4Hfeg627mmMqWGM+dDzPBcZY3qc29kQEZFz6XR/CRMREfk5A4DPrLUbjTEHjTGdrbVLjTH9PZ/raq09YYyp5hn/NvCctXaGMSYGCDPG9AVaABcCBphljLkE2Am0BEZYa+cbY5KBe621/zDG/A7oZa39yfN1H7HWHjTGhANfGWPaW2tXej73k7W2szHmXuBB4C7gz8Bha+15AMaYqsaY6sCjwOXW2uPGmIeB3wFPFfO8q1hrL81/LHCRtdYaY+4Cfm+tfcAY8xpwzFr7D8+4d4AXrLXfGmMa4k6vb32W//1FRMRPFJRERORsDAFe9Nye7vl4KXA5MNlaewLAE2LigHrW2hme+zLBreIAfYFlnq8TiwtOO4Fd1tr5nvvfAu4D/lFMHTcbY0bifq7VAdoA+UHpI8/7JcANntuX47UCZq09ZIy52vO4+cYYgChgwSme97tet+sD7xpj6nges+0Uj7kcaOP52gDxxpg4a+3RU4wXEZEgUlASEZFfxBiTAFwGtDPGWCAcsMaY3+NWhqzvQ071pYBnrbXjfb5+42K+hu/HGGOa4FaKLvAEnilAjNeQk573uRT83DtVfV9Ya4ecok5vx71u/wv4p7V2ljEmCXjiFI8JA7pZazNK8PVFRCTIdI2SiIj8UgOBN621jay1ja21DXCrKRcDc4A78zvTGWOqWWuPALuNMQM890V7Pv+5Z2ys5/56xpianu/R0BjTzXM7v2kEwFEgznM7HhdcDhtjagH9S1D7HGBM/gee7XMLgR7GmOae+yoaYxJL8LUqAz96bg/zut+7xuK+Z8cSfG0REQkSBSUREfmlhgAzfO77ELjFWvsZMAtYbIxZjlvxARgK3GeMWQl8B9S21s4B3gEWGGNWAR9QEDDWAcM846sB4zz3TwD+Y4yZZ61dgdu2twZIBvK36p3OM0BVY8xqY8wK3PVOB4DhwDTP91sIlKTl+RPA+8aY/wI/ed3/MXB9fjMH3LbBLp7mEWtxzR5ERCREGWuL7GIQEREJOs/Wu0+ste2CXIqIiJRDWlESERERERHxoRUlERERERERH1pREhERERER8aGgJCIiIiIi4kNBSURERERExIeCkoiIiIiIiA8FJRERERERER8KSiIiIiIiIj7+H31bwhUS2CpRAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHwCAYAAACYFJ/XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcjeX/x/HXNUuMMUaIMH1tpWI2YxuSGUtSllAie6JUkrThWxqlQpKUL98WW9lKqFS/b6kZa7JkKVTIlH03xjLGmOv3x31mOsYMMxjn4P18PM5jzn3f133dn/u+zuF8znXd1zHWWkREREREROQfPp4OQERERERExNsoURIREREREclCiZKIiIiIiEgWSpRERERERESyUKIkIiIiIiKShRIlERERERGRLJQoiYhHGWM+MMYMdD1vbIxJ9HBIIpeMMaaiMebIWbb7GWOsMab8pYsq/xljehhjEjwdx9mcK0ZjzCJjTLdLF5GIXGpKlETkojDGJBpjjhtjjrg9ypxrP2ttD2vta5cixgtljBlijJno6Tiy40oyrTGmn4fjuNEYc9n/QN+lSlCstX9aawu7HfeSffj25teziIg3UKIkIhdTC2ttYbfHjkt1YGOMnyf39wJdgQOuv3IOV0B7yzmojUXkQilREpF8ZYzxMcbMNMbsMsYcMsYkGGNuddv+sTEmLpv9zvhG371sxjA9Y8xAY8wu4H3X+pbGmDWuYy0yxoTmEFdG/Y8ZYzYBv7nWv2uM2WaMOWyMWW6Mqeta3xx4Dujo6i1b6Vpf1BgzwRiz07Xfy8aYM/5tNcbcYIw5ZowJdltX0xizxxVLZWPMAmNMkjFmnzFmah6ucWGgDfAoUMUYE5lle31jzFJX3VuNMZ1d6wsZY94yxvzt2rbAGFPAte021z6HjDGrjTH13epbZIx51RizwrXfbGPMta7NC1xlMnoVaxpjbjLGxBtj9rvO7aMs12GbMaafMeYXV33TMuJwbW/jiuGwMWaTMaZJXq69q+wQY8wMV93JQCdjTB23c9xpjBltjPF3Pw9gnes87nXVk9vX16vGmLdczwsYY1KMMa9ltJdrOdi49cAZY4YBdYBxrmOOcqvyTte5HzTGjHY7jo8xZpAx5i/Xa2miMaaIa9sZQ1ld1yk2p9dzlrK5fQ8+Z4zZa4zZYYzp4la2qKv8Xle5AcYY43YIH2PMf1xtvsEY08Bt34dc+yQbY/40xrR329bDGPOb61p8Y4y5IUu8me9p4wztHZrlvL4yxvRxPX/BVX+yMWadMaZllsuQY4zZXK+c4vJxvbb2uOpZa4ypklM9IuJFrLV66KGHHhf8ABKBxtms9wG6AUFAQeBdYIXb9o+BONfzxkCi67kfYIHyZymbBrwGXAMEADWB3a6/vkB3YDNwTTZxZdT/f8C1QIBrfWegmGv788B2oIBr2xBgYpZ65gL/AQoB1wMrgYdyuEYLgAfdlt8C3nU9/9R1PB/XdbotD9f+QWCba99vgJFu2yoAycD9rnMqAUS6tv0X+B4o7bpe9QB/4AZgP3Cnq86mwD6guGu/RcBWoAoQCMzJuC7Ajc5/LafFVxlo5GqnksBiYITb9m3AUtf1Kw78AfRwbasLHHLt7+OK7ebzuPZDgFSghauejNdLbdd1qeg6bu+zvP7y8vpqAqxyPa/vKrfYbdvK7K6X69p2y+Z1+jkQDJTH6Tls7Nr+sCvuCjjvsc+BCVnfT1mudWxOr+cc3iPneg++5HrdtASOAkVc26cCs1xxVQQ2AV1d23q49u3j2reDq52LAkWAJOAmV9nSQBXX8/uA34GbXfHFAQtzek8DDXH+bTKuMsWB40Ap1/L9rvp9XDEccduWY4xZ2+occTUDlrnazwfnfXO9J/6d1kMPPfL28HgAeuihx5XxcH0YOeL6IHEImJNDuRKuDzOBruULSZRScPuQitOr9FKW420mm6TDrf76Zzkng5NkVHUtn/bBEijr+tBVwG1dZ+C7HOrrBXzreu4D7ADqupanAmOBsudx7RNwJR6u4+8G/FzLLwKfZrOPL3Ai49yybPs3rg/bbuu+Bzq6ni8ChrhtC3e1hSGbRCmb+u8DlrstbwPauy2P5J8E8kPgjWzqyOu1HwL8cI64nsm4Vjm8/vLy+gp0Xd+iwAs4SfAOnKTuVVzJbNbrRc6JUrTbulnAM67n84GH3bZVdR3Xh0uTKB0BfN22HwBq4CQWaUBlt22PA/Ncz3vgJNvGbfvPwAM4idIhoDVQMEtM3+FKttxiPOF6PZzxnnZdh+388z57FNd7MIdz/hVodq4Ys7bVOeJqgtNjXRvwyev7Ww899PDcQ0PvRORiamWtLep6tAIwxvgaY4a7hrccxvlWGZyE6ULtttamui2XA553DYs6ZIw5hPNtcdmz1LHVfcE1jOg3Y0wScBDnA29OsZYDCgC73Y43BiiVQ/lPgduNMaWABkCKtXaJa9vTOB8uVxhnCFrXs8TsHm95nB6LKa5Vs4HCOL1A4PTAbM5m11I4PTzZbSsHPJDlOkYD7pNzuF+3v3CuQ7EcYrzeGPOJMWa76zUwkTOv6S6358dc53C2+PN67bPGjDHmFtcwrF2uuF7OJq6sx8zV68taexRYhdM29XGS2aU4Q+ticBKcvMjp+pTBuf4Z/sJp1+vyWP/52metPZVNbCVxkvGssblfq23WWptlexlr7WGchOlxYJcxZq4xprKrTDlgjNv13wekAyFu9WS2s7U2HZjhqg+cXqGM9wrGmG7mn6GUh4BbOP01kG2M2VyHHOOy1n4LjMP5ImS3MWacMSYomzpExMsoURKR/NYFuBtnCEwwzjfo4PQ+5Mham4bzjWwht9XXZy2WZXkrMNgtWStqrS1krf3kbIfKeOK6/6AfcC9OT8C1ON+Ym6xl3Y53DCjmdrwi1trwHM5pP/AD0BbnA9s0t207rTMDYGmcD4jvGWMqnCXuDF1c8X1jnHu1NuF8UM64V2QrUCmb/XbjDEXLbttWnB4l9+sYaK19w63MDW7P/4XTVgc48xoBDHNtD7PWFsEZinnW9s8SS04x5vrau2SN7b84PQg3uuIaRM5tnXHMvLy+5uP0uoThDAucD9wFVAcW5jLGc9mB8yE9w79w2nUvzjC4zPePcSY3KJ7bY+XyPZiTPcCpbGLb7rYcwun+hXM+WGu/sdY2xklEN+G0FTht8FCWNgiw1v7kHnqWeqcB97veT1E4XyZgjKmIk7w8ijOstChOz4/7azPHGLM4a1zW2lHW2iggFGfonUdnpxSR3FGiJCL5LQjnw9Z+/hl2lFtrcG429zXGNMO5h+Zs3gMeN84EAsY4N823MMYE5iHWNJxvg/1x7jNw33c3UD7jhnRr7VacD78jjDFFXDdt32jcJj7IxlScmenauJ4DYIy53xiT8W37IZwPe6fO3P0MXXA+4Ee6PdoBLY0zwcLHQFNjzL2um91LGGMiXL0AE4FRrh4fX+NM4OAPfAS0Nsbc4Vpf0BjTwJw+3XsXV49MIDAY+MT1zfsewLo+hGYIwvnQnuS6wf2ZXJxXhg+BHq7j+xhjQowxN5/ntc8qCOdemKPGmWDkkYwNruuzH+femgx5fX3Nx0kK17qSjgRc9xRZaw/ksM/uLMc8l2lAP2NMeVcvxavANFdPym9AkDHmTle7ZtxL5H6szNdzDvL6HgTAWnsSmAm85rpOFYCncF6PGUobY3q7XpftcRLi/zPGlHZd10I4Sd9R/nkvjAP+7WqvjAkj7jtHLMtx2vk94GtXjxU4PV8WJ6k0xpgeOD1K7rKNMZvD5BiXMaaW6+HnOpdUcvfeFhEPU6IkIvltAs43sDuAdcCSsxc/TR+c+xQO4fTCfHG2wq5vbx/F+Zb4IM5N7p3ycLyvgXnARpx7rg4DO922z8DprTlgjFnmWtcJJ5la7zrmp5z9W/c5ON8o/22tXee2vjaw3BhzFOcelMettX8DGGN+N8a0y1qRMaYezjCgMdbaXRkPnG/ME4F21totOBMYPI/T4/MzTg8HOB9cN+D0dhzAmRjDWGsTca77izgfIv/GGRro/n/GRzgfenfiDLHqC2CtTQZeB35yDUOqgfMBvRbOh9UvgM/Ocn1O4xqa2BMY7do/nn96s/J67bN6GidpTcbpsZiRZftLwFTXebQ5j9fXIpwvBzJm0FsLnHRbzs4o/hn2ODIX5/C+K+6FwJ+uc3kSwFp7EHgCmITTk3OA04fwZfd6zipP78EsHsNJCrbgJI2TgMlu25fg3FN1AOdLiXtdMfsCz+K8tvbjTOjR23VOn+Lcw/apa7jkWpxJR85lGk7vXuaXE9batTivq2WuY90C/JRlv5xiPM054iqKk/Afwnlf7sSZyEVEvFzGLDAiIiK5YoxZBHxgrZ3o6VhERETyi3qUREREREREslCiJCIiIiIikoWG3omIiIiIiGShHiUREREREZEslCiJiIiIiIhk4efpAC6WEiVK2PLly3s6jExHjx4lMDC3P90il4LaxDupXbyP2sQ7qV28j9rEO6ldvI+3tcnKlSv3WWuvO1e5KyZRKl++PCtWrPB0GJkSEhKIjY31dBjiRm3indQu3kdt4p3ULt5HbeKd1C7ex9vaxBjzV27KaeidiIiIiIhIFkqUREREREREslCiJCIiIiIiksUVc49Sdk6ePMm2bdtISUm55McODg5mw4YNl/y44ihYsCAhISH4+/t7OhQRERERuQxd0YnStm3bCAoKonz58hhjLumxk5OTCQoKuqTHFIe1lv3797Nt2zYqVKjg6XBERERE5DJ0RQ+9S0lJoXjx4pc8SRLPMsZQvHhxj/QkioiIiMiV4YpOlIA8J0mxE2OJnRibP8HIJaPkWEREREQuxBWfKHnS/v37iYyMJDIykuuvv56yZctmLqempl6048ybN4/g4ODMuiMjI4mPj89zPWlpaRQtWvS84xg/fjy7du3KXH7wwQf5/fffz7s+ERERERFPuaLvUfK04sWLs3r1agDi4uIoXLgwzzzzzGllrLVYa/HxubCctUGDBsyZM+eC6rhQ48ePJyoqiuuvvx6ACRMmeDQeEREREZHzpR4lD9i0aROhoaH06tWLqKgotm7delpPzvTp0+nRowcAu3fvpk2bNtSoUYNatWqxdOnSXB/n6aef5r333stcfuGFF3j77bc5fPgwDRs2JCoqivDwcObOnXvGvvPmzaNVq1aZy7169eLjjz8G4KWXXqJmzZqZ52CtZcaMGaxevZp27dpl9pjVq1cvM1H8+OOPCQsLIzQ0lIEDBwL/9GD179+fiIgI6tSpw549e/JwJUVERERE8sdV06PU9//6snrX6nOWyyiTm/uUIq+PZFTTUecVz/r165kwYQLjxo0jLS0tx3J9+vThueeeIzo6msTERJo3b86vv/56Rrn4+HgiIyMzl+fMmUP79u3p378/Dz/8MACffvop8fHxBAQE8PnnnxMUFMSePXu47bbbaN68ea5jf/LJJxk8eDDWWjp06MD//d//0a5dO9555x3efffd0+IAZ/bBF154gRUrVhAcHEzjxo2ZO3cuTZs2JSkpiZiYGIYOHUq/fv0YP348/fv3z3UsIiIiIiL54apJlLxNpUqVqFmz5jnLzZs377T7fA4ePMjx48cJCAg4rVx2Q+/Kly/P1q1b2b17N9u2beP666+nTJkypKam8vzzz7No0SJ8fHzYunUr+/bty/X9Sd9//z1vvPEGKSkp7Nu3j+rVq3PXXXflWP6nn36iYcOGlChRAoAOHTqwYMECmjZtSkBAQOa+1atXZ+HChbmKQUREREQkP101iVJue34yepISuiXkXzBAYGBg5nMfHx+stZnL7tNaW2tZtmwZ11xzzXkd59577+Wzzz4jMTGR9u3bAzB58mSSkpL4+eef8fPzIyQk5IyptP38/EhPTz8jpmPHjtG7d29+/vlnypYtywsvvHDOabjdzy0r9/Py9fU9a++aiIiIiMilonuUvICPjw/XXnstGzduJD09ndmzZ2dua9y4MWPGjMlczrjnJ7fat2/P9OnTmTVrFvfeey8ASUlJlCxZEj8/P7777ju2b99+xn7lypVj3bp1pKamcvDgQX744QcAjh8/jo+PDyVKlCA5OZnPPvssc5+goCCSk5PPqCs6Opr4+Hj2799PWloa06dPJyYmJk/nISIiIiJyKSlR8hLDhg2jadOmNGrUiJCQkMz1Y8aMYfHixYSHh1OlShXef//9bPfPuEcp45GRbEVERLB3714qVKhAyZIlAejcuTNLliyhRo0afPrpp9x0001n1FehQgVatWpFWFgYXbp0ISoqCnBm8uvatSuhoaG0bt2a2rVrZ+7z4IMP0qNHjzOmPw8JCeHll18mNjaWyMhIoqOjadas2YVfNBERERGRfGLONizqclKjRg27YsWK09Zt2LCBW2+9NU/1XKyhd8nJyQQFBV1QHXJhsrZ/QkICsbGxngtIsqV28T5qE++kdvE+ahPvpHbxPt7WJsaYldbaGucqd9Xco5Rb+X1vkoiIiIiIeD8NvRMREREREclCPUoiIiIiIpIvYmPh0KFI8jgfmVfI1x4lY0xTY8zvxphNxpgzfkXUGNPLGPOLMWa1MWaRMaaKa315Y8xx1/rVxphx+RmniIiIiIiIu3zrUTLG+AJjgDuAbcByY8wX1tr1bsWmWmvHucq3BEYCTV3bNltrI/MrPhERERERkZzkZ49SLWCTtfZPa20qMB24x72Atfaw22Ig4Pkp+GJdDxERERERuWrlZ6JUFtjqtrzNte40xpjHjTGbgeFAH7dNFYwxq4wx840xt+djnPmqcOHCuS4bFxfHiBEj8q3+8z1GdhITE5k6deoF1yMiIiIi4o3yczIHk826M3qMrLVjgDHGmA7AC0BXYCfwL2vtfmNMdWCOMaZqlh4ojDEPAw8DlCpVioSEhNPqDg4OJjk5OU9BB5wKAOB48vE87ZfVqVOnMo+d2xhOnDiBv79/nmPOS/nzPUZW69evZ/LkybRo0eKC6slPKSkpp70mjhw5csZrRDxP7eJ91CbeSe3ifdQm3knt4l0OHYrk1KlTl2ebWGvz5QHUAf7ntjwAGHCW8j5AUg7bEoAaZzte9erVbVbr168/Y905xbgeF+jw4cPWWmsDAwPP2PbFF1/YWrVq2cjISNuoUSO7a9cua621L730ku3UqZNt0KCBvfHGG+17772Xuc/w4cNtjRo1bFhYmB00aFDmevf6cyozZMgQW7lyZduoUSPbvn17+8Ybb5wRU2Jiom3YsKENCwuzDRs2tH/99Ze11tquXbvaTz/99Izj1a5d2xYpUsRGRETYkSNH2rS0NPv000/b0NBQGxYWZkePHm2ttXbevHk2MjLShoaG2gcffNCmpKRYa60tV66cHTBggI2OjrbVq1e3K1eutE2aNLEVK1a0Y8eOPes5HTlyxN599902PDzcVq1a1U6fPj3bNsja/vHx8dmWE89Su3gftYl3Urt4H7WJd1K7eJeYGGsjIg56OozTACtsLvKZ/OxRWg7cZIypAGwH2gMd3AsYY26y1m50LTYDNrrWXwccsNaeMsZUBG4C/rygaPoCuZmWMKNMbC7KRgKj8h5KvXr1WLp0KcYYPvjgA4YPH86bb74JwNq1a1m6dClHjx6lWrVqNGvWjF9//ZWNGzeybNkyrLW0bNmSBQsWUL9+/cw6v/3222zLBAYGMn36dFatWkVaWhpRUVFUr179jJh69+5Nly5d6Nq1K+PHj6dPnz7MmTMnx3MYOnQoI0aMYO7cuQCMHTuWLVu2sGrVKvz8/Dhw4AApKSl069aN77//nsqVK9OlSxfGjh1L3759Abjhhhv48ccfeeqpp+jWrRuLFy8mJSWFqlWr0qtXrxzPae/evZQpU4avvvoKgKSkpLw3goiIiIjIWeRbomStTTPG9Ab+B/gC462164wxL+NkcV8AvY0xjYGTwEGcYXcA9YGXjTFpwCmgl7X2QH7Feqlt27aNdu3asXPnTlJTU6lQoULmtnvuuYeAgAACAgJo0KABy5YtY9GiRXz77bdUq1YNcLqUN27ceEailF2Z5ORkWrduTaFChQBo2bJltjH9+OOPzJo1C4DOnTvz3HPP5emc5s2bR69evfDzc15SxYoVY82aNVSoUIHKlSsD0LVrV8aMGZOZKGXEEhYWxpEjRwgKCiIoKIiCBQty6NChHM/p9ttv55lnnuH555+nefPm3H77ZXsLm4iIiIh4qXz9wVlr7dfA11nWDXJ7/mQO+30GfHZRg8ltz0+s62/CRT36aZ544gn69etHy5YtSUhIIC4uLnObMaff2mWMwVrLgAEDeOSRR3KsM6cyo0aNOqPO3MjYx8/Pj/T09MxjpKam5nj8rMdxejZzVqBAAQB8fHwyn2csp6WlnfW8V65cyddff82AAQNo0qQJgwYNOqOMiIiIiMj5ytcfnJXsJSUlUbasMwHgpEmTTtv2+eefk5KSwv79+0lISKBmzZrceeedjB8/niNHjgCwfft29uzZc9p+OZWpX78+s2fP5vjx4yQnJ/Pll19mG1PdunWZPn06AFOmTKFevXoAlC9fnpUrV2bGdvLkSQCCgoJOmxCiSZMmjBs3jrS0NAAOHDjALbfcQmJiIps2bQLgo48+IiYmJtfXKadz2rFjB4UKFaJTp04888wz/Pzzz7muU0REREQuHWshLS3vX9p7g3ztURI4duwYISEhmcv9+vUjLi6Otm3bUrZsWaKjo9myZUvm9lq1atGsWTP+/vtvXnzxRcqUKUOZMmXYsGEDderUAZwpwT/++GNKliyZuV+TJk2yLRMVFUW7du2IjIykXLlyOQ5TGz16NN27d+eNN97guuuuY8KECQD07NmTe+65h1q1atGoUSMCAwMBCA8Px8/Pj4iICLp168YTTzzBH3/8QXh4OP7+/vTs2ZPevXszYcIE2rZtS1paGjVr1qRXr165vnY5ndOmTZt49tln8fHxwd/fn7Fjx+a6ThERERG5NPbuhXXr4MiRwhw/DgEBno4ob8y5hkddLmrUqGFXrFhx2roNGzZw66235q2iWNffhAuLJzk5maCgoAurRC5I1vZPSEggNjbWcwFJttQu3kdt4p3ULt5HbeKd1C7e4bvvoEsX2L0bSpc+ztatAfh4yVg2Y8xKa22Nc5XzknC9SAL5en+SiIiIiMiV6sQJePppaNIEihWDgEId2HesmtckSXmhoXciIiIiInLBNmyADh1g9Wp47DGod8csOnScDics+5L2USK4hKdDzJPLMLcTERERERFvYS2MGwfVq8O2bTBr1kkO2Afo0OZeKGjxL1+S4kWKezrMPFOPkoiIiIiInJd9+6BHD/j8c2e43QuDfqNdj4bs/G0nResWpcKOdyj09y3n9XM1nqYeJRERERERybN58yA8HL75Bt56C+5sM4rYxlXZuWUnjZ9rzI747XTatYH+J17xdKjnRYlSVrGxzkNERERERM5w4gQ88wzccQdcey3ExyczK74+T/d6ClPKMHbuWL7rPZ6A5q3ol/IaJdN3w7Fjng47z5Qo5bPChQuftjxx4kR69+7toWjyR2xsLFmnZs+thIQElixZkrk8btw4Jk+efLFCExEREZGL6LffoE4dePNNZ8KGt95ZwF33hbDwy4WEtAzh9+W/0WtrAQgNhSVLGFlwIP0KvgOFCnk69DxToiQelTVR6tWrF126dPFgRCIiIiKSlbXw3/9CVBRs3QqzZ6dzTbGnuPOOGA4fPUznkZ3Z8p8lVOr+FHTvDpGRsHYtXxRoC5fh/UmgRMmjunXrxsyZMzOXM3qfEhISiImJ4f7776dy5cr079+fKVOmUKtWLcLCwti8eTMAX375JbVr16ZatWo0btyY3bt3AxAXF0f37t2JjY2lYsWKjB49Otvjf/vtt9SpU4eoqCjatm3LkSNH+Oabb7j//vszyyQkJNCiRQsAHn30UWrUqEHVqlV56aWXsq3TvQdt5syZdOvWLcdYExMTGTduHG+99RaRkZEsXLiQuLg4RowYAcDq1auJjo4mPDyc1q1bc/DgQcDpwXr++eepVasWlStXZuHChXm+9iIiIiKSO/v3Q5s20KsX1KsH//vfdvq/VoVRQ0ZRMLQgcxJmM7nUXfiFRTg3Lr31FsTHQ8WKng79glw9s9717etM6n4uGWVyc59SZCSMGnXWIsePHycyMjJz+cCBA7Rs2fKcVa9Zs4YNGzZQrFgxKlasSI8ePVi2bBlvv/0277zzDqNGjaJevXosXboUYwwffPABw4cP58033wTgt99+Iz4+nuTkZG6++WYeffRR/P39M+vft28fQ4YMYd68eQQGBjJs2DBGjhzJwIEDeeSRRzh69CiBgYHMmDGDdu3aAfDqq69SrFgxTp06RaNGjVi7di3h4eHnvk6QY6y9evWicOHCPPPMMwB8//33mft06dKFd955h5iYGAYNGsTgwYMZ5breaWlpLFu2jK+//prBgwczb968XMUhIiIiIrn3/ffQpYszu92bb0KpG6ZSJ/ZBUlNSCX0olB/+PYPrnnsJZs6E2rVh0iS4+eZ/KoiM5MihQ547gQtw9SRKHhIQEMBqtwRt4sSJubqfp2bNmpQuXRqASpUq0aRJEwDCwsKIj48HYNu2bbRr146dO3eSmppKhQoVMvdv1qwZBQoUoECBApQsWZLdu3cTEhKSuX3p0qWsX7+e2267DYDU1FTq1KmDn58fTZs25csvv+S+++7jq6++Yvjw4QB88sknvPfee6SlpbFz507Wr1+f60TpbLFmJykpiUOHDhETEwNA165dadu2beb2Nm3aAFC9enUSExNzFYOIiIiI5E5qKrzwAowY4eQ9s2alMHxsR2Y9PQuuh+f++xyvF6iFT+1YSEqC1193Znjwu3LSiyvnTM7lHD0/mTJ6khIS8iuSTH5+fqSnpwNgrSU1NTVzW4ECBTKf+/j4ZC77+PiQlpYGwBNPPEG/fv1o2bIlCQkJxMXFZbu/r69v5j4ZrLXccccdTJs27Yy42rVrx5gxYyhWrBg1a9YkKCiILVu2MGLECJYvX861115Lt27dSElJOWNf9zny3befLdbzkXF+2Z2biIiIiJy/336DDh1g1Soan06ZAAAgAElEQVRnuF33h36hRbs72P3nboJjgvnfqOnUHvExTLkPqlWDH35wJm/IRkICJCSsBmIv5SlcFLpHyYPKly/PypUrAfj88885efJknvZPSkqibNmyAEyaNClP+0ZHR7N48WI2bdoEwLFjx/jjjz8A5x6gn3/+mffffz9z2N3hw4cJDAwkODiY3bt3880332Rbb6lSpdiwYQPp6enMnj37nLEGBQWRnJx8Rj3BwcFce+21mfcfffTRR5m9SyIiIiJy8VkL773nTNjw998we7alXOWhRNeNZPeu3cT+O5YdT31A7bu7w4wZ8NJL8NNPOSZJlzslSh7Us2dP5s+fT61atfjpp58IDAzM0/5xcXG0bduW22+/nRIlSuRp3+uuu46JEyfywAMPEB4eTnR0NL/99hvg9NI0b96cb775hubNmwMQERFBtWrVqFq1Kt27d88cspfV0KFDad68OQ0bNswcOni2WFu0aMHs2bMzJ3NwN2nSJJ599lnCw8NZvXo1gwYNytM5ioiIiEju7N8P994LjzwCt90GCQn7GTamLgP6DcCUM4yZOpQfdlakUKu2UKwYLF0KcXHgdg/8lcZYaz0dw0VRo0YNm/Xenw0bNnDrrbfmraKLNPQuOTmZoKCgC6pDLkzW9k9ISCBWPybsddQu3kdt4p3ULt5HbeKd1C55lzFhw969zq1GoeHfct8D93Lk4BHKtCnDknavUO7pwbBtGzz7LAweDG63eZyLt7WJMWaltbbGucqpRykrZyClp6MQEREREclXqanw3HNwxx1QpAgsWnSSTdsfpemdd3KEI3Qedh9/X9eScm0fgoIFYdEiGDo0T0nS5ezqmcxBREREREQA+P136NgRVq50htv16bOFlg/cwea1mylQowBfPDaQJq9Ohs2bnZ/ZefVVKFTI02FfUkqURERERESuEtbChx/Ck09CQADMng37kz4ksuajnDx1krCeN7O4QAxBD8VB+fLOSKurdEItDb0TEREREbkKHDgA990HPXtCnTqwZEkyH0xpTo9uPThZ/CSvv9ieNQsNQe++Bw8/DGvWXLVJEqhHSURERETkihcfD507w5498MYbUK/eMm5r1Ix92/dRtHEQKyu3pOJL06F0afjf/6BJE0+H7HHqUcoiNvafie9ERERERC5nqanQvz80agSFC8OSJekcThlE3XrR7Du8j/sejmTvrn9R8T9ToFMn+OUXJUkuSpTy2a5du2jfvj2VKlWiSpUq3H333Zk/7JpXo0aN4tixYxclrsTERKZOnZq5vGLFCvr06XNR6nYXGxtL1mnbRURERCT//fEH1K0Lw4Y5w+2++monvfrW4pUXX8GnMvyvTRM+Gb8Ov7374PPPYeJEKFrU02F7DSVK+chaS+vWrYmNjWXz5s2sX7+e1157jd27d59XfWdLlE6dOpWnurImSjVq1GD06NHnFZeIiIiIeA9r4YMPoFo12LIFZs2Cu5t9Tnj1G1n500rC7i5Okv8tNJn4Lebee2HdOmjZ0tNhex0lSvkoPj4ef39/evXqlbkuMjKS22+/HWstzz77LKGhoYSFhTFjxgzgnx/kuu+++7jlllvo2LEj1lpGjx7Njh07aNCgAQ0aNACgcOHCDBo0iNq1a/Pjjz/y8ssvU7NmTUJDQ3n44YfJ+DHhTZs20bhxYyIiIoiKimLz5s3079+fhQsXEhkZyVtvvUVCQgLNmzcH4MCBA7Rq1Yrw8HCio6NZu3YtAHFxcXTv3p3Y2FgqVqyY58Rq2rRphIWFERoayvPPP5+5/sMPP6Ry5crExsbSs2dPevfuff4XXUREROQqduAAtG3r9CBFR8OyZSl88X8P0uqeVhwLOMbI5qGs+f4Igdv3wCefwLRpULy4p8P2SlfNZA59+8Lq1ecul1EmN/cpRUbCqFE5b//111+pXr16tttmzZrF6tWrWbNmDfv27aNmzZrUr18fgFWrVrFu3TrKlCnDbbfdxuLFi+nTpw8jR44kPj6eEiVKAHD06FFCQ0N5+eWXAahSpQqDBg0CoHPnzsydO5cWLVrQsWNH+vfvT+vWrUlJSSE9PZ2hQ4cyYsQI5s6dCzgJWoaXXnqJatWqMWfOHH744Qe6dOnCateF+e2334iPjyc5OZmbb76ZRx99FH9//3Neqx07dvD888+zcuVKrr32Wpo0acKcOXOoVasWr7zyCj///DNBQUE0bNiQiIiIc9YnIiIiIqdzn7Bh+HC46671NLz7Lv7+42+ui/Lj57TyhMz5FVq1gnHjoFQpT4fs1dSj5CGLFi3igQcewNfXl1KlShETE8Py5csBqFWrFiEhIfj4+BAZGUliYmK2dfj6+nLvvfdmLsfHx1O7dm3CwsL44YcfWLduHcnJyWzfvp3WrVsDULBgQQqd48fCFi1aROfOnQFo2LAh+/fvJykpCYBmzZpRoEABSpQoQcmSJXM9jHD58uXExsZy3XXX4efnR8eOHVmwYAHLli0jJiaGYsWK4e/vT9u2bXNVn4iIiIg4UlNhwABnwobAQFiyxFKg0Ggiq4fz97a/ebD+deza4EfIX3th8mRnLJ6SpHO6anqUztbz4y6jJ8mtg+W8Va1alZkzZ2a7LWNYXHYKFCiQ+dzX15e0tLRsyxUsWBBfX18AUlJSeOyxx1ixYgU33HADcXFxpKSknPU4OcluH2NMnmLLTZ1nWy8iIiIi57ZxI3ToACtWOMPtXnzxAN17tWPe1/Mo+C9YWLgMdRbsgKZNnRuXypb1dMiXDfUo5aOGDRty4sQJ3n///cx1y5cvZ/78+dSvX58ZM2Zw6tQp9u7dy4IFC6hVq9ZZ6wsKCiI5OTnbbSkpKQCUKFGCI0eOZCZoRYoUISQkhDlz5gBw4sQJjh07dta66tevz5QpUwBnSF6JEiUoUqTIWWNr1KgR27dvz3F77dq1mT9/Pvv27ePUqVNMmzaNmJgYatWqxfz58zl48CBpaWl89tlnZz2OiIiIiDgTNowf70zYsHkzfPYZPPBAPOE1KjHvf/O4PewakvYVpM7fh+H99+Hrr5Uk5ZESpXxkjGH27Nl89913VKpUiapVqxIXF0eZMmVo3bo14eHhRERE0LBhQ4YPH871119/1voefvhh7rrrrszJHNwVLVqUnj17EhYWRqtWrahZs2bmto8++ojRo0cTHh5O3bp12bVrF+Hh4fj5+REREcFbb711Wl1xcXGsWLGC8PBw+vfvz6RJk84aV3p6Ops2baJYsWI5lildujSvv/46DRo0yJxU4p577qFs2bIMHDiQ2rVr07hxY6pUqUJwcDAAX3zxReY9VyIiIiLiOHgQ7r8fHnoIateGlStP8uOyZ2nYqCHJqYeYWCGYBb+kck3tOs7vIvXoAa7RQZIH1tor4lG9enWb1fr1689Ydy4xMc7jQh0+fPjCK7lM/PLLL/app5467/2Tk5OttdaePHnSNm/e3M6aNeuixJW1/ePj4y9KvXJxqV28j9rEO6ldvI/axDtd6e2SkGBtSIi1fn7WDhtm7aZNf9rQqFAL2ErlsHsDC9j0gABr33nH2lOnPB2utdb72gRYYXORX6hHKYuEhItzf9LVJDQ0lJEjR573/nFxcURGRhIaGkqFChVo1arVRYxORERE5PJ38iQMHAgNGkChQrB0KZQNmULViFtZ9+uvDLjBn01/QYmI6pg1a6B3b/DRR/0LcdVM5iDea8SIEZ4OQURERMRrbdrkTNiwfLkziu6VV5J58ukefDL1E4oXh3j8Cd3jA2+8AU89Ba7JvuTCKFESEREREfFC1sLEifDEE3DNNTBzJpQrt4Lq0few4+8d3FvSMH2PxbdGBGbSJKhSxdMhX1HUHyciIiIi4mUOHoR27aB7d6hVC1avTuePTa9TO7o2B/bu4PMAXz456IvfK69gfvxRSVI+UI+SiIiIiIgXmT8fOneGnTth6FDo2HEn7Tu1ZfH8xVQPhu+SIDisCj6TJ0NkpKfDvWKpRymL2NhYYjN+dVZERERE5BI5eRL+/W9nwoaCBWHJEqhadS5Vwm9m6aLFDAuAn5IN1/773/isWKEkKZ8pUcpnu3bton379lSqVIkqVapw991388cff+T7cRMSEmjevHm+HiMxMZHQ0NALLiMiIiJytdu0CerVg9degwcfhCVLUhg/8VFatGhBcEoyv5yCp26ohO+PS2HIEOemJclXGnqXj6y1tG7dmq5duzJ9+nQAVq9eze7du6lcubKHoxMRERERT7MWJk1yJmzw84NPP4UqVdZzW0xr/lj/B92ugTHHoWC/p/AZ8ioEBHg65KuGepTyUXx8PP7+/vTq1StzXWRkJLfffjtHjhyhUaNGREVFERYWxueffw6c2QMzYsQI4uLiABg9ejRVqlQhPDyc9u3bA7Bs2TLq1q1LtWrVqFu3Lr///vtZY5o4cSKtWrWiRYsWVKhQgXfffZeRI0dSrVo1oqOjOXDgAOAkdNHR0YSHh9O6dWsOHjwIwMqVK4mIiKBOnTqMGTMms95Tp07x7LPPUrNmTcLDw/nvf/+bp2v18ccfU6tWLSIjI3nkkUc4deoUAIULF+bpp58mKiqKRo0asXfv3jzVKyIiIuKtDh6E9u2dHqTq1WHNGsu+feOIjIpkxx9/8BUwpnQZCi1ciM+bI5UkXWJXTY9S3759Wb169TnLZZTJzX1KkZGRjBo1Ksftv/76K9WrV892W8GCBZk9ezZFihRh3759REdH07Jly7Meb+jQoWzZsoUCBQpw6NAhAG655RYWLFiAn58f8+bNY+DAgXz22WdnrefXX39l1apVpKSkcOONNzJs2DBWrVrFU089xeTJk+nbty9dunThnXfeISYmhkGDBjF48GBGjRrFgw8+mLn+2Wefzazzww8/JDg4mOXLl3PixAluu+02mjRpgjHmrLEAbNiwgRkzZrB48WL8/f157LHHmDJlCl26dOHo0aNERUXx5ptv8vLLLzN48GDefffdc9YpIiIi4s0WLIBOnZwJG157DXr0OED3nl2Z+/lc6vrDZ2kQ/MhDBLz5NgQGejrcq9JVkyh5G2stAwcOZMGCBfj4+LB9+3Z279591n3Cw8Pp2LEjrVq1olWrVgAkJSXRtWtXNm7ciDGGkydPnvPYDRo0ICgoiKCgIIKDg2nRogUAYWFhrF27lqSkJA4dOkRMTAwAXbt2pW3btmes79y5M9988w0A3377LWvXrmXmzJmZcW3cuDFXQwy///57Vq5cSc2aNQE4fvw4JUuWBMDHx4d27doB0KlTJ9q0aXPO+kRERES81cmTMHgwvP46VKzoTNhw7Nh8QsPbsn/3XoYBD19blCJTPsGn8R2eDveqdtUkSmfr+XGX0ZOUkJBwwcesWrVqZuKQ1ZQpU9i7dy8rV67E39+f8uXLk5KSgp+fH+np6ZnlUlJSMp9/9dVXLFiwgC+++IJXXnmFdevW8eKLL9KgQQNmz55NYmJirnrCChQokPncx8cnc9nHx4e0tLQc97PW5thDZK3lnXfe4c477zxtfWJi4jnjsdbStWtXXn/99XOWzU0PlYiIiIg32rwZOnaEn35yfh/pzTfTeGPES7z+2mv8ywd+slDugXsoOm4yFCni6XCverpHKR81bNiQEydO8P7772euW758OfPnzycpKYmSJUvi7+9PfHw8f/31FwClSpViz5497N+/nxMnTjB37lwA0tPT2bp1Kw0aNGD48OEcOnSII0eOkJSURNmyZQHn/qOLITg4mGuvvZaFCxcC8NFHHxETE0PRokUJDg5m0aJFgJPsZbjzzjsZO3ZsZo/WH3/8wdGjR0+rd/v27TRq1OiM4zVq1IiZM2eyZ88eAA4cOJB5PdLT0zOTzalTp1KvXr2Lco4iIiIil0rGhA2RkfD77/DJJ/DCC1to3KQ2r736Gl0sLAwqyK1zPqXE1DlKkrzEVdOj5AnGGGbPnk3fvn0ZOnQoBQsWpHz58owaNYqqVavSokULatSoQWRkJLfccgsA/v7+DBo0iNq1a1OhQoXM9adOnaJTp04kJSVhreWpp56iaNGiPPfcc3Tt2pWRI0fSsGHDixb7pEmT6NWrF8eOHaNixYpMmDABgAkTJtC9e3cKFSp0Wu9Rjx49SExMJCoqCmst1113HXPmzDmtzp07d+Lnd+ZLrkqVKgwZMoQmTZqQnp6Ov78/Y8aMoVy5cgQGBrJu3TqqV69OcHAwM2bMuGjnKCIiIpLfDh2CXr1gxgyIiYGPPoJFi6YRFtodczyFaUDNZnUImfQlpnhxT4crboy11tMxXBQ1atSwK1asOG3dhg0buPXWW/NUz8UaepecnExQUNAF1XGleffdd/nXv/51zkkr3BUuXJgjR46c1/Gytn9CQoJ+TNgLqV28j9rEO6ldvI/axDt5U7ssXOhM2LBjh3Nf0mOPJdOnz2N89NHHRANjA325bswoynbt7elQ85U3tQmAMWaltbbGucrla4+SMaYp8DbgC3xgrR2aZXsv4HHgFHAEeNhau961bQDwkGtbH2vt//Iz1gwX494kyV7v3lf2PwIiIiIi4EzY8PLLzmx2FSrA4sXg47OCyLB72LptBy8CLetW5NaZ8ylQOsTT4UoO8u0eJWOMLzAGuAuoAjxgjKmSpdhUa22YtTYSGA6MdO1bBWgPVAWaAv9x1SdXmfPtTRIRERHxhM2b4fbbYcgQ6NIFVq5MZ37CcOrUrk3ath18cQ3cM+JpaizapCTJy+Vnj1ItYJO19k8AY8x04B5gfUYBa+1ht/KBQMY4wHuA6dbaE8AWY8wmV30/5mO8IiIiIiLnxVrn/qPHHwdfX+eepNtv30mbu9vww5KltAF6Vi1KxKzvKV05ytPhSi7k2z1Kxpj7gKbW2h6u5c5AbWtt7yzlHgf6AdcADa21G40x7wJLrbUfu8p8CHxjrZ2ZZd+HgYcBSpUqVX369OmnxRAcHEylSpU8MqX0qVOn8PVVJ5inWGvZvHkzSUlJmeuOHDlC4cKFPRiVZEft4n3UJt5J7eJ91CbeyRPtcuSIH2+9dRM//FCK8PBDDBy4gT//TGDYy4NJTTnBUD8o1LkuFToNxtfn6ptLzdveKw0aNPD4PUrZZSdnZGXW2jHAGGNMB+AFoGse9n0PeA+cyRyy3iS2ZcsWUlNTKV68+CVPljSZg+dYa9m/fz9FixalWrVqmeu97UZCcahdvI/axDupXbyP2sQ7Xep2WbQIeveGbduc4XZ9+xZkwBPv886ECUQA/cr5c/O0qdSuc98li8nbXK7vlfxMlLYBN7gthwA7zlJ+OjD2PPfNVkhICNu2bWPv3r153fWCpaSkULBgwUt+XHEULFiQkBCN+xUREZH8kZbmTNjw6qtQvrwzYUORoPVE33wHv27fwaM+cEunUJr9J57igSU8Ha6ch/xMlJYDNxljKgDbcSZn6OBewBhzk7V2o2uxGZDx/AtgqjFmJFAGuAlYltcA/P39qVChwnmGf2ESEhJO680QERERkSvDn39Cx46wdCl07QqjR1um/3cEffv3p3B6OsNKQulxcXRqNcgjt4DIxZFviZK1Ns0Y0xv4H8704OOtteuMMS8DK6y1XwC9jTGNgZPAQZxhd7jKfYIz8UMa8Li19lR+xSoiIiIikhsffwyPPQY+PjB9OtzReD/dGt/F7OXLaWSgxl3FuPODeUSU0Rfml7t8vZvMWvs18HWWdYPcnj95ln1fBV7Nv+hERERERHInKclJkKZOdab//ugjSFz9OeEh7dmTkkLvIlD41Ta88PBkAq8J9HS4chHk2+8oiYiIiIhcCRYvhshIZ8rvV16B775L44Nn2tKwVSsCUlLoGu3HbQkf8Xrvz5QkXUGuvvkJRURERERyIS3NmcnulVecCRsWLYLrA9YQG9KYpfv20SIA/PveQv9n5lKpWCVPhysXmXqURERERESy2LIF6teHwYOhUydYtQoS5/Qnolo11u/bx723QpXP+jHtlTVKkq5Q6lESEREREXHjPmHDtGnQvP4OnqgRy8SNG4nwg8COQfR84VPuvPFOT4cq+Ug9SiIiIiIiOBM2dOwInTtDRASsWQM3HRpHVLlyTN64kYYhcP1/Ypn5zu9Kkq4CSpRERERE5Kq3ZMk/Eza8/DJ8/0Uyn3a4jTqPPkpyehpVmhnumPY6X/f4ntJBpT0drlwCGnonIiIiIlct9wkbypWDhQuh/J7PaV72Ab47fpzwYnC8T1nef2gm0SHRng5XLiH1KImIiIjIVSkxEWJinAkbOnaE1UtTOPhGGyJatWLh8ePcVAcqj72PZc//qiTpKqQeJRERERG56kydCo8++s/z1jcsov8tLXn74EFuKGRI6+LPsz3epUdUD4wxng1WPEKJkoiIiIhcNQ4fhscfd2a2u+02+Hh8KsdH9iH6v/9lDXDDzRD02K383wOfUuW6Kp4OVzxIiZKIiIiIXBFiY+HQoUhWr85++48/OkPs/v7bGW434O7VTGjUgr7btuHvZyjUytKsay9G3jmSAP+ASxq7eB/doyQiIiIiV7S0NGcmu9tvd5YXxqfRO2Ug7WtF8ci2bRS53geeC2Ly4JmMbT5WSZIA6lESERERkStYYiJ06gSLFzt/xzzxG6u7tCLi99/ZaSAgBip2qs20+6ZRrmg5T4crXkQ9SiIiIiJyRZo2zfnh2F9+gSkfpTMhdBgj6obS4PffSS7iy6ke0G/Qv1nQfYGSJDmDepRERERE5IriPmFD3brw8ZBEzLP3EbNyJUuAQqE+FGxfglkdptKwQkNPhyteSomSiIiIiFwZVq8m/UQBIiOL8tdfEPdSOv++diyfNe3HI6mpnLjGB1qkE9umKRPvmch1gdd5OmLxYkqUREREROSyd/Ik/JVSisQT11PewsJPdxH+djt6LljARCCwrD9p91tGth3Bk9FP4mN0B4qcnRIlEREREbmsLVsGPXtC4onSlPDdz+qn5rK582NEHT/OJoD6cH3rfzHj/hlUL1Pd0+HKZUKptIiIiIhclpKToW9fiI6G/fshuuAq5tgWfPBkN6KPH2dbEX9sN+jUtxOrHl2lJEnyRD1KIiIiInLZmTsXHnsMtm1z/r4WNZOdD7XjcdL5Hrimih+mlR+T2r5Pl4gung5XLkPqURIRERGRy8auXdCuHbRoAUWKwOL/S+bdgx354aG21CGdH3yA5nBr7yr83PdnJUly3tSjJCIiIiJez1r48EN49lk4dgxeeQWeq5XAse6d6LJjBx8BFDfQztKneR+G3zGcAn4FPB22XMbUoyQiIiIiXu3336FBA2fChogIWLsilReSnmX+nQ0I272bKQZ8Yn3w7VqEigte5+273laSJBdMPUoiIiIi4pVSU2H4cBgyBAIC4IMPoHvNXzjWoQOP/forY4GA4r6kt0yj7R33sa1PL3ySi3g6bLlCKFESEREREa/z449OD9K6dc49SaNGpnP99FEsrv48Xa3lTwO+dXwJuDuQia0mc3/V+6EtJCQkeDp0uUIoURIRERERr3H4MAwYAGPHQkiIM7tds/CtpHTozHPz5zMCKFjsGmzLU7Ro2oJxzcZRqnApT4ctVyAlSiIiIiLiFebMgd69YccO6NPHGXJX+Mtp/FzlYbocPco6wLeGDwVaFOKD1hN4IPQBjDGeDluuUEqURERERMSjduyAJ56AWbMgPNz5W+umg5zs8Sgvz5jBKwb8CvtDy5Pc1exu3mv+HqWDSns6bLnCKVESEREREY9IT4f33oPnn3cmbhg6FPr1A/+FP7Dh1g502b2bFYBfmC/+9xRkXBvnx2PViySXghIlEREREbnk1q+Hhx+GxYuhUSMYNw5uDEkh/fmBjHzrLQYagwnwheanaNSyMR+0/ICQIiGeDluuIkqUREREROSSOXECXn8dXnsNgoJg4kTo0gXML2v5M/J+Hvz9dxYA11T2wa9NQd6/bxQPVXtIvUhyySlREhEREZFLYuFCpxfpt9+gY0cYORJKlkjHjniT9wYMoF/6KdKu8YG706nXKobx94ynXNFyng5brlJKlEREREQkXx065NyH9N57UL48fPMNNG0K/P03O+q1p8ePP/INULC8Lz5tr2Hs/SN5pPoj6kUSj1KiJCIiIiL5wlr47DNnRrs9e+Dpp2HwYAgMBDtlCtN69qT38eMc8TXQxFK7bT0mtJpAhWsreDp0ESVKIiIiInLxbd3q/CbSF19AtWrw1VcQFQUcPMjeTt15bM4cZgKFSvvg086f0e3f4PFaj+NjfDwdugigRElERERELqJTp2DsWBgwwHk+YgQ8+ST4+QHff88X7drRc/9+DvgYTKwl8oFoJrWZxI3FbvR06CKnUaIkIiIiIhfFL784kzUsXQp33ukkTBUqACkpJD35NH3/8x8mAoVL+ODT3o/hHYbSp3YffH18PRy5yJmUKImIiIjIBUlJgSFDYNgwKFoUPv4YOnQAY4A1a/i+VSseTExkO+BXF6p0qcHkeydzc4mb/5+9+46OqvjfOP6eJCRAQu+9gzRpAWkivVhApUoTpIpgQUAQ6UU6SJEmvYoUKdKFAEoXQaQj0qtAhJAAKfP7Y+PPiJTIl81ukud1Tk727p27+dwzYniYuTOuLl3kkTQJVERERESe2ubN8PzzMGiQY8nvv5b+NhHhBA8aRKfixal6+jSByTzwaOvFoGFD2d5mu0KSuD2NKImIiIjIf3bjBnTtCtOnQ86csGEDVK0aefLsWXbUqcPb+/dzAkhYAnK3KMLchnMpkKaAK8sWiTaNKImIiIhItFkLCxdC/vwwa5Zjf6SDByNDkrXcmzmTHnnzUn7/fi4nNni28KDX6EHs7rBbIUliFY0oiYiIiEi0nDkDHTrA6tVQsiSsXw9FikSevHmT/Y0a0Xz9eg4CfgUgR5vCzHlrDs+ne96VZYs8FY0oiYiIiMhjhYfDmDFQsCBs2eJ4vWPH3yEpbP16BmXPTqn16zntY/Bq7EGXCX3Z226Ch4MAACAASURBVGmvQpLEWhpREhEREZFH2r8f2rSBvXvh5Zfhyy8hW7bIk3fvcqxdO5rPns1uIEVOSN/+OeY1nUexDMVcWbbI/0wjSiIiIiLyL8HBjueP/P3h7FnHc0mrVv0dkiJ+/pkvcuSg6OzZHPICnzcM7039jP2d9yskSZygESURERER+YeNG6FdOzh1Clq3duyPlDJl5MnwcE737EnLYcMIsJbUmSDFe3mY13weJTOVdGndIs+SgpKIiIiIAPDHH/DxxzB7NuTN69gjqWLFv8/b06eZXr06H504QZgH+NWEdz7qRr9K/UjoldBldYs4g1On3hljahpjjhljThpjuj/kfGdjzGFjzC/GmO+NMdminAs3xuyP/FrhzDpFRERE4jNrYe5cx5Lf8+fDZ5/BgQNRQpK1XBo3jtfy5KH1iRMkTg0ZeuVgw5QdDK02VCFJ4iSnjSgZYzyBCUA14Dywxxizwlp7OEqznwF/a22wMeZdYBjQMPJciLW2qLPqExERERHH9Lp333Us9V26NEydCoUKRWlw4wZfv/IKHXbu5I6BlC9B408+YlDVQSRKkMhldYs4mzNHlEoBJ621p6y194GFQJ2oDay1m621wZGHO4HMTqxHRERERCKFhcGIEY5QtGMHjB8PP/zwz5B0felSGmbKRKOdO/FJChm6Z2H57G2MqjVKIUniPGcGpUzAuSjH5yPfe5RWwJooxwmNMXuNMTuNMa87o0ARERGR+Oinn6BUKejaFapVg8OH4b33wNMzskFICN/VqUOhunVZdvcuGUpC3Xkd+bXvEcpnLe/S2kViirHWOueDjakP1LDWto48bgaUstZ2ekjbpkBH4CVr7b3I9zJaay8aY3ICm4Aq1trfHriuLdAWIF26dCUWLlzolHt5GkFBQfj5+bm6DIlCfeKe1C/uR33intQv7ic29klIiAczZuRgyZLMpEhxn/ffP8GLL/6BMVEaHTzI9B49mHPnDhkTAS1T0bXaZxRNHjueiIiN/RLXuVufVKpU6Sdrrf+T2jlz1bvzQJYox5mBiw82MsZUBXoSJSQBWGsvRn4/ZYwJAIoB/whK1topwBQAf39/WzHqsiwuFhAQgDvVI+oTd6V+cT/qE/ekfnE/sa1P1q51PIt05oxj6e8hQ3xInjzKPLvwcDa/+y4tp07lHJCjIFQf2I4RL4/Az9t9/pL7JLGtX+KD2Nonzpx6twfIY4zJYYzxBhoB/1i9zhhTDJgM1LbWXo3yfgpjjE/k69RAOSDqIhAiIiIiEg1Xr0KTJlCrFiRKBNu2waRJkDz5321Cjh7lg6xZqDx1Kve9IUfb1ExZsYFJr0+KVSFJ5FlyWlCy1obhmE63DjgCLLLWHjLG9DfG1I5sNhzwA755YBnw/MBeY8wBYDMw5IHV8kRERETkMayFmTMdS34vXgx9+8L+/VC+/D8b7erTh2IFCjD24iXy5YSac1uwb+xvVM1Z1UWVi7gHp244a61dDax+4L3eUV4/9E+gtXY7UNiZtYmIiIjEVSdPOqbXbdrkCEZTpjgCU1T3L12iT6VKDDt2jNSe8FzD5Izpt5AauWu4pmgRN+PUDWdFREREJOaEhsKQIVC4MOzd65hit2XLv0PSL5MmUTJrFoYcO0bBDFBtRiN2TPtdIUkkCqeOKImIiIhIzNi1C9q0gYMHoW5dGDsWMmb8Z5uw27cZVqM6fXfsJKmBIrWTMHD4fF7N+6prihZxYxpREhEREYnFbt+GDz6AMmXgxg349lvHM0kPhqQT335LubRp6LljJwVSQvVJb7Bp4WmFJJFH0IiSiIiISCy1ahV06ADnzzs2jB00CJIm/WebiNBQxr/5Jt1XrcIbKFUpMd0nzOWN/G+4pGaR2EJBSURERCSWuXzZMYq0aBEULAg//ugYUXrQ2R9+oPkrL7Pl1m2K+sFz/Wowrv1cUidOHfNFi8QymnonIiIiEktERMBXXzkWZ1i+HAYOhH37/h2SbEQE01u1ovCLL/LTrdu85O9Dj+0LWdB5rUKSSDRpRElEREQkFjh2DNq2ha1b4aWXHEt+583773aXDx+mVeWKrL5yjSI+UKBHBcZ0+Ya0vmljvGaR2EwjSiIiIiJu7P59GDAAnn/esaLdtGmwefPDQ9Kinp9SsFAhvr9yjerPJaDb9tnM6x2gkCTyFDSiJCIiIuKmduxwLPl96BA0bAhffAHp0v273Y0LF2j3UnkW/3aaQl5QtKM/w/qvIEOSDDFftEgcoRElERERETfz55+OVezKlXMs/71qFSxc+PCQ9N3YLyiQLSvf/naaV7N60nXLZGaP2q2QJPI/0oiSiIiIiBv59ltHSPprZbsBA8DP79/tbgcG0rHyS8z++RfyesDLLQow4Iv1ZEqaKeaLFomDNKIkIiIi4gYuXoQ334Q33oDUqWHnThg9+uEhKWDhAgqlS8Ocn3/h9dSG7mtGMm36rwpJIs+QRpREREREXCgiwrGC3SefOBZuGDIEOneGBAn+3TYkOJjOr9Vk8qZtZAfa1clBj5mbyZo8W0yXLRLnKSiJiIiIuMjhw44lv3/8EapUgcmTIVeuh7fdvX49Td6ow8ngu7yeBF6b3peWdXtjjInZokXiCQUlERERkRh27x4MHgyffw5JksCsWdCsGTws89y/f58eTRrwxeLlZADer5CBj5ZuI3uqRyQqEXkmFJREREREYtC2bY4lv48dgyZNHM8hpUnz8LYHd++mYY2qHAm8Te2EUHvMh7RsOxIPo8fMRZxNf8pEREREYkBgILRrBxUqOEaU1q6FuXMfHpLCw8Pp3b4V/i+8wPXA23xcNCWjfztEq3ajFZJEYohGlEREREScyFpYsgQ6dYKrV6FLF+jbF3x9H97+xNGjNKhcnv2XrlPLC+r1a0GLHtMUkERimIKSiIiIyH9UsSIEBhZl//7Htzt3Djp2hBUroHhx+O47x/eHsdYyold3+gweho+FT3L60Wrd9+TJXeqZ1y8iT6agJCIiIvKMhYfDxInQo4dj+e8RIxybx3o94m9e586epV7lcuz+7TxVPKDph6/TbMRiPD08Y7ZwEfl/CkoiIiIiz9DBg47FGnbtgho1HIEpR46Ht7XW8uXooXTv9ik23NI9rQ8t16wib/GqMVu0iPyLgpKIiIjIM3D3LgwYAMOGQYoUMG8evPXWw5f8Brh69Sr1qr/ItgPHKQu826QCjWZuwMvLO0brFpGH01OBIiIiIv+jzZvh+ecdeyM1bQpHjkDjxo8OSbNnTSVvlozsPnCc7km9mLbha5rO3aKQJOJGNKIkIiIi8pRu3ICuXWH6dMiVCzZuhCpVHt3+5s2bNKxTlQ3b9lEc6FyjKA2WbCWBb5IYq1lEokdBSUREROQ/shZu3kxA/vxw/Tp07w69e0OiRI++ZvGyr2nXpBl/hoTycUIPWs0YT/5G78Zc0SLynygoiYiIiPwH167BoUNw/bovJUvC+vVQpMij2wcFBdHkrddYsSqAAsAE/5y8uWY73qnTxVjNIvLf6RklERERkWhau9bxLNKNG5AhQwg7djw+JK39fg05M6Vh5aoAOnnB4tF9aLTnN4UkkVhAI0oiIiIiTxASAt26wfjxUKgQZMoEYWH38PR8+Fy7u3fv0qJ1AxbNW0kOYGzudLyxbhs+OfPEbOEi8tQ0oiQiIiLyGD//DCVKOELSRx/Bnj3g5/fo9lt3bCVH1jR8PW8lrQ2s+qQ9jY5dVEgSiWU0oiQiIiLyEOHhMHIkfPYZpEkDGzZA1cfsAxsaGkrbD1swZ+J80lmYny4pb3y3gYQlSsVc0SLyzCgoiYiIiDzg7Flo3hy2bIG6dWHyZEiV6tHt9x7Yy+uvVufC+Zs0Bj59uy4FJ82FhAljrGYRebY09U5EREQkigULHAs2/PQTzJgB33zz6JAUHh7Oez3epUzxktw7f5OZSRMybf1qCs5crJAkEstpRElEREQECAyEjh1h3jwoWxbmzIGcOR/ReP9+TMRxcuV/nzMnrlAHGFjjRQotXAHJk8dk2SLiJApKIiIiEu9t2eKYanfhAvTvDz16gNcj/pYUFhbGDs/qRARdI/EJmOLtRdOvppCoWcuYLVpEnEpT70RERCTeun8funeHSpXA2xu2b4devR4dklZsWEGmbKm4f+MaVcLhh+IFaXPylEKSSBykESURERGJl44cgSZNHMt/t2kDo0Y9etnvi5cvUq/Zq+zY+DOZgXlehlrp05Nizy/goX93FomL9CdbRERE4hVrYcIEKF4czp2Db7+FKVMeHpLCw8Pp3Od9cmfNzN6NP9PNwI53mtC4VBlMqrQKSSJxmEaUREREJN64fBneeQfWrIFatWD6dEif/uFtv/t+Fe0bv8X5q0FUAXqXKsiLs5dg8uUDYH9AABVjrHIRiWkKSiIiIhIvrFgBrVpBUBCMHw8dOoAx/2536colGjeoQcDWg2QEJqdJSrPZ80hU89UYr1lEXEfjxSIiIhKn3bkD7dpBnTqQJQvs2wfvvffvkBQeHk737u3JmykTP2w9SCdvD7YO/oy2l24oJInEQxpREhERkThr925o2hROnoRPPnEs/e3t/e92a9d9S8fGjfntRggvAV3rVublaUsxyZLFeM0i4h4UlERERCTOCQuDIUOgb1/IlAk2b4aXXvp3uytXLtHylZdY+9MJ0gNDn8vIe0vX4pu/cEyXLCJuRlPvREREJE45dcoRinr1goYN4cCBf4ekiIgI+nRoSr6MGVn/0wlaJPVm49dT6XbkgkKSiAAaURIREZE4wlqYPRs6dXKs2j1vHjRu/O92G7+ZwwfvtOZw0H1Ke8IH779Fw1FzMJ6eMV+0iLgtBSURERGJ9a5fh/btYfFix+jRrFmQLds/21w9/TsdalZg6bHzpAF6lMvDpyu24ZcynUtqFhH3pql3IiIiEqtt3AjPPw/Ll8PQofD99/8MSRFhYXze4BUK5MzJsmPneSNDYtZtW8ngH44rJInII0U7KBljfJ1ZiIiIiMh/cfcudO4M1apBsmSwaxd06wZRZ9BtGT+Kkn6J+PSb1WT2Nkwa0onFF4IoWl7LfYvI4z1x6p0xpizwFeAHZDXGFAHaWWs7OLs4ERERkYc5eBCaNHF879jRMZKUOPHf5//4aQ+d69Ri3oXrpDTQ/rViDF+0Bb+ESVxXtIjEKtEZURoN1ACuA1hrDwAVovPhxpiaxphjxpiTxpjuDznf2Rhz2BjzizHme2NMtijn3jbGnIj8ejt6tyMiIiJxWUQEjB4N/v5w9SqsXg3jxv0dkmxgIGMqlaagfynmXbhOpVxJWfPLViau2KeQJCL/SbSm3llrzz3wVviTrjHGeAITgFpAAeAtY0yBB5r9DPhba58HFgPDIq9NCfQBXgBKAX2MMSmiU6uIiIjETRcuQI0ajul2tWo5RpNq1Yo8GRbG9k86Uy51Sj4K2EUyPw9GTf2MDScC8S/0okvrFpHYKTpB6Vzk9DtrjPE2xnQBjkTjulLASWvtKWvtfWAhUCdqA2vtZmttcOThTiBz5OsawAZr7Q1r7U1gA1AzGj9TRERE4qDFi6FwYdi+HaZMgWXLIE0ax7kbSxbTPlUyKgwbzWFreatZWfZeu8kHrQdgjHFt4SISa0UnKLUH3gMyAeeBokB0nk/KBEQdiTof+d6jtALWPOW1IiIiEgfdugUtW0L9+pAnD+zfD23agDFgjxxhcsG8FKhXnym3gilWOBVrj2xn/uwfSZowqatLF5FYzlhrH9/AmHLW2h+f9N5DrqsP1LDWto48bgaUstZ2ekjbpkBH4CVr7T1jTFfAx1o7MPJ8LyDYWjvygevaAm0B0qVLV2LhwoWPv9sYFBQUhJ+fn6vLkCjUJ+5J/eJ+1CfuKT72y8GDSfn88/xcuZKQJk3O0Lz5Gby8LF5//smtL0by+eZt/ABkTOZB7a4taFC2aYyOIMXHPokN1C/ux936pFKlSj9Za/2f1C46G86OA4pH470HnQeyRDnODFx8sJExpirQk8iQFOXaig9cG/DgtdbaKcAUAH9/f1uxYsUHm7hMQEAA7lSPqE/clfrF/ahP3FN86pfQUOjfHwYPduyHtG0blC2bHUIzEThyBL379ObL+2Ek9ILa71RizhffumQEKT71SWyifnE/sbVPHhmUjDFlgLJAGmNM5yinkgKeD7/qH/YAeYwxOYALQCOg8QM/oxgwGahprb0a5dQ6YHCUBRyqAz2i8TNFREQkFjt+HJo2hT17HFPuxoyBpEksduUqZrduSY+r17kM5C2ZhhlzllMmXxlXlywicdTjnlHyxrF3kheQJMrXLaDekz7YWhuGYzrdOhyLPyyy1h4yxvQ3xtSObDY88md8Y4zZb4xZEXntDWAAjrC1B+gf+Z6IiIjEQdY6FmkoVgxOnoRvvoHp0yHpmYMcKF2SyrVr0+Lqde6n9mTg/IEc2XVFIUlEnOqRI0rW2i3AFmPMTGvtmaf5cGvtamD1A+/1jvK66mOunQ5Mf5qfKyIiIrHHtWvQujWsWAFVq8LMmZApwVX+bPkJA2bO5AvAMwHUaFeVhUO/IXni5K4uWUTigeg8oxRsjBkOFAQS/vWmtbay06oSERGReGH1anjnHQgMdGwk+367e5ixY1jQtw9d797jApC1bDoWTFtK2efKurpcEYlHorM8+DzgKJAD6AecxjEdTkREROSpBAdDx47wyiuQNi3s2W35MMsSjuTJSbXu3Wl89x6B6bwYMHcAp3+4pJAkIjEuOiNKqay104wxH0SZjrfF2YWJiIhI3LRvHzRpAkePQufOMKjuPsI6dKL7j9sZCeANVdtW5RtNsxMRF4rOiFJo5PdLxphXIleqy+zEmkRERCQOCg+HoUOhdGm4fRs2LvyDEddbsKpcCZ7bvp2hQJpy6dn081Y2jNugkCQiLhWdEaWBxphkwMc49k9KCnzk1KpEREQkTjlzBpo3h61bod4bYUzON5prLXtT4+5dNgA+6bzoN7wXvZr0itFNY0VEHuWxQckY4wnksdauAv4EKsVIVSIiIhJnzJ8PHTpARIRlVvudvLmiPp8vu8AwAxEJoHLryiwetpgUvime/GEiIjHksVPvrLXhQO3HtRERERF5mMBAaNzY8TxSway32Z/jDZJOKkveKxcZDKQqm45NPwXw/YTvFZJExO1EZ+rddmPMeOBr4M5fb1pr9zmtKhEREYnVAgIcU+0uXbIMfH4RdX9pTLsEsBHwSuNJ788/pe/bfTXNTkTcVnSC0l/rcfaP8p4FtI+SiIiI/MO9e9C7Nwwfbsmd4jrfm9dYf2g3hUwE4QYqtqvIkpFLSOmb0tWliog81hODkrVWzyWJiIjIEx0+DE2aWPbvN7RLPIcqN9rQwDuMK+ERpC2dloVTFlKpsP5aISKxQ3SWBxcRERF5JGth/HgoUSyc878GMpkqnDBtaMB9rqfwoNf0XlzeflkhSURilehMvRMRERF5qMuXoWXDYNZuTUwNlpMvcVs6RFwnPBQqtKnA0lFLSeWXytVlioj8ZwpKIiIi8lSWz79D69aWoBBP2nnWYYnPd6wLDifNC2lYMHkBVYpUcXWJIiJP7YlT74wxiY0xvYwxUyOP8xhjXnV+aSIiIuKOggLDaFP+CK838SVdyGYKpsjO5PAV3PSDT6d+ypUdVxSSRCTWi86I0gzgJ6BM5PF54BtglbOKEhEREfe0a+wumnZNz8n72XjBtw577q4g4g6Ub1WeZaOXkTpJaleXKCLyTERnMYdc1tphQCiAtTYE0KYHIiIi8UjYr0fpn28u5T4oQWDYVvx807HrzgpSFk/N+h3r2fbVNoUkEYlTohOU7htjEuHYOwljTC7gnlOrEhEREfdw4wa/vd2fCoVv0ud4BVL4vsQfEc0JSRzCJ5M+4equq1QrXs3VVYqIPHPRmXrXB1gLZDHGzAPKAS2cWZSIiIi4WGgo9suJzPz0OJ2C+xLqMR7MQP64H07ZFmVZNmYZaZOldXWVIiJO89igZIwxwFHgTaA0jil3H1hr/4iB2kRERCSmWQvffcf1jwbS7mQXlpAfT68ShIedJVWJVMyfPJ/qJaq7ukoREad7bFCy1lpjzLfW2hLAdzFUk4iIiLjCr79C585s2GBp6jGRawwClkAyT7oO6MrQ9kNx/BuqiEjcF52pdzuNMSWttXucXo2IiIjEvKtXoXdv7k6ZTdcEQxlPCESUB68QyjQuw7IvlpEueTpXVykiEqOiE5QqAe2MMWeAOzim31lr7fNOrUxERESc6949GDsWBg7klzu5eCXxdM7f6QccJUWR1MybuphaJWu5ukoREZeITlDS/yFFRETiEmth6VLo1o2IU7/TK9fnfH57H/bOW3gk8eXDQZ0Z0XGEptmJSLwWnaBknV6FiIiIxIx9++Cjj2DrVk7lrUT51PW59NtAMPcpUe9Fvpv6jabZiYgQvX2UvgNWRX7/HjgFrHFmUSIiIvKMXbwILVuCvz8cPsxHVXqS68QlLv0xlMSZM7Ny+1L2frNVIUlEJNITR5SstYWjHhtjigPtnFaRiIiIPDshITByJAwZAvfvc7B5e8qvPsmt7weBZ0be7t6DGQMGaZqdiMgDojP17h+stfuMMSWdUYyIiIg8I9bCwoXwySdw7hyhr9ehdqgva2fNAULJWKgxO74fQda0GVxdqYiIW3piUDLGdI5y6AEUB645rSIRERH53+zc6XgOaedOKFaM2a0a0WrkAsJun8fDuxJDxn1K17ZVXV2liIhbi84zSkmifPngeFapjjOLEhERkadw9iw0aQJlysDp05waOoicCcJ5u+9wwm57kL/UBK5f3aCQJCISDdF5RqlfTBQiIiIiTykoCIYOhREjAAjt3p2WIb8xr2c/CANP765MnNyVNi3SuLhQEZHY45FByRizkscsDW6tre2UikRERCR6IiJg9mz49FO4dAneeos5lYvTrk9/Qi7eBqpTxP9zVi8vTsaMri5WRCR2edyI0ogYq0JERET+m61bHc8h7dsHL7zAqQljeOXLPhxtswBMRjy8pjFi2Jt88IEnHtGZaC8iIv/wyKBkrd0Sk4WIiIhINJw6Bd26wZIlkCULobNn8c6h9cxr3Ah7zwPoTv4CPVi0MCmFCrm6WBGR2OtxU+8WWWsbGGMO8pApeNba551amYiIiDhUrEjR69ehVi344gvw8oL+/ZlTID3vdu7AnbN38PAuh7Vf8fHHzzFoEPj4uLpoEZHY7XFT7z6I/P5qTBQiIiIiDxEWBhcvkvT33+HXX6FFC37r0Jran7XlcO/DGJ8kGI8FpE/dgNmzPahSxdUFi4jEDY+ctWytvRT5/czDvmKuRBERkXjIWli9GooUgRMn+CWiMKE7d/B2xgjyvPQihzcexjdVa+y9C9Sv14iDBxWSRESepehsOFsaGAfkB7wBT+COtTapk2sTERGJnw4cgC5dYONGyJ2bXolHsCjpHS42qkbQ6SASZciO+XMFHvcLM3s2NG0Kxri6aBGRuOWJQQkYDzQCvgH8geZAbmcWJSIiEi9duAC9esHMmZAiBXzxBT9XKs3gV14i4txdjJ8nuZ4fzW+/fED58oY5cyB7dlcXLSISN0VrwVBr7UnA01obbq2dAVRyblkiIiLxSFAQ9OkDefPCvHnw8ccc3biakpvnULzYC0RcuAsZcpEuyR+cOfwhgwYZAgIUkkREnCk6QSnYGOMN7DfGDDPGfAT4OrkuERGRuC88HL76CvLkgf794bXX+P37dZQ/u4P8pUqzd8VespfPi1fiMXDpOEmTJGfHDsf+sp6eri5eRCRui05QahbZriNwB8gC1HVmUSIiInHeunVQtCi0aQM5c3Jx5XKqJviDnJUr8eM3P5KpdDaatd1O4IFjhAV9QKpUoezbB/7+ri5cRCR+eNw+SlmttWejrHB3F+gXM2WJiIjEUQcPQteujqCUMyfXpn1Fyx+Xsbre69h7lrQvpOfl0nNZs7AKc36AV1+FS5cgLCwEX19tjiQiElMeN6L07V8vjDFLYqAWERGRuOvSJcfoUdGisHs3NwYOpEHVoqR/ry3fTf+O5IVS0LLzchJdvsjML6rw3HPw44+wciX4+bm6eBGR+Odxq95FXWg0p7MLERERiZPu3IERI2D4cLh/nz/btePDiOvMGdyH8OBwkhRNypvVvmTXysbMGGXw94epU6FqVS35LSLiSo8LSvYRr0VERORJwsNh1iz47DO4dImg11+ne5qETJ49lbA7YSQqlJj6r43k13XtmDXcUKAALF0Kr7+ugCQi4g4eF5SKGGNu4RhZShT5mshjqw1nRUREHmHDBseGsb/8QrC/P/1qlGfM0uXcv3Ufn+d8aFTvc85s6czszz3Int2Rp5o0efRKdgEBEBCwH6gYc/cgIhLPPTIoWWu18KiIiMh/ceiQY6GGNWu4mzUrQxvW4fO1a7m3dy9eebxo+H4vAn/qw9yBnqRPDxMmQOvW4O3t6sJFRORBjxtREhERkei4cgV694avvuKenx9jX61B3x+3Evz1cjxzevJmxw+wx4bz9cAEpEgBQ4dCx46QOLGrCxcRkUeJzj5KT80YU9MYc8wYc9IY0/0h5ysYY/YZY8KMMfUeOBdujNkf+bXCmXWKiIg8leBgGDgQcucmdNo0xr9YlrTe4XRbtY6QpHd5pUdLGr0YxPIhY1i/JgGffQanTkG3bgpJIiLuzmkjSsYYT2ACUA04D+wxxqyw1h6O0uws0ALo8pCPCLHWFnVWfSIiIk8tIgLmzIGePQm7cIEZRZ+n+4XfubHlB8gM1brVJ8utacwdmQSATp2gRw9Im9bFdYuISLQ5c+pdKeCktfYUgDFmIVAH+P+gZK09HXkuwol1iIiIPDubNsHHHxO+fz/zcmSja5qkXN3/C2SEF7vUpHDEXGZNSMXdu9CyJfTqBVmzurpoERH5r5wZlDIB56Icnwde+A/XJzTG7AXCgCHW2m+fldaAWwAAIABJREFUdIGIiIjTHDkC3boRsWoVX6dORbdUSTn/+xlIB/4flKOc3zfM/jID225Cw4bQrx/ky+fqokVE5GkZa52zRZIxpj5Qw1rbOvK4GVDKWtvpIW1nAqustYujvJfRWnvRGJMT2ARUsdb+9sB1bYG2AOnSpSuxcOFCp9zL0wgKCsJPW6m7FfWJe1K/uB/1yT8luHmT7DNnkn7lShZ7J6BbQi/O/hkMaSBHrTyU9JnCxiVluHHDh9Klr9Oq1e/kzh30zOtQv7gf9Yl7Ur+4H3frk0qVKv1krfV/UjtnjiidB7JEOc4MXIzuxdbai5HfTxljAoBiwG8PtJkCTAHw9/e3FStW/N8qfoYCAgJwp3pEfeKu1C/uR30SKSQExozBDh7M8uBgeiTz42jgbUhyn9xt8vJm7qUsmliQRaehQgUYPBjKlUsFpHJKOeoX96M+cU/qF/cTW/vEmave7QHyGGNyGGO8gUZAtFavM8akMMb4RL5ODZQjyrNNIiIiThMRAXPnYvPmZfWnn1LUWN6IiOCox20yt8jCJ712kuCHowz7pCCpUsG6dY4NYcuVc3XhIiLyLDktKFlrw4COwDrgCLDIWnvIGNPfGFMbwBhT0hhzHqgPTDbGHIq8PD+w1xhzANiM4xklBSUREXGuLVuwJUuyvlkzSl3/g1eAXzzvkKZxWj4ZuJF0B88w9IMXsNaweDHs2QPVq4Mxri5cRESeNaduOGutXQ2sfuC93lFe78ExJe/B67YDhZ1Zm4iIyP87dgy6dWPzihV85p2A7QDed0nxWgpaVf2K3XNfZ2gHD7Jlg5kzoWlT8PR0cc0iIuJUTg1KIiIibu3aNejXj20TJ9LLwBYAn1D8XvGj9atjObakOSPaepIuHYwbB23agI+Pq4sWEZGYoKAkIiLxz9278MUX7Ojfn97BwWwEPHwhYaWEtK47hMtrOjCmVQKSJ4fPP3dsGOvr6+qiRUQkJikoiYhI/BERAQsXsqdzZ/pcucIawDMReFX0omX9Xtzb1o2JrRPi4wM9e0KXLpA8uauLFhERV1BQEhGR+GHbNn5u354+hw+zEkjgAx4VPGjy1ock/Kkfs971w1p47z349FNIl87VBYuIiCspKImISNx24gQH27en76ZNLAW8E4ApD683bkX64yOY8X5ygoOhRQvo3RuyZXN1wSIi4g4UlEREJG66fp0jH35I33nzWGQtPl7gVRqqNa3PcxfGMb1bOm7ehAYNoF8/eO45VxcsIiLuREFJRETilnv3ON67N/1Hj2Z+aCg+HuBbCko1q8ELt6cwq19WvrsEtWrBoEFQrJirCxYREXekoCQiInGDtZwaN44BPXsyOygIbwMpi0Gu5mWoZmcwf2Q+Nv8O5cvD11/Diy+6umAREXFnCkoiIhLrnVmyhAHvvsvMa9fwAjLnhyQtCvGG3yyWTijGoMOGYsVgzRqoUQOMcXXFIiLi7hSUREQk1jr/ww8MbN6c6b//jgHy5oDQlrl4K+N01k5+kYF7DPnywaJFULcueHi4umIREYktFJRERCTWuXT4MJ83acLk/fuxwPMZIfDtDNTN9xU/zKrJgM0eZM0K06dDs2bgpd92IiLyH+lXh4iIxBpXzp5laLNmTNy6lVCgTCq41jgF1V/4kl8W1mfg556kTQtjx0LbtuDj4+qKRUQktlJQEhERt/fHtWsMb9OG8StWcNdaqiSB63X9KF1jBGeXt2JIMy+SJYPBg6FTJ/Dzc3XFIiIS2ykoiYiI27px4wajPv6YL2bP5k5EBC/7QMjLCcjfcBB/bnif0U198PGB7t2ha1dIkcLVFYuISFyhoCQiIm4nMDCQMX36MPrLL7kVFkZtL0hU0ZOUrT/B7ujJ5LcTExEBHTrAp59C+vSurlhEROIaBSUREXEbt27dYuzQoYwcOZLAe/eoYyBzCQjt2J7ER4fwVdtkBAdD8+bQpw9kz+7qikVEJK5SUBIREZcLCgpiwtixDBs0iBvBwbwGFMsLlzvVx+/6BKZ+nIYbN6BePejfH/Lnd3XFIiIS1ykoiYiIywQHBzPxyy8ZOmAA127dohbwckY40qES4V6zWfV5Zi5ehJo1YeBAKFHC1RWLiEh8oaAkIiIx7u7du0yZMoXP+/fn8vXrVAPeTg77WxThj+yLWDs2L6dOQblysGABVKjg6opFRCS+UVASEZEYc+/ePaZPn86g/v25cPkyLwETE8Khutn4rexS1k4sxq+/GooWhe++g1q1wBhXVy0iIvGRgpKIiDhdaGgoM2fOZGD//pw9f54ywFQPOFM9NYdqf82KmZXYPc+QNy98/bXjWSQPD1dXLSIi8ZmCkoiIOE1YWBhz5sxhwIAB/P777/h7wBQgyN+XA82msWFFAzZ1MGTJAtOmOVaz89JvJhERcQP6dSQiIs9ceHg4CxYsoF+/fpw8eZLCXh58ByTNkYDdrUYQsLMjKz/wIE0aGDMG2rWDhAldXbWIiMjfFJREROSZiYiIYNGiRfTr14+jR4+Sz8eTb4HnksOmVp+w9exAvu7pRdKkjlXsPvgA/PxcXbWIiMi/KSiJiMj/LCIigmXLltGnTx8OHTpEjsQJWAyU9wxnbevmDI2YzJyRCUmQALp1c3ylTOnqqkVERB5NQUlERJ6atZYVK1bQp08fDhw4QOYkPszygLr3Qln/RnUGpl/EVzOSER7umF7XsydkyODqqkVERJ5MQUlERP4zay1r1qyhd+/e/PTTT6RPlogJPtDu9j22vFiMvs+vZPLsTNy5A82aQZ8+kCOHq6sWERGJPi2+KiIi0WatZcOGDZQtW5ZXXnmFs6eOMiiJ4dyfIZTJmY1+7x6kweF9jJiQiWrV4OBBmDlTIUlERGIfBSUREfl/FSvChx8Wfei5zZs3U6FCBapXr87x44fomsaT8zfv0Ng3GSNafM9rt35nwMRClCgBu3fDkiVQoEDM1i8iIvKsKCiJiMhjbdu2jUqVKlG5cmUOHf6FVlkTcP7GbXoEezKp3lyq+t6gx8zKZM1q2LwZ1q2DkiVdXbWIiMj/RkFJREQeaseOHVSvXp0KFSrw8y/7qJcvEb/9eYvxF8JYUGMYL2UL5oPFTfDzM6xaBT/+6BiREhERiQu0mIOIiPxDcPA+Xn55BGvWrCFZyqRUL5qUScdvkeMYLCr9AaPvDWHnuoTkzg0LFkCDBuChf3YTEZE4RkFJRESw1rJp0yZ+/LE+YWE3uXwtCeXKpmb08T8ouR/W5atHm6RT+X5ncjJnhqlT4e23IUECV1cuIiLiHPo3QBGReCw0NJT58+dTokQJqlatSpi9RYZ8XsxOfpsftv9BmGcFXi91nprHvuHA78kZNQpOnIDWrRWSREQkblNQEhGJh27fvs3o0aPJnTs3TZo04fLNy1SsnJpFOcM5fyyMvH8UoKn/r5S7GsDmo5no3x9OnYKPPoKECV1dvYiIiPNp6p2ISDxy8eJFxo4dy6RJk/jzzz/JWTALjf0T0efkJfJugl8881DVYyLb7lbG61dD167QrRukSuXqykVERGKWgpKISDxw6NAhRo4cydy5cwkPD6dgwfTUv3uLrkfPkTActhV8kwEFRzBve3ashXfbGT77DDJmdHXlIiIirqGgJCISR1lrCQgIYMSIEaxevRqfhN6UzpWErtdu8NrBiwQnTMDqqn2ZfLsT67cnwdfXEYySJv2TL79M5uryRUREXErPKImIxDFhYWF8/fXXlCxZksqVK/PDD1uolz0RR8Pvs/XoDYoly8T05ispny+Euus+5cBvSRg8GM6dg9y5wdvbuvoWREREXE4jSiIicURQUBDTp09n9OjRnD59mgwp/eiWypO+1+/gGWw4WqUyI/NOZtyKXJyZbciXz7HMd9OmWqBBRETkQQpKIiKx3OXLlxk/fjxffvklN2/epECqxMzwgeY3griSNjEHOr3LSq9+TJzpy811UL48jB0Lr76qjWJFREQeRUFJRCSWOnr0KCNHjmT27NmEhoZSIWkCBgGlbwTza6nsbG04jPmH6zF7iuH+fXj9dejaFcqUcXXlIiIi7k9BSUQkFrHW8sMPPzB8+HBWrlyJj6cHDbygt7UkiwjjRLOKbKg1hcmL8rD8Y/D2hhYtoHNnyJvX1dWLiIjEHgpKIiKxQHh4OMuWLWP48OHs3r2b5Ak86Wng/fAIzuTy48I7LdmffShjxiZie2NImRI++ww6doS0aV1dvYiISOyjoCQi4saCg4OZMWMGo0aM4NTp02Tz8uBL4HUTzk/Vc3C8Uz8OX2jKqFGGY8cge3bH80fvvAO+vv/95wUEQEDAfqDiM70PERGR2EZBSUTEDV29epUJEyYwYexYrgcGUtLAMCB76giO16/EhdZjObCyEONawZUrULw4LFwIdeuCl/7PLiIi8j/Tr1MRETdy/PhxRg0fzqxZs7gbGkpt4H1PuF4sEcFt3sHrxYHsnJScNmXhzh2oWdOxQEOlSmCMq6sXERGJOxSURETcwPbt2xnerx/L16/HG2gO1E0GR6plJvD9XmRP1JIxoxLQsoMjEL31FnTpAs8/7+rKRURE4ian7qBhjKlpjDlmjDlpjOn+kPMVjDH7jDFhxph6D5x72xhzIvLrbWfWKSLiCuHh4SxbsoSy+fNTrlw5tqxfTw9gYm7I1LMciX/eQv7WZ5nYry0vlEzAqlXw4Ydw6hTMnq2QJCIi4kxOG1EyxngCE4BqwHlgjzFmhbX2cJRmZ4EWQJcHrk0J9AH8AQv8FHntTWfVKyISU0JCQpg1bhyjhg3jxPXrZAcGeEN4GS8iWjWnbI2eJFifk05vwIEDkDEjDB0KbdtC8uSurl5ERCR+cObUu1LASWvtKQBjzEKgDvD/QclaezryXMQD19YANlhrb0Se3wDUBBY4sV4REaf649o1vvzkE8bPn8+1e/fwBz5LA1drpsK3dTfq52/HojnJqOYP585BgQIwfTo0bgw+Pq6uXkREJH5xZlDKBJyLcnweeOF/uDbTg42MMW2BtgDp0qUjICDgqQp1hqCgILeqR9Qn7io+9MvlEydYOW4cy379lRBrqe4BuQvA76/mxKNEU6p4VGX55Kz0Wu7LnTtQpEgg7757lhdeuIGHB+zYEbP1xoc+iY3UL+5HfeKe1C/uJ7b2iTOD0sPWX7LP8lpr7RRgCoC/v7+tWLFitItztoCAANypHlGfuKu43C+75sxheJ8+LP39dxIANRJDghcg0Ttv0PSlriQPKsOIETBkLoSFwZtvOlawK1UqOeC6OXZxuU9iM/WL+1GfuCf1i/uJrX3izKB0HsgS5TgzcPE/XFvxgWsDnklVIiJOFBEczKqePRkxbRrbbt8mGVArLdyslYg8b71Lx1KdOP9rdj5/D1auhESJoHVr6NwZcuVydfUiIiLyF2cGpT1AHmNMDuAC0AhoHM1r1wGDjTEpIo+rAz2efYkiIs/G3cOHmfPRR4zcuJFjERFk9IAK+eBGo8xUr9mF5s+3ZPPapLxVC3btglSpoE8feO89SJPG1dWLiIjIg5wWlKy1YcaYjjhCjycw3Vp7yBjTH9hrrV1hjCkJLANSAK8ZY/pZawtaa28YYwbgCFsA/f9a2EFExG2EhXFj4UIm9uvHuJMnuQLkTAgFSkLypmX44MUuVM9ah7lzPCnVDE6ehJw5YcIEaNECEid29Q2IiIjIozh1w1lr7Wpg9QPv9Y7yeg+OaXUPu3Y6MN2Z9YmIPJVLl/h9+HBGT53KtKAggoFcKSG8iqFkgwZ0LtOZXAlLMWECtB8P165ByZKwaJHjOSRPT1ffgIiIiDyJU4OSiEicYS0EBLB30CBGbNrEN9biAWTIDl6v+vJm7Q50KtWJsBtZGDUEpk2DkBB45RXHAg0VKoB52DI1IiIi4pYUlEREHicwkIiZM1kzciQjzp8nAEjoCUmLQLI62ehSswstirbg6C9+dGkLixc7RoyaNIEuXaBgQVffgIiIiAtVhKKBRWG/qwv57xSUREQeZt8+7o0bx/z58xlx/z6HAd9E4FUWStQtR9dKXXklz6tsWO9J7ZqweTMkTeoIR++/D5n+tfObiIiIxCYKSiIifwkJga+/5ua4cUzet4+xwCUgUUrwqORBnYaN+Lj8xxRKVZwFC6BYffj1V0coGjEC2rRxhCURERGJ/RSUREROnIBJkzjz1VeMuXWLr4whCPDKDn6V/ej4Vkc6lupIEjIxZQrUHgMXLkChQjBrFjRqBN7err4JERERF7DALeAqcCXye9Svw5A4NHYu86qgJCLxU1iYY8fXL7/k540bGW4Mi7BEeIAtZMlaMyvd63WneZHmBF7z5YuBMHky3LoFlSvDV19BjRpaoEFEROKge8A1/h16HhWG7j/ic1ICd8F4xc5flgpKIhK/XLwIU6dip0xh3cWLDPfxZhNgElhsCShbvyw9XunBy3le5shhDzq2g3nzIDwc6td3rGBXooSrb0JEROQ/sMBNohd6rgKBj/ichEBaIB2QASgSeZw2yvt/vU4NJAAqwp3AOyQnuRNuzLkUlEQk7rMWNm2CiRO5v2wZCyMiGOqbiMMA3vfxqOBBw7cb0q1KN4qkK8qWLfDaR7B6tWNT2Pbt4aOPIEcOV9+IiIhIpBD+HvV5VOD569w1IOwhn2FwBJq/wk0xHh56/vryi7wmnlBQEpG46+ZNmDkTJk3iz+PHmZw4MaMSenMl+C74huD7ii/vv/M+ncp2Ik2iDCxdCm2Gw969kCYN9O8PHTpAqlSuvhEREYnzIoDrPD7wRD2+/YjP8eXvYJMF8OffgSfqqI82QX8kBSURiXv27IGJE2HhQs6FhDA6fTomeXsREhwMOSBLzSz0fKcnzYs0x4YmYsYMGDUKTp2C3Llh0iRo3hwSJXL1jYiISKx2h+hPd7uGIyw9yANIw9+jPC/w8NCTLrKdr9Pu5ukEwP6A/VSkoqsr+c8UlEQkbggOhoULHQFp714OJEzI4IzpWHz6LBFXr0ABeKH+C/Rt3Jfquapz/Q8PhgyECRPg+nUoXRqGD4c6dRwbxoqIiPxLGP8c9XnSlLfgR3xOUv4OOLmAMjx6yltKHGFJYpyCkojEbkePOoaAZs3CBgayIVs2+ufKyo+/nYVzZ/B4wYP6LerRq04vCqcrzMmT0PE9mDED7t6F2rUdCzSUK6cV7ERE4h0LBPHkwPPX6+uR1zzIi3+Gmzw8+jmfNIBmLMQKCkoiEvuEhsLy5Y7Ro02bCPXyYmGJ4vS9eJpTZ86AH/jW9OW9Du/RuVJn0vmlY9cuqPceLF0KCRJAs2bw8ceQP7+rb0ZERJ6ZilD0ZlFYQ/SnvN19xGcl5+9wkx94iUdPeUtOvFrkIL5QUBKR2OP8eZgyxbGJ0aVL3M6cmQnVqzB0324Cd+2G1JCxSUZ6dexFC/8WeHskZPVqx5S6rVsheXLo3h06dYIMGVx9MyIi8tQigLPAkShfR4FdkDw0OWR6yDXe/HOUpyCPXto6TWR7idcUlETEvUVEwMaNjtGjlSshIoKLlSoxoEQhpm/awv315yEbFH+7OIPbDaZ67urcv2+YNxtGjIAjRyBLFsdiDa1bQ5Ikrr4hERGJtnvACRwhKGooOoZjeey/pMYx6pMaQiJCSNQv0b9HfpKiUR/5TxSURMQ9Xb/+/0t7c/IkpE7NwebN+eTSCdZu2IyNsHgU9OD1Fq8zqPkgCqQpQGAgDBsGX3wBly5BkSIwdy40aOCYbiciIm7qT/4OQ1FD0SkgPEq77MBzQCUcwSh/5HHqyPMV4V7gPRK100NA8r9TUBIR92Et7NrlGD36+mu4dw9brhwb6r1Jly3fcXDGDEgAiUonon3H9vR4rQdpfNNw7pzjeaOpU+H2bahaFWbNcnzXAg0iIm7CApf558jQX8HoYpR2CYC8QBGgIX8HonxA4if8jIDYuxS1uB8FJRFxnYoVKRoYCD/+CPPnOwLSzz+Dnx9hLVowI3Na+sz+iktDfgRfSP9aej7r/Bmty7fGx8uHX36Bj0fAggWOjNWwIXTpAsWKufrGRETisTDgd/49OnQUx8jRX5LgCEDV+OfoUE70N1RxC/rPUERc584dEl24ABkzwq1bULgwQaNGMejGOcZPnkrQtSBIBYVbFWZYl2HUyFcDMGza5FigYd068PWF996Djz6CbNlcfUMiIvFICI5nhaIGoSPAceD/2rvv8CirvI3j319CChB6Cb1IURQVBEXKshFpolIEURSFFXXBRVzL6rqr+6qrr25VV33dRde+ggVFUAmsYiyAgiKgiCAgCoIgnVBCynn/OBMzmSQSypRk7s915crkmfMMv8fjJLlzznPOwaB2jfEh6FKKAlGHwHGN+ksMU1ASkcjavx9eesmvXvfxxySbwSWXsPHCEdyQOYVpt99M3t48ElokMPC2gfz92r/ToWEH8vL8bLy//AUWL4b0dLjnHpgwAerUifZFiYhUYtsouZjCl8A6ivYUSsCPBHUABuFHhgpHiGpHtlyRY0VBSUQiY9kyfxPRc8/Bzp3Qrh2Ppv6aKQntKMh+nvkjLsDlOVJPTuXKCVdy95i7qVetHnv3wj/+AfffD+vWwfHH+5cZPRpSU6N9USIilYQD1lNyutwK4Iegdqn4e4W6AWMpGh1qG3hOpBJRUBKR8Nm71w8DTZ7sF2lISYHhwzk4diyTv1vJdTfdSMG2g/AG1O9Zn1tuvIVJgyaRnJjM5s1w+73wyCOwYwf07AkPPADnnw8JCdG+MBGRCioXWE3J0aEvgb1B7eriA9Bgik+Xa4kfPRKJAwpKInLsLV7sh33+8x+/DF2HDnD//SzoeDy3P/E33r1gEHnZef5G3o4pTH/qBQafNhgzY9Uq+Nvf/Kp1Bw/C0KHwm99A9+7RvigRkQpkD0UBKDgUrcEvtlCoOT4AXUnRVLkO+A1Xdf+QxDkFJRE5Nvbs8cvPTZ4Mn3zi58WNHMm2i0Zy56JM/vPwH9m+ZjskQI1TazDikhF8kXkHB7bWZEiX2ixY4O8/mj4dkpNhzBi/5Hf79tG+MBGRGOWALZRcTGEFsCGoXRX81LgTgeEUX247LYL1ilQwCkoicuScg0WL/OjRlCl+qt3JJ1Pw4IM8UyuBvzz9KF8MeQbyIKFRAj2v6sn/XPs/9O3YFzPj5zNh865sevXyK4TXqQO//z1MnOgXaxAREfyGq+sofUGFHUHt0vAjQhkUny7XBr83kYgcFgUlETl8O3f6aXWPPQZLl0K1anDxxXzWP4Nb33qB/975Gw5uPwip0PKslky4agKThk6ialJVCgpg4UKYNs1/PnAgDefgwQfhiisgTX/dFJF4dQC/tHbo6NCqwHOFGuIDUOFmrIXT5Zqh6XIix5CCkoiUj3OwYIEPRy+84Jf57tyZvfffz9171/Hk1KlsfuIJAKp3qM6ISSO4+5q7ad2gNfn58MEHPhy98gp89x0kJflQ1LDhXlavrk4VfTcSkXixk5IjQyvwm7QWBNoY0BofgkI3ZK0b4XpF4pR+NRGRn7Z9Ozz7rA9Iy5dDWhpu9GheO/U47pz1AktvvQF3wJFQN4EzRp/B7ZNu59yu55Kba7zzDtw7zd939MMP/ralgQPhvvvgvPP8Qg07d+YqJIlI5eOA7yg5XW4FsDmoXQrQHuhC8Q1Z2wNVI1iviJSgX09EpCTn4P33/cIML78MOTlwxhl8fd8fueXbj3l9+nPsf2w/JEHTbk258oorueXSWyC/KnPm+IUYZs70M/TS0nwouuACOOccTa0TkUoiAzrt7AQf41eSCx0d+hK/8lyhWhRtxho8Xa41kBi5skWk/BSURKTI1q1+Xe7HHoOVK6FmTQ7+4hfcXx8emjOT7353OxRA1VZVGXHzCO6ZdA+Na7bnzTdhzGh4802/nkOdOjBkCAwfDv36aWNYEakkdgOLgU+AFVBjVw2oht+bqFBTfAgaQ/EFFdLR/UMiFYyCkki8KyiArCw/evTqq37zoh49eO/3v+a3X37AR/+ZTMGeAizN6Dy0M7deeytnnzKCmTONmybAnDl+wKlhQxg92oejjAx/D5KISIW1G/gUH4o+DnxeFfR8ChSkFJA4IbH4/UM1I16piISJgpJIvNq8GZ56yo8erVkDdeqwZcyl3MYWpsx9l+x75kMCpHdOZ8zYMVx93u28NTuNx++FS+ZCXh40bw7jx/tw1KMHJGr6iIhURMGhqDAYBYeiZkBX4DL8vURdgJGwd+deat9XO8LFikikKCiJxJOCAvjvf304eu01yMuj4Ge9eKr/6dzz+XzWPvUk5EJKoxTOm3ge1468lxWLO/LKS/CXSf7WpbZt/Uaww4dD165gRzGVJCsLsrKW4Df9EBGJgD2UPlLkAs83wweh0fhw1AW/HHeoLFiStYQMff8SqbQUlETiwcaN8OST8PjjsG4d1K/PZ6OGcfOetfz3/QXkv58PKXDS2Sdx+bDfkb/tYqZPT2DAw/70jh3hD3/w4ahjx6MLRyIiEZOND0WFgegTYCVFoagpPgxdStFIkTa7FpEABSWRyio/HzIz/ejR669Dfj7ZvXty35mteWTZJ+x87iVwUO/Eegy4bBzNq/6OWW/U4pZf+tO7doV77/Wr1bVvH91LERE5pMJQFDx9LjQUdQFGUTRSpFAkIj9BQUmkslm/Hv79b3jiCVi/HtewIa8POYvbtn7FskXzYD9UqZ1Et3OHcnz6XXz4/sk8/4AfJerZE+6/H4YNg5Yto30hIiJlyAaWUHyk6EuKQlETikJR4UhRo8iXKSIVm4KSSGWQlwdvvOFHj2bNAudY1/N0bj+xFi8s+5LcV96CRGjWsTPtm/6W1Z9fwEevV+HjRDjrLLj+er/5ayP9IiEisaYwFAWPFAWHosb4EaKLKApFjSNfpohUPgpKIhXZunX+vqMnn4SNG8lNb8ijfTvzp02r2bhgIeRD9UaNaHvaL9m24Vo2LK3HlhXQvz/ceSecfz7UqxeVOldEAAAgAElEQVTtixARCdhLUSgqHC36EigIPN+YH1ec+3H6nEKRiISJgpJIRZObCzNm+NGjOXNwZiw8/SRubZFA1hcbcHO2kJCSQnrzS9m3/Qb2fH8a3+yGQYP8YgyDBkFN7fMhItEWHIqCR4oKQ1EjfBi6kKKRoiaRL1NE4peCkkhFsXq1Hz166inYvJmdjRpyT/c2/HPDOrI/+gzMqF6nB3mp15FzYAgHdqQwZLBfjGHAAKhWLdoXICJxax8lR4pWUDwUdQFGUDRSpFAkIlGmoCQSy3JyYPp0mDwZ5s6lICGBV05pxR31arJ89Rb4fguJKU1JrDKe/LyxVE1oxtDRPhydfTYkJ0f7AkQk7gSHosKPLygKRen4MDSc4iNF2nZARGKMgpJILFq50k+te/pp2LqVten1uO3Uhrz0zTbylqwFS8UYg2McDev24oILjOHD4Wc/gyp6V4tIpOwDllJ8pCg4FDXEh6JhFB8pUigSkQpAv1KJxIoDB2DaND969N57HExM5JH2DflTSnU2b9wOmx3QHRhHi+YjufDCGgwfDt26QUJCtIsXkUpvPz4UBS/J/QWQH3i+IT4IDaNopKgpCkUiUmEpKIlE2/LlfvTomWdgxw4WpNfmhpaN+GjjbtyKTfjJ+xNp1XoMl17SgeHDoVMnv++RiEhYFIai4IUWgkNRA/wI0RB8IOqKQpGIVDoKSiLRsG8fvPiiD0jz57OjSiI3NmrN8zlVydm8Ef/WHEyLVpdxxdjzGDmyCh06RLtoEamU9gPLKD59bjnFQ1EXYDBF0+eaoVAkIpWegpJIJC1d6sPRc8+Rv2sXD9TuyJ9rdGLLnhWwYTVwEo2bTeLqcb/g8ssbctxx0S5YRCqVA5QcKQoORfXxYeh8iqbPNUehSETikoKSSLhlZ8PUqfDYYxQsXMSriZ25vWoPvrTPcDs/B2pRt+Eoxo7+Jddf341mzfQbiYgcAwcofaQoL/B8fXwQOo+ikSKFIhGRH4U1KJnZQOBBIBF43Dl3X8jzKcAz+G/P24CLnHPrzKwVfoeFlYGmHzrnxoezVpFj7pNPYPJk8v4zlbl7T+aelI7MS0ghP/8DyHZUq9WTC4bdyd13jKJly6rRrlZEKrLgUBQ8UlQYiurhf9KeS9FIUQsUikREfkLYgpKZJQKPAP2ADcAiM5vhnPsiqNk4YIdzrq2ZXQz8Cbgo8Nwa51yncNUnEha7d8Pzz3PwX08yd0ktHrVuzGI4ubwKOfOoktKEPn2u4/77ruOUU1pFu1oRqYhyKDlS9DlFoagufoRoEEULLSgUiYgctnCOKJ0BrHbOrQUws6n49XGCg9IQ4I7A45eBh820lpdUMM7BwoXs/78nmT11O88f7M0MhpDDVHB3YwnJnHhaH+75w68ZfF4/ErSWt4iUx27gm8DH9dB9e3doCXxG8VDUBfgNRSNFLVEoEhE5BsIZlJoC64O+3gB0K6uNcy7PzHbhJwgAtDazT/E/Km5zzr0fxlpFDt/Onex5/AVe/8dXTFvfhdfpRw5TgBuAXBo0b8cN1/2F8eOupHbt2tGuVkRiiQN+oCgIlfaxs/gpSYlJ/r6imygaKVIoEhEJG3POheeFzS4EBjjnrgx8fRlwhnPu2qA2ywNtNgS+XoMficoG0pxz28ysCzAdOMk5tzvk37gauBogPT29y9SpU8NyLUciOzubtLS0aJchQY5JnzgHC79i6bO7ePuLE8h0rcjleeBJYDNJVavx8369GDXkIo7TknXlovdK7FGfHD3LN5K3JpO6OZXUzamkbE4h9fvUoq+3pJCYk1jsnLxqeRxIP0BOeg4H0g/8+JHTKIc2j7Qhz/L47OHPonRFUhq9V2KT+iX2xFqfnHXWWZ8457oeql04R5Q24NfPKdQM2FhGmw1mVgWoBWx3Pr3lADjnPgkEqPb42dg/cs5NBiYDdO3a1WVkZIThMo5MVlYWsVSPHF2fbF6xnen/8ynT3khm7r4R5DOdKvZH8lgEZpz+89O5eeLDDD5/MMnJyce28EpO75XYoz4ph/3At/iRn8LPwR8bKFpyu1AD/AjQGYHPIR9ValchzdJIo5RfJq5Rv8Qi9UlsUr/EnoraJ+EMSouAdmbWGvgOuBi4JKTNDGAMsAAYAcx1zjkza4APTPlmdhzQDlgbxlpFSlj/rePVv67h5am5vP9DeyCFavYAzmaCO0jd5g0Zf9Uf+OUVv6RJkybRLldEjqWd/PS0uC0h7RPwk8lbAr0oGYRaANUiUbiIiBwrYQtKgXuOJgKz8cuDP+GcW25mdwEfO+dmAP8GnjWz1cB2fJgC6A3cZWZ5+L/JjXfObQ9XrSKFVq+GV57JZtpTu1m4vglQlYY8RLXE59iXv53c1CSGXTCYG665ge7du6O1R0QqIAds5qeD0O6Qc1LwYaclfjPW0CDUFEiKQO0iIhIxYd1HyTn3JvBmyLE/BD0+AFxYynnTgGnhrE3iS0YG7NzZiSVLih93DpYvh1emFTDtmb0sW1sDSKYNz9K8ymTW561lC9DxtI78evyfuWjkRTE1x1ZESpGHn/pWVgj6lsDk7iA1KQo9vSkZhBriR41ERCRuhDUoicQi52DxYpg2Daa9mMeqNVUwoBPT6JHwIEsSlrEmr4BadWpx/djrmXDVBNq1axftskWk0D5Kvy+o8OM7oCDknHR84OmE35giNAjVikThIiJSkSgoSVxwDvbuTeSGG+CVVxzffGMkWj493UxO4+8sTPqQT3PzSEhIoN+gflw3/jr69+9PYmLioV9cRI4dx6HvD/oh5JxE/HJBLYEMSoag5kDV8JcuIiKVi4KSVFqbNsGcOTBrFsyfD3l5NXjkH3mclTCHC3mAFQlZzC7IJc9B6zat+fv4a7ns0suoX79+tEsXqbwKOPT9QXtCzkmlKPR0pmQQaoJ+momIyDGnHy1SaeTm+kCUmQmZmY4lS/xCC+lVd3IemWTwLJvy3+JJO8hsoFq1avzi0rGMv2o8nTt31sIMIsdCLoe+P+hgyDm18YHnOOAsSgahBmhTVRERiTgFJanQvvkmEIzeLODttx179iZSxfLomfQh9/AaTXiV5TlrmF7F71psBj169eQf469lyJAhpKamRvsSRCqWvfz0/UEbKXl/UCN84DkNGEbJIFQzEoWLiIgcHgUlqVAOHID33oPM6QeYNTOPLzf4Feha2noucbM4k9f4PvVdZiTv5y4HObmQQALV0k6lUfL5fPTROFq0aBHlqxCJYbsg7au0su8T2hrSvgpF9wf1ofT7g/T3CBERqYAUlCSmOQdfrXJkPreVzBk5ZC1vyP78ZFKADD7gSmaR0GAOc5K/5MV98K8dwH6oVa0Wwy46h2HnD6Nfv37UqVOHrKwshSQRh98sdQ2wupTP26ArXYvaV6Mo9HSh9PuDtOaJiIhUQgpKEnOyt+Uw9/G1ZL6WQ+bSRny9rxHQgOP5kiuTXqNVq/dYVP0t3snezuxN+BWwDE7qfBKTrhvB+eedT+fOnUlI0KYnEqcK8PcJlRaE1gDZQW0T8KM+bYHh/vPn+z6n43kdfRCqh+4PEhGRuKSgJFHntvzA51M+I/PV/cxa0ogPdp1MLh2oTjZ9qi3gspOeZkuT15m55yMe2pALawEH1WtXZ+j5/Rg5dCT9+/enXr160b4Ukcg5CKyj9CC0luILJiThF0poA/w88Llt4HMrIKX4S2/N2upHj0REROKYgpJEVkEBrFzJjjmLeGv6HjIXp5O5uzsb6QPAKdW+4upT51D1pPnM4UVmLl/DzNXAcn96u5PbMWLsCIacN4SuXbtqnyOp3PbiQ09pI0PfUnzRhOr44HMicD5FQagt/h4ivVVEREQOi4KShNe+fbBoEQUfzOeTWVvIXNyAzP0/50MupYBEaidl0/fkbziu22KWN5rKe5/MZNnyPTAFcFC1RlV69+3NJRdcwsCBA2nYsGG0r0jk2NpB2VPkNoW0rYsPPt2Byyg+MpSOpsiJiIgcQwpKcmxt2gTz5sG8eWx5dwVzlqaTWdCP2VzJVhpgFNC19TYmnvUNuae8xwdfPcgrHy6j4IWCHzeZbHlCS4bdNIwLh17IGWecQZUq+t9UKjAHfE/ZiyfsCGnfBB98BlI8CLUB6kSmZBEREVFQkqORnw/Ll/8YjPLmfcSH69LJZCCZNppPnL/JoWHtHAb0K6Bl989Znf8I78ybxqK5P8BTQAGkVE+hW+9uXDb8Ms4ddC6NGzeO6mWJHLZ8YD1ljwztC2qbgF8koS1wEcWnyB2HX2VOREREok5BScpvzx746COYP9+How8/ZMPuGj4YpVzMWwX/YhfVSUx09Oju+N3Ze6HVm2Qtf5AX31tI7uxc2O1fqknbJpw38TwuHX4p3bt3JykpKbrXJnIoOcDXlB6EvgZyg9qmULR4wtkUHxlqCSRHrGoRERE5QgpKUrZvv/1xtIj582HpUnIKqvABPyOz/mgyqzzB5zQFoFkDx4gBcHy3NazO/yeZc1/k/We/9RtU5kNSahLdenXj0mGXMmzwMJo1axbdaxMpTTZlT5Fbj59GV6gGPvicAgyj+MhQU/zIkYiIiFRYCkri5eXB0qXFg9GGDQCsqdqRzOZXkdlmAHO/bcO+nCok74beveGSvjkkt3mbOcv+wdS3P2DvtL2w079kg1YNGHjVQC4fcTm9f9ab5GT9GV2izAHbKDsMbQlpXx8ffH5G8SDUBmiAFk8QERGpxBSU4tXOnbBgQdE0uo8+8ivUAXubtierzbVkHjeQzK/bs3p9KqyCNm3giqugU6/vWZ03memZU/j9v1fi1jrIh8SURDp168SoC0Zx0dCLaNmyZZQvUuJSAX61uLLuF9oV0r4ZPvwEL6ld+FErMiWLiIhI7FFQigfOwdq1xUeLli/3xxMTcad2YsWw35OZcA6Z6zrw3sJUcr6DqlWhTx+YeFM+NU+Yx5ufPMTzc+by8PPbYbt/6TpN63DW5WcxbuQ4+mT0ITU1NbrXKvEhDz+ts7QgtAY4ENQ2EWiNDz7dKT4q1BqoGrGqRUREpAJRUKqMcnJg8eKi0aL582HzZv9crVrQvTu7hlzO20kDyVx3AplvJ7F+sX/6pJNg4kTonrGLr/Ke4KU3nuOmR5eRtzoP8iAhKYEOXTswYsgIxowYQ5s2baJ3nVK57ccvklDayNA3+LBUKJWiADSA4tPkWqDvdCIiInLY9OtDZbB1a/FQtGiRD0sAxx0H/ftT0L0nS+r2IXN1GzJnJzD/Pr+6d82a0Lcv3Habo1HHpby28CGef3MWf3t6E2z1L1EjvQa9RvZi3EXjGNRvEFWr6k/wcozsgrRVafADJQPRhpC2tfDBpwt+We3gkaHGaPEEEREROaYUlCoa52DlyuLT6Fau9M8lJUGXLvCrX0HPnmw9vqff8DUTZt8BWwI3qp92GtxyC2T0PcC6/Ck8O/1JrntoEQdWHoBcsCpGm05tGDxxMFdffDXHtz8eM921LkdgP7AOPzIU/FF4bAd0pWtR+3R88OlD8SDUFqiLFk8QERGRiFFQinX79/sRouARo+2BG4Tq1YMePeAXv4AePcjv3JWFn1UlMxMy/+RPc843GzAABg6Etqet4YX3H2LKGzO499/rcJv9esdV61clY0gGYy8cy4hzR1C9evUoXrRUGLn4ZbPLCkLfh7RPAVrh7w3qBsyGvfl7qf5adb/vUI3IlC0iIiJyKApKseb774uPFi1eDLmBnSxPOAGGDoWePf1H+/Zs3GTMng2ZD8N//ws7dkBCAnTrBnfcAX3757HRzeSJaY8x8e/z2L1it984MxGadWzGoF8MYsKoCZx68qkaNZKSCleQKysIrQ+0KZQINMcHoUGBz4UfrYBGlJgityhrERmnZoTrCkRERESOiIJSNOXn+9XnCkeL5s2Dr7/2z6Wmwumnww03+FDUvTvUr8/Bg775rCcgMxOWLfPNGzf2GWrgQDjljC08n/UwL8ycxl3/XEn+pnwAUuqkcOaAMxk9fDSXDb2MmjVrRunCJWYU7itUVhD6Bh+sgzXGB59elAxCzdF3FREREakU9CtNJGVn+/2KCoPRggWwe7d/Lj3dB6KJE/10utNOg8AGrevWQebLPhi9/bZ/maQk6NUL/vQnGDDAsT3hXf5vyiP86q9ZbP1sq18eOQHSO6TT9+K+XHPJNXTv0l2jRvFoD2UHoa+B7JD2dfHB5xRgCMXDUAu0nLaIiIjEBQWlcMjIoNPOnTBzZvFpdEuX+lEkM+jYEUaNKppG17q1P46/LenduT4YZWYWrdXQsiWMHu1Hjc7okc3z7/yLKa9O4baHl5G73k/Pq1KzCqdmnMpFQy/ilyN/Sd06daP1X0Ei5QB+5KesILQtpH11ioLPWZQcFdJAo4iIiIiCUlisWkXNrVuhRQv/dfXq/qah3/3OjxadeSbUrv1jc+dg1SqYNcsHo3ffhQMH/Oy7jAyYMMGHo31VlvCP5x/kmj/PYeOSjbAPMKjbri69r+nNhFET6NujLwkJWie5UsnDL5VdVhDaGNI+GWiJDz5dKBmE6qPV40REREQOQUEpHJwjr3p1ku+6ywejU0+FKsX/U+/ZA3ODRo3WrfPHjz8exo/3wah7j1xeevcZnnrpKW594BP2r9sPQEJaAieceQLDBg/j2lHX0rhh4whfoBxTDr86XFlBaD3FN1dNAJrhg09/SgahJmhPIREREZGjpKAUBhn7Z5GXl8cH1xbtD+OcX3ihMBh98AHk5UFaGpx9tt/XaMAAcClreeA/DzDhvtdZ9/E6XLYDgxqta9BvXD+uuugqLuhzAYmJiVG8QjksDthB2UFoHX76XLB0fPA5ExhF8TDUHEgKf9kiIiIi8UxBKRw6dSJ75062b4e33vJT6mbPhk2b/NOnngo33uhHjc48s4DX57/C41Mf55a/LWD3mt3gwKoZrbq24txzzuW6S6+jbfO20b0m+Wl7KTsIfQ3sDmlfGx96TgTOpXgQaglUi0TRIiIiIlIWBaUw+PZb2Lw5jQYNoKDA347Uv78PRgMGQELy9zw05SEm/O8rfPXRV+Tv9st3V21RlV6X9uLyEZczZtAYkpOSo3wl8qODFF8wYR3Fg9APIe2rUbSx6s8oOT2uNiIiIiISwxSUwmDnTv/5ttt8OOra1ZH18Vs8OuVRfvOX99i2cpvfpDMVmnRqQv+B/Zl0ySQ6t+sc1brjWj7wHWUHoe/wU+gKJeGXym4NDKV4EGoNNEALJoiIiIhUYApKYXDyybBt+waqNp/KNfe8wPL5y8nd4ZfvTmqSRJcRXbh42MWMHzqetNS0KFcbJxwkbU+CDyk9CH0L5Aa1N6ApPvT0oWQQagLoNjERERGRSktBKQwWrm/DgW/WcutVQArU71ifjH4ZXDPqGjJOztCmr8daAX7q24bAx/pSHn8NPV3P4uc1xE+D6wpcSMmNVTXzUURERCRuKSiFQWLNNFJOOp6brx/Jry74Fem10qNdUsVVAGzhp0PQd/h7iIIl4ZfQboZfOW4EfLX/K9r1b1d0n1D1SFyAiIiIiFRECkphkL1kKVlZWWRkZES7lNhWAGzm0CEoN+S8ZIpCUI+gx82DHjegxF5C32V9R7uMdmG5FBERERGpXBSUJDzyKQpBwQEoNATlhZyXQlHY6UXZIUizF0VEREQkjBSU5PDlA99T9ijQBmAjJUNQKkVhpzelh6D6KASJiIiISNQpKElxeZQvBOWHnJdKUeDJoPQQVA+FIBERERGpEBSU4kkesImfDkGbKBmCqlIUePpQegiqi0KQiIiIiFQaCkqVRS7lC0EFIedVoyjw9KX0EFQHhSARERERiSsKShVBLn6620+FoO8pGYKqUxR4+lN6CKqNQpCIiIiISAgFpWg7SPlCkAs5L42iwNOR0kNQLRSCRERERESOgIJSOOVw6BC0mZIhqAZFgecUyg5BIiIiIiISFgpK4XAh9Hi7B+wo5bmaFAWeUykefgof14xUoSIiIiIiUhoFpXBoB1v3b6XJGU2Kh6CmKASJiIiIiFQACkrh8L+wKmsVTTKaRLsSERERERE5AgnRLkBERERERCTWhDUomdlAM1tpZqvN7LelPJ9iZi8Env/IzFoFPXdr4PhKMxsQzjpFRERERESChS0omVki8AhwDnAiMMrMTgxpNg7Y4ZxrC9wP/Clw7onAxcBJwEDg/wKvJyIiIiIiEnbhHFE6A1jtnFvrnDsITAWGhLQZAjwdePwycLaZWeD4VOdcjnPua2B14PVERERERETCLpxBqSl+x6BCGwLHSm3jnMsDdgH1ynmuiIiIiIhIWIRz1Tsr5Vjo1qpltSnPuZjZ1cDVAOnp6WRlZR1mieGTnZ0dU/WI+iRWqV9ij/okNqlfYo/6JDapX2JPRe2TcAalDfjdgwo1AzaW0WaDmVUBagHby3kuzrnJwGSArl27uoyMjGNV+1HLysoiluoR9UmsUr/EHvVJbFK/xB71SWxSv8Seiton4Zx6twhoZ2atzSwZvzjDjJA2M4AxgccjgLnOORc4fnFgVbzWQDtgYRhrFRERERER+VHYRpScc3lmNhGYDSQCTzjnlpvZXcDHzrkZwL+BZ81sNX4k6eLAucvN7EXgCyAP+JVzLj9ctYqIiIiIiAQL59Q7nHNvAm+GHPtD0OMDwIVlnHsPcE846xMRERERESlNWDecFRERERERqYgUlEREREREREIoKImIiIiIiIRQUBIREREREQmhoCQiIiIiIhJCQUlERERERCSEgpKIiIiIiEgIBSUREREREZEQ5pyLdg3HhJn9AHwT7TqC1Ae2RrsIKUZ9EpvUL7FHfRKb1C+xR30Sm9QvsSfW+qSlc67BoRpVmqAUa8zsY+dc12jXIUXUJ7FJ/RJ71CexSf0Se9QnsUn9Ensqap9o6p2IiIiIiEgIBSUREREREZEQCkrhMznaBUgJ6pPYpH6JPeqT2KR+iT3qk9ikfok9FbJPdI+SiIiIiIhICI0oiYiIiIiIhFBQOkpmNtDMVprZajP7bSnP9zazxWaWZ2YjolFjvClHn9xgZl+Y2TIze9vMWkajznhTjn4Zb2afmdkSM/vAzE6MRp3x5FB9EtRuhJk5M6twKxZVNOV4n4w1sx8C75MlZnZlNOqMN+V5r5jZyMDPluVm9nyka4w35Xiv3B/0PlllZjujUWe8KUe/tDCzd8zs08DvYYOiUWd5aerdUTCzRGAV0A/YACwCRjnnvghq0wqoCdwEzHDOvRz5SuNHOfvkLOAj59w+M5sAZDjnLopKwXGinP1S0zm3O/B4MHCNc25gNOqNB+Xpk0C7GsAbQDIw0Tn3caRrjRflfJ+MBbo65yZGpcg4VM5+aQe8CPRxzu0ws4bOuS1RKTgOlPf7V1D7a4HOzrkrIldl/Cnne2Uy8Klz7tHAH0TfdM61ika95aERpaNzBrDaObfWOXcQmAoMCW7gnFvnnFsGFESjwDhUnj55xzm3L/Dlh0CzCNcYj8rTL7uDvqwO6K844XXIPgn4I/Bn4EAki4tT5e0Tiazy9MtVwCPOuR0ACklhd7jvlVHAlIhUFt/K0y8OP4AAUAvYGMH6DpuC0tFpCqwP+npD4JhEz+H2yThgVlgrEihnv5jZr8xsDf4X80kRqi1eHbJPzKwz0Nw593okC4tj5f3+NTwwZeVlM2semdLiWnn6pT3Q3szmmdmHZqbR8PAq98/6wPT61sDcCNQV78rTL3cAo81sA/AmcG1kSjsyCkpHx0o5pr+CR1e5+8TMRgNdgb+EtSKBcvaLc+4R51wb4BbgtrBXFd9+sk/MLAG4H7gxYhVJed4nM4FWzrlTgLeAp8NelZSnX6oA7YAM/OjF42ZWO8x1xbPD+f3rYuBl51x+GOsRrzz9Mgp4yjnXDBgEPBv4eROTYrawCmIDEPzXvGbE+BBiHChXn5hZX+D3wGDnXE6Eaotnh/temQoMDWtFcqg+qQF0BLLMbB1wJjBDCzqE1SHfJ865bUHfsx4DukSotnhWnu9fG4DXnHO5zrmvgZX44CThcTg/Uy5G0+4ipTz9Mg5/Px/OuQVAKlA/ItUdAQWlo7MIaGdmrc0sGf9mnBHlmuLdIfskMJ3oX/iQpHnkkVGefgn+peJc4KsI1hePfrJPnHO7nHP1nXOtAjfafoh/z2gxh/Apz/ukcdCXg4EVEawvXpXnZ/104CwAM6uPn4q3NqJVxpdy/f5lZscDdYAFEa4vXpWnX74FzgYwsw74oPRDRKs8DApKR8E5lwdMBGbjf1i96JxbbmZ3BVbtwsxOD8zDvBD4l5ktj17FlV95+gQ/1S4NeCmwbKjCbZiVs18mBpbVXQLcAIyJUrlxoZx9IhFUzj6ZFHifLMXfxzc2OtXGj3L2y2xgm5l9AbwD/MY5ty06FVd+h/H9axQw1WmJ54goZ7/cCFwV+B42BRgby/2j5cFFRERERERCaERJREREREQkhIKSiIiIiIhICAUlERERERGREApKIiIiIiIiIRSUREREREREQigoiYjIUTGzYWbmzOyECP6bvzazapH6946EmWWYWY9o1yEiIkdGQUlERI7WKOAD/OaCkfJrIOpBycyq/MTTGYCCkohIBaWgJCIiR8zM0oCewDhCgpKZ3Wxmn5nZUjO7L3CsrZm9FTi22MzaBI7/xswWmdkyM7szcKyVmX1pZk8Hjr9sZtXMbBLQBHjHzN4JtH3UzD4ObMZ6Z1AN68zszsC/9VnhqJeZpZnZk4Fjy8xseOB4fzNbEGj/UuD6Qq85y8z+18zeBa4zs/PN7CMz+zRwbelm1goYD1wf2Nj6Z2bWwMymBa5zkZn1PLa9ISIix9JP/SVMRETkUIYCmc65VWa23cxOc84tNrNzAs91c87tM7O6gfb/Ae5zzr1qZqlAgpn1B9oBZwAGzDCz3sC3wPHAOOfcPDN7ArjGOfdXM7sBOMs5tzXwur93zm03s0TgbTM7xTm3LPDcVk8SbzEAAALDSURBVOfcaWZ2DXATcCVwO7DLOXcygJnVMbP6wG1AX+fcXjO7BbgBuKuU667tnPt54bnAmc45Z2ZXAjc75240s38C2c65vwbaPQ/c75z7wMxa4Hev73CU//1FRCRMFJRERORojAIeCDyeGvh6MdAXeNI5tw8gEGJqAE2dc68Gjh0AP4oD9Ac+DbxOGj44fQusd87NCxx/DpgE/LWUOkaa2dX4n2uNgROBwqD0SuDzJ8AFgcd9CRoBc87tMLPzAufNMzOAZGBBGdf9QtDjZsALZtY4cM7XZZzTFzgx8NoANc2shnNuTxntRUQkihSURETkiJhZPaAP0NHMHJAIODO7GT8y5EJPKeulgHudc/8Kef1WpbxG6NeYWWv8SNHpgcDzFJAa1CQn8Dmfop97ZdX3X+fcqDLqDLY36PFDwN+dczPMLAO4o4xzEoDuzrn95Xh9ERGJMt2jJCIiR2oE8IxzrqVzrpVzrjl+NKUXMAe4onBlOjOr65zbDWwws6GBYymB52cH2qYFjjc1s4aBf6OFmXUPPC5cNAJgD1Aj8LgmPrjsMrN04Jxy1D4HmFj4RWD63IdATzNrGzhWzczal+O1agHfBR6PCToeXGNp/2ancry2iIhEiYKSiIgcqVHAqyHHpgGXOOcygRnAx2a2BD/iA3AZMMnMlgHzgUbOuTnA88ACM/sMeJmigLECGBNoXxd4NHB8MjDLzN5xzi3FT9tbDjwBFE7V+yl3A3XM7HMzW4q/3+kHYCwwJfDvfQiUZ8nzO4CXzOx9YGvQ8ZnAsMLFHPDTBrsGFo/4Ar/Yg4iIxChzrsQsBhERkagLTL173TnXMcqliIhIHNKIkoiIiIiISAiNKImIiIiIiITQiJKIiIiIiEgIBSUREREREZEQCkoiIiIiIiIhFJRERERERERCKCiJiIiIiIiEUFASEREREREJ8f+uw/a6Z45kogAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 1008x576 with 1 Axes>"
       ]
@@ -907,20 +898,20 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[[0.01592    0.005728   0.02139331 0.0150846  0.01577991]\n",
-      " [0.042      0.01616    0.04126017 0.03929379 0.04248489]\n",
-      " [0.074528   0.02756    0.0763992  0.07527238 0.07662577]\n",
-      " [0.11492    0.040664   0.12183729 0.11392414 0.1152359 ]\n",
-      " [0.1634     0.056664   0.15907742 0.16494027 0.16069447]\n",
-      " [0.213856   0.070952   0.22093032 0.20375053 0.21518658]\n",
-      " [0.27124    0.084888   0.26991842 0.27906662 0.27472274]\n",
-      " [0.342664   0.097256   0.34408503 0.33531832 0.34245826]]\n",
+      "[[0.015536   0.005928   0.02170985 0.0180516  0.01562169]\n",
+      " [0.041884   0.015828   0.04221962 0.04324741 0.04137089]\n",
+      " [0.07538    0.027316   0.07771219 0.07215072 0.07554357]\n",
+      " [0.115012   0.03972    0.1144968  0.11311276 0.11630691]\n",
+      " [0.1618     0.050548   0.1643016  0.16000004 0.1618261 ]\n",
+      " [0.215536   0.06848    0.21508377 0.22301954 0.21570745]\n",
+      " [0.275708   0.082732   0.27766473 0.27981737 0.27674548]\n",
+      " [0.341168   0.090472   0.33822295 0.34377554 0.34136872]]\n",
       "\n",
       "Mean absolute errors:\n",
-      "0.104832\n",
-      "0.003642642230080494\n",
-      "0.004012485889942298\n",
-      "0.0013454046105136883\n"
+      "0.107625\n",
+      "0.0021515584224333704\n",
+      "0.003125990647070036\n",
+      "0.00043662683370912915\n"
      ]
     }
    ],
@@ -928,7 +919,7 @@
     "f_rates = np.zeros((8, 5))\n",
     "f_sems = np.zeros((8, 5))\n",
     "\n",
-    "nIter = 5\n",
+    "nIter = 10\n",
     "\n",
     "for r in np.arange(1, 9):\n",
     "\n",
@@ -1105,7 +1096,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.0"
+   "version": "3.7.3"
   },
   "toc": {
    "base_numbering": 1,
diff --git a/analysis_and_scripts/tree.dot b/analysis_and_scripts/tree.dot
deleted file mode 100644
index 4b473230d4b6e4d43a9a24c1ce13de64589c289f..0000000000000000000000000000000000000000
--- a/analysis_and_scripts/tree.dot
+++ /dev/null
@@ -1,609 +0,0 @@
-digraph Tree {
-node [shape=box, style="filled, rounded", color="black", fontname=helvetica] ;
-edge [fontname=helvetica] ;
-0 [label="X <= 0.06\ngini = 0.42\nsamples = 22638\nvalue = [10938, 24937]\nclass = 1", fillcolor="#399de58f"] ;
-1 [label="X <= -0.58\ngini = 0.26\nsamples = 14836\nvalue = [3590, 19957]\nclass = 1", fillcolor="#399de5d1"] ;
-0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
-2 [label="X <= -1.07\ngini = 0.14\nsamples = 8795\nvalue = [1085, 12887]\nclass = 1", fillcolor="#399de5ea"] ;
-1 -> 2 ;
-3 [label="X <= -1.54\ngini = 0.08\nsamples = 4657\nvalue = [294, 7122]\nclass = 1", fillcolor="#399de5f4"] ;
-2 -> 3 ;
-4 [label="X <= -1.73\ngini = 0.03\nsamples = 2168\nvalue = [53, 3392]\nclass = 1", fillcolor="#399de5fb"] ;
-3 -> 4 ;
-5 [label="X <= -2.12\ngini = 0.02\nsamples = 1502\nvalue = [21, 2321]\nclass = 1", fillcolor="#399de5fd"] ;
-4 -> 5 ;
-6 [label="X <= -2.26\ngini = 0.0\nsamples = 647\nvalue = [2, 998]\nclass = 1", fillcolor="#399de5fe"] ;
-5 -> 6 ;
-7 [label="gini = 0.0\nsamples = 457\nvalue = [0, 696]\nclass = 1", fillcolor="#399de5ff"] ;
-6 -> 7 ;
-8 [label="X <= -2.26\ngini = 0.01\nsamples = 190\nvalue = [2, 302]\nclass = 1", fillcolor="#399de5fd"] ;
-6 -> 8 ;
-9 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-8 -> 9 ;
-10 [label="gini = 0.0\nsamples = 189\nvalue = [0, 302]\nclass = 1", fillcolor="#399de5ff"] ;
-8 -> 10 ;
-11 [label="X <= -2.12\ngini = 0.03\nsamples = 855\nvalue = [19, 1323]\nclass = 1", fillcolor="#399de5fb"] ;
-5 -> 11 ;
-12 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-11 -> 12 ;
-13 [label="X <= -2.08\ngini = 0.03\nsamples = 854\nvalue = [18, 1323]\nclass = 1", fillcolor="#399de5fc"] ;
-11 -> 13 ;
-14 [label="gini = 0.09\nsamples = 54\nvalue = [4, 83]\nclass = 1", fillcolor="#399de5f3"] ;
-13 -> 14 ;
-15 [label="gini = 0.02\nsamples = 800\nvalue = [14, 1240]\nclass = 1", fillcolor="#399de5fc"] ;
-13 -> 15 ;
-16 [label="X <= -1.73\ngini = 0.06\nsamples = 666\nvalue = [32, 1071]\nclass = 1", fillcolor="#399de5f7"] ;
-4 -> 16 ;
-17 [label="gini = 0.0\nsamples = 1\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-16 -> 17 ;
-18 [label="X <= -1.57\ngini = 0.05\nsamples = 665\nvalue = [29, 1071]\nclass = 1", fillcolor="#399de5f8"] ;
-16 -> 18 ;
-19 [label="X <= -1.57\ngini = 0.06\nsamples = 580\nvalue = [29, 934]\nclass = 1", fillcolor="#399de5f7"] ;
-18 -> 19 ;
-20 [label="gini = 0.06\nsamples = 579\nvalue = [28, 934]\nclass = 1", fillcolor="#399de5f7"] ;
-19 -> 20 ;
-21 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-19 -> 21 ;
-22 [label="gini = 0.0\nsamples = 85\nvalue = [0, 137]\nclass = 1", fillcolor="#399de5ff"] ;
-18 -> 22 ;
-23 [label="X <= -1.54\ngini = 0.11\nsamples = 2489\nvalue = [241, 3730]\nclass = 1", fillcolor="#399de5ef"] ;
-3 -> 23 ;
-24 [label="gini = 0.0\nsamples = 1\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-23 -> 24 ;
-25 [label="X <= -1.27\ngini = 0.11\nsamples = 2488\nvalue = [238, 3730]\nclass = 1", fillcolor="#399de5ef"] ;
-23 -> 25 ;
-26 [label="X <= -1.29\ngini = 0.1\nsamples = 1321\nvalue = [107, 1999]\nclass = 1", fillcolor="#399de5f1"] ;
-25 -> 26 ;
-27 [label="X <= -1.29\ngini = 0.1\nsamples = 1196\nvalue = [106, 1805]\nclass = 1", fillcolor="#399de5f0"] ;
-26 -> 27 ;
-28 [label="gini = 0.1\nsamples = 1195\nvalue = [104, 1805]\nclass = 1", fillcolor="#399de5f0"] ;
-27 -> 28 ;
-29 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-27 -> 29 ;
-30 [label="X <= -1.29\ngini = 0.01\nsamples = 125\nvalue = [1, 194]\nclass = 1", fillcolor="#399de5fe"] ;
-26 -> 30 ;
-31 [label="gini = 0.0\nsamples = 65\nvalue = [0, 104]\nclass = 1", fillcolor="#399de5ff"] ;
-30 -> 31 ;
-32 [label="gini = 0.02\nsamples = 60\nvalue = [1, 90]\nclass = 1", fillcolor="#399de5fc"] ;
-30 -> 32 ;
-33 [label="X <= -1.27\ngini = 0.13\nsamples = 1167\nvalue = [131, 1731]\nclass = 1", fillcolor="#399de5ec"] ;
-25 -> 33 ;
-34 [label="X <= -1.27\ngini = 0.46\nsamples = 10\nvalue = [5, 9]\nclass = 1", fillcolor="#399de571"] ;
-33 -> 34 ;
-35 [label="gini = 0.18\nsamples = 8\nvalue = [1, 9]\nclass = 1", fillcolor="#399de5e3"] ;
-34 -> 35 ;
-36 [label="gini = 0.0\nsamples = 2\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-34 -> 36 ;
-37 [label="X <= -1.1\ngini = 0.13\nsamples = 1157\nvalue = [126, 1722]\nclass = 1", fillcolor="#399de5ec"] ;
-33 -> 37 ;
-38 [label="gini = 0.14\nsamples = 956\nvalue = [117, 1408]\nclass = 1", fillcolor="#399de5ea"] ;
-37 -> 38 ;
-39 [label="gini = 0.05\nsamples = 201\nvalue = [9, 314]\nclass = 1", fillcolor="#399de5f8"] ;
-37 -> 39 ;
-40 [label="X <= -0.86\ngini = 0.21\nsamples = 4138\nvalue = [791, 5765]\nclass = 1", fillcolor="#399de5dc"] ;
-2 -> 40 ;
-41 [label="X <= -1.07\ngini = 0.17\nsamples = 1657\nvalue = [244, 2387]\nclass = 1", fillcolor="#399de5e5"] ;
-40 -> 41 ;
-42 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-41 -> 42 ;
-43 [label="X <= -1.04\ngini = 0.17\nsamples = 1656\nvalue = [242, 2387]\nclass = 1", fillcolor="#399de5e5"] ;
-41 -> 43 ;
-44 [label="X <= -1.05\ngini = 0.23\nsamples = 204\nvalue = [43, 289]\nclass = 1", fillcolor="#399de5d9"] ;
-43 -> 44 ;
-45 [label="X <= -1.07\ngini = 0.21\nsamples = 200\nvalue = [40, 287]\nclass = 1", fillcolor="#399de5db"] ;
-44 -> 45 ;
-46 [label="gini = 0.12\nsamples = 48\nvalue = [5, 70]\nclass = 1", fillcolor="#399de5ed"] ;
-45 -> 46 ;
-47 [label="gini = 0.24\nsamples = 152\nvalue = [35, 217]\nclass = 1", fillcolor="#399de5d6"] ;
-45 -> 47 ;
-48 [label="X <= -1.04\ngini = 0.48\nsamples = 4\nvalue = [3, 2]\nclass = 0", fillcolor="#e5813955"] ;
-44 -> 48 ;
-49 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-48 -> 49 ;
-50 [label="gini = 0.44\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#399de57f"] ;
-48 -> 50 ;
-51 [label="X <= -1.04\ngini = 0.16\nsamples = 1452\nvalue = [199, 2098]\nclass = 1", fillcolor="#399de5e7"] ;
-43 -> 51 ;
-52 [label="gini = 0.0\nsamples = 43\nvalue = [0, 69]\nclass = 1", fillcolor="#399de5ff"] ;
-51 -> 52 ;
-53 [label="X <= -1.04\ngini = 0.16\nsamples = 1409\nvalue = [199, 2029]\nclass = 1", fillcolor="#399de5e6"] ;
-51 -> 53 ;
-54 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-53 -> 54 ;
-55 [label="gini = 0.16\nsamples = 1408\nvalue = [197, 2029]\nclass = 1", fillcolor="#399de5e6"] ;
-53 -> 55 ;
-56 [label="X <= -0.85\ngini = 0.24\nsamples = 2481\nvalue = [547, 3378]\nclass = 1", fillcolor="#399de5d6"] ;
-40 -> 56 ;
-57 [label="X <= -0.86\ngini = 0.43\nsamples = 52\nvalue = [26, 58]\nclass = 1", fillcolor="#399de58d"] ;
-56 -> 57 ;
-58 [label="X <= -0.86\ngini = 0.39\nsamples = 49\nvalue = [21, 58]\nclass = 1", fillcolor="#399de5a3"] ;
-57 -> 58 ;
-59 [label="X <= -0.86\ngini = 0.47\nsamples = 6\nvalue = [5, 3]\nclass = 0", fillcolor="#e5813966"] ;
-58 -> 59 ;
-60 [label="gini = 0.38\nsamples = 4\nvalue = [1, 3]\nclass = 1", fillcolor="#399de5aa"] ;
-59 -> 60 ;
-61 [label="gini = 0.0\nsamples = 2\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-59 -> 61 ;
-62 [label="X <= -0.86\ngini = 0.35\nsamples = 43\nvalue = [16, 55]\nclass = 1", fillcolor="#399de5b5"] ;
-58 -> 62 ;
-63 [label="gini = 0.09\nsamples = 13\nvalue = [1, 21]\nclass = 1", fillcolor="#399de5f3"] ;
-62 -> 63 ;
-64 [label="gini = 0.42\nsamples = 30\nvalue = [15, 34]\nclass = 1", fillcolor="#399de58e"] ;
-62 -> 64 ;
-65 [label="gini = 0.0\nsamples = 3\nvalue = [5, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-57 -> 65 ;
-66 [label="X <= -0.6\ngini = 0.23\nsamples = 2429\nvalue = [521, 3320]\nclass = 1", fillcolor="#399de5d7"] ;
-56 -> 66 ;
-67 [label="X <= -0.6\ngini = 0.24\nsamples = 2263\nvalue = [500, 3084]\nclass = 1", fillcolor="#399de5d6"] ;
-66 -> 67 ;
-68 [label="X <= -0.72\ngini = 0.23\nsamples = 2238\nvalue = [481, 3066]\nclass = 1", fillcolor="#399de5d7"] ;
-67 -> 68 ;
-69 [label="gini = 0.22\nsamples = 1216\nvalue = [238, 1669]\nclass = 1", fillcolor="#399de5db"] ;
-68 -> 69 ;
-70 [label="gini = 0.25\nsamples = 1022\nvalue = [243, 1397]\nclass = 1", fillcolor="#399de5d3"] ;
-68 -> 70 ;
-71 [label="X <= -0.6\ngini = 0.5\nsamples = 25\nvalue = [19, 18]\nclass = 0", fillcolor="#e581390d"] ;
-67 -> 71 ;
-72 [label="gini = 0.48\nsamples = 16\nvalue = [9, 14]\nclass = 1", fillcolor="#399de55b"] ;
-71 -> 72 ;
-73 [label="gini = 0.41\nsamples = 9\nvalue = [10, 4]\nclass = 0", fillcolor="#e5813999"] ;
-71 -> 73 ;
-74 [label="X <= -0.59\ngini = 0.15\nsamples = 166\nvalue = [21, 236]\nclass = 1", fillcolor="#399de5e8"] ;
-66 -> 74 ;
-75 [label="X <= -0.6\ngini = 0.07\nsamples = 58\nvalue = [3, 86]\nclass = 1", fillcolor="#399de5f6"] ;
-74 -> 75 ;
-76 [label="gini = 0.16\nsamples = 22\nvalue = [3, 32]\nclass = 1", fillcolor="#399de5e7"] ;
-75 -> 76 ;
-77 [label="gini = 0.0\nsamples = 36\nvalue = [0, 54]\nclass = 1", fillcolor="#399de5ff"] ;
-75 -> 77 ;
-78 [label="X <= -0.59\ngini = 0.19\nsamples = 108\nvalue = [18, 150]\nclass = 1", fillcolor="#399de5e0"] ;
-74 -> 78 ;
-79 [label="gini = 0.49\nsamples = 4\nvalue = [4, 3]\nclass = 0", fillcolor="#e5813940"] ;
-78 -> 79 ;
-80 [label="gini = 0.16\nsamples = 104\nvalue = [14, 147]\nclass = 1", fillcolor="#399de5e7"] ;
-78 -> 80 ;
-81 [label="X <= -0.31\ngini = 0.39\nsamples = 6041\nvalue = [2505, 7070]\nclass = 1", fillcolor="#399de5a5"] ;
-1 -> 81 ;
-82 [label="X <= -0.41\ngini = 0.32\nsamples = 2550\nvalue = [808, 3212]\nclass = 1", fillcolor="#399de5bf"] ;
-81 -> 82 ;
-83 [label="X <= -0.58\ngini = 0.3\nsamples = 1590\nvalue = [454, 2034]\nclass = 1", fillcolor="#399de5c6"] ;
-82 -> 83 ;
-84 [label="X <= -0.58\ngini = 0.49\nsamples = 9\nvalue = [8, 6]\nclass = 0", fillcolor="#e5813940"] ;
-83 -> 84 ;
-85 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-84 -> 85 ;
-86 [label="X <= -0.58\ngini = 0.5\nsamples = 8\nvalue = [6, 6]\nclass = 0", fillcolor="#e5813900"] ;
-84 -> 86 ;
-87 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-86 -> 87 ;
-88 [label="X <= -0.58\ngini = 0.48\nsamples = 7\nvalue = [6, 4]\nclass = 0", fillcolor="#e5813955"] ;
-86 -> 88 ;
-89 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-88 -> 89 ;
-90 [label="gini = 0.5\nsamples = 6\nvalue = [4, 4]\nclass = 0", fillcolor="#e5813900"] ;
-88 -> 90 ;
-91 [label="X <= -0.41\ngini = 0.3\nsamples = 1581\nvalue = [446, 2028]\nclass = 1", fillcolor="#399de5c7"] ;
-83 -> 91 ;
-92 [label="X <= -0.41\ngini = 0.3\nsamples = 1564\nvalue = [446, 2000]\nclass = 1", fillcolor="#399de5c6"] ;
-91 -> 92 ;
-93 [label="X <= -0.42\ngini = 0.3\nsamples = 1559\nvalue = [440, 1997]\nclass = 1", fillcolor="#399de5c7"] ;
-92 -> 93 ;
-94 [label="gini = 0.3\nsamples = 1529\nvalue = [435, 1944]\nclass = 1", fillcolor="#399de5c6"] ;
-93 -> 94 ;
-95 [label="gini = 0.16\nsamples = 30\nvalue = [5, 53]\nclass = 1", fillcolor="#399de5e7"] ;
-93 -> 95 ;
-96 [label="X <= -0.41\ngini = 0.44\nsamples = 5\nvalue = [6, 3]\nclass = 0", fillcolor="#e581397f"] ;
-92 -> 96 ;
-97 [label="gini = 0.0\nsamples = 2\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-96 -> 97 ;
-98 [label="gini = 0.48\nsamples = 3\nvalue = [2, 3]\nclass = 1", fillcolor="#399de555"] ;
-96 -> 98 ;
-99 [label="gini = 0.0\nsamples = 17\nvalue = [0, 28]\nclass = 1", fillcolor="#399de5ff"] ;
-91 -> 99 ;
-100 [label="X <= -0.4\ngini = 0.36\nsamples = 960\nvalue = [354, 1178]\nclass = 1", fillcolor="#399de5b2"] ;
-82 -> 100 ;
-101 [label="X <= -0.4\ngini = 0.5\nsamples = 31\nvalue = [18, 22]\nclass = 1", fillcolor="#399de52e"] ;
-100 -> 101 ;
-102 [label="X <= -0.41\ngini = 0.46\nsamples = 27\nvalue = [12, 21]\nclass = 1", fillcolor="#399de56d"] ;
-101 -> 102 ;
-103 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-102 -> 103 ;
-104 [label="X <= -0.4\ngini = 0.42\nsamples = 24\nvalue = [9, 21]\nclass = 1", fillcolor="#399de592"] ;
-102 -> 104 ;
-105 [label="gini = 0.46\nsamples = 21\nvalue = [9, 16]\nclass = 1", fillcolor="#399de570"] ;
-104 -> 105 ;
-106 [label="gini = 0.0\nsamples = 3\nvalue = [0, 5]\nclass = 1", fillcolor="#399de5ff"] ;
-104 -> 106 ;
-107 [label="X <= -0.4\ngini = 0.24\nsamples = 4\nvalue = [6, 1]\nclass = 0", fillcolor="#e58139d4"] ;
-101 -> 107 ;
-108 [label="gini = 0.0\nsamples = 2\nvalue = [5, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-107 -> 108 ;
-109 [label="X <= -0.4\ngini = 0.5\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#e5813900"] ;
-107 -> 109 ;
-110 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5ff"] ;
-109 -> 110 ;
-111 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-109 -> 111 ;
-112 [label="X <= -0.4\ngini = 0.35\nsamples = 929\nvalue = [336, 1156]\nclass = 1", fillcolor="#399de5b5"] ;
-100 -> 112 ;
-113 [label="X <= -0.4\ngini = 0.09\nsamples = 25\nvalue = [2, 42]\nclass = 1", fillcolor="#399de5f3"] ;
-112 -> 113 ;
-114 [label="X <= -0.4\ngini = 0.38\nsamples = 6\nvalue = [2, 6]\nclass = 1", fillcolor="#399de5aa"] ;
-113 -> 114 ;
-115 [label="gini = 0.0\nsamples = 4\nvalue = [0, 6]\nclass = 1", fillcolor="#399de5ff"] ;
-114 -> 115 ;
-116 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-114 -> 116 ;
-117 [label="gini = 0.0\nsamples = 19\nvalue = [0, 36]\nclass = 1", fillcolor="#399de5ff"] ;
-113 -> 117 ;
-118 [label="X <= -0.35\ngini = 0.35\nsamples = 904\nvalue = [334, 1114]\nclass = 1", fillcolor="#399de5b3"] ;
-112 -> 118 ;
-119 [label="X <= -0.35\ngini = 0.39\nsamples = 512\nvalue = [212, 602]\nclass = 1", fillcolor="#399de5a5"] ;
-118 -> 119 ;
-120 [label="gini = 0.36\nsamples = 485\nvalue = [183, 588]\nclass = 1", fillcolor="#399de5b0"] ;
-119 -> 120 ;
-121 [label="gini = 0.44\nsamples = 27\nvalue = [29, 14]\nclass = 0", fillcolor="#e5813984"] ;
-119 -> 121 ;
-122 [label="X <= -0.33\ngini = 0.31\nsamples = 392\nvalue = [122, 512]\nclass = 1", fillcolor="#399de5c2"] ;
-118 -> 122 ;
-123 [label="gini = 0.24\nsamples = 174\nvalue = [40, 247]\nclass = 1", fillcolor="#399de5d6"] ;
-122 -> 123 ;
-124 [label="gini = 0.36\nsamples = 218\nvalue = [82, 265]\nclass = 1", fillcolor="#399de5b0"] ;
-122 -> 124 ;
-125 [label="X <= -0.31\ngini = 0.42\nsamples = 3491\nvalue = [1697, 3858]\nclass = 1", fillcolor="#399de58f"] ;
-81 -> 125 ;
-126 [label="gini = 0.0\nsamples = 1\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-125 -> 126 ;
-127 [label="X <= -0.04\ngini = 0.42\nsamples = 3490\nvalue = [1693, 3858]\nclass = 1", fillcolor="#399de58f"] ;
-125 -> 127 ;
-128 [label="X <= -0.05\ngini = 0.42\nsamples = 2579\nvalue = [1217, 2896]\nclass = 1", fillcolor="#399de594"] ;
-127 -> 128 ;
-129 [label="X <= -0.05\ngini = 0.42\nsamples = 2493\nvalue = [1187, 2780]\nclass = 1", fillcolor="#399de592"] ;
-128 -> 129 ;
-130 [label="X <= -0.06\ngini = 0.42\nsamples = 2491\nvalue = [1183, 2780]\nclass = 1", fillcolor="#399de592"] ;
-129 -> 130 ;
-131 [label="gini = 0.42\nsamples = 2432\nvalue = [1144, 2721]\nclass = 1", fillcolor="#399de594"] ;
-130 -> 131 ;
-132 [label="gini = 0.48\nsamples = 59\nvalue = [39, 59]\nclass = 1", fillcolor="#399de556"] ;
-130 -> 132 ;
-133 [label="gini = 0.0\nsamples = 2\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-129 -> 133 ;
-134 [label="X <= -0.04\ngini = 0.33\nsamples = 86\nvalue = [30, 116]\nclass = 1", fillcolor="#399de5bd"] ;
-128 -> 134 ;
-135 [label="X <= -0.04\ngini = 0.34\nsamples = 81\nvalue = [30, 106]\nclass = 1", fillcolor="#399de5b7"] ;
-134 -> 135 ;
-136 [label="gini = 0.32\nsamples = 80\nvalue = [26, 106]\nclass = 1", fillcolor="#399de5c0"] ;
-135 -> 136 ;
-137 [label="gini = 0.0\nsamples = 1\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-135 -> 137 ;
-138 [label="gini = 0.0\nsamples = 5\nvalue = [0, 10]\nclass = 1", fillcolor="#399de5ff"] ;
-134 -> 138 ;
-139 [label="X <= 0.04\ngini = 0.44\nsamples = 911\nvalue = [476, 962]\nclass = 1", fillcolor="#399de581"] ;
-127 -> 139 ;
-140 [label="X <= 0.03\ngini = 0.46\nsamples = 726\nvalue = [405, 749]\nclass = 1", fillcolor="#399de575"] ;
-139 -> 140 ;
-141 [label="X <= 0.01\ngini = 0.44\nsamples = 652\nvalue = [342, 698]\nclass = 1", fillcolor="#399de582"] ;
-140 -> 141 ;
-142 [label="gini = 0.46\nsamples = 511\nvalue = [292, 536]\nclass = 1", fillcolor="#399de574"] ;
-141 -> 142 ;
-143 [label="gini = 0.36\nsamples = 141\nvalue = [50, 162]\nclass = 1", fillcolor="#399de5b0"] ;
-141 -> 143 ;
-144 [label="X <= 0.03\ngini = 0.49\nsamples = 74\nvalue = [63, 51]\nclass = 0", fillcolor="#e5813931"] ;
-140 -> 144 ;
-145 [label="gini = 0.44\nsamples = 30\nvalue = [36, 17]\nclass = 0", fillcolor="#e5813987"] ;
-144 -> 145 ;
-146 [label="gini = 0.49\nsamples = 44\nvalue = [27, 34]\nclass = 1", fillcolor="#399de534"] ;
-144 -> 146 ;
-147 [label="X <= 0.05\ngini = 0.38\nsamples = 185\nvalue = [71, 213]\nclass = 1", fillcolor="#399de5aa"] ;
-139 -> 147 ;
-148 [label="X <= 0.05\ngini = 0.32\nsamples = 85\nvalue = [27, 108]\nclass = 1", fillcolor="#399de5bf"] ;
-147 -> 148 ;
-149 [label="gini = 0.39\nsamples = 58\nvalue = [24, 67]\nclass = 1", fillcolor="#399de5a4"] ;
-148 -> 149 ;
-150 [label="gini = 0.13\nsamples = 27\nvalue = [3, 41]\nclass = 1", fillcolor="#399de5ec"] ;
-148 -> 150 ;
-151 [label="X <= 0.05\ngini = 0.42\nsamples = 100\nvalue = [44, 105]\nclass = 1", fillcolor="#399de594"] ;
-147 -> 151 ;
-152 [label="gini = 0.0\nsamples = 3\nvalue = [5, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-151 -> 152 ;
-153 [label="gini = 0.39\nsamples = 97\nvalue = [39, 105]\nclass = 1", fillcolor="#399de5a0"] ;
-151 -> 153 ;
-154 [label="X <= 0.86\ngini = 0.48\nsamples = 7802\nvalue = [7348, 4980]\nclass = 0", fillcolor="#e5813952"] ;
-0 -> 154 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
-155 [label="X <= 0.39\ngini = 0.5\nsamples = 5371\nvalue = [4259, 4246]\nclass = 0", fillcolor="#e5813901"] ;
-154 -> 155 ;
-156 [label="X <= 0.39\ngini = 0.49\nsamples = 2632\nvalue = [1792, 2365]\nclass = 1", fillcolor="#399de53e"] ;
-155 -> 156 ;
-157 [label="X <= 0.28\ngini = 0.49\nsamples = 2621\nvalue = [1792, 2344]\nclass = 1", fillcolor="#399de53c"] ;
-156 -> 157 ;
-158 [label="X <= 0.26\ngini = 0.49\nsamples = 1790\nvalue = [1171, 1652]\nclass = 1", fillcolor="#399de54a"] ;
-157 -> 158 ;
-159 [label="X <= 0.26\ngini = 0.49\nsamples = 1668\nvalue = [1108, 1516]\nclass = 1", fillcolor="#399de545"] ;
-158 -> 159 ;
-160 [label="X <= 0.16\ngini = 0.49\nsamples = 1665\nvalue = [1102, 1516]\nclass = 1", fillcolor="#399de546"] ;
-159 -> 160 ;
-161 [label="gini = 0.48\nsamples = 878\nvalue = [547, 833]\nclass = 1", fillcolor="#399de558"] ;
-160 -> 161 ;
-162 [label="gini = 0.49\nsamples = 787\nvalue = [555, 683]\nclass = 1", fillcolor="#399de530"] ;
-160 -> 162 ;
-163 [label="gini = 0.0\nsamples = 3\nvalue = [6, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-159 -> 163 ;
-164 [label="X <= 0.27\ngini = 0.43\nsamples = 122\nvalue = [63, 136]\nclass = 1", fillcolor="#399de589"] ;
-158 -> 164 ;
-165 [label="X <= 0.27\ngini = 0.45\nsamples = 112\nvalue = [61, 120]\nclass = 1", fillcolor="#399de57d"] ;
-164 -> 165 ;
-166 [label="gini = 0.36\nsamples = 45\nvalue = [17, 56]\nclass = 1", fillcolor="#399de5b2"] ;
-165 -> 166 ;
-167 [label="gini = 0.48\nsamples = 67\nvalue = [44, 64]\nclass = 1", fillcolor="#399de550"] ;
-165 -> 167 ;
-168 [label="X <= 0.28\ngini = 0.2\nsamples = 10\nvalue = [2, 16]\nclass = 1", fillcolor="#399de5df"] ;
-164 -> 168 ;
-169 [label="gini = 0.0\nsamples = 4\nvalue = [0, 8]\nclass = 1", fillcolor="#399de5ff"] ;
-168 -> 169 ;
-170 [label="gini = 0.32\nsamples = 6\nvalue = [2, 8]\nclass = 1", fillcolor="#399de5bf"] ;
-168 -> 170 ;
-171 [label="X <= 0.32\ngini = 0.5\nsamples = 831\nvalue = [621, 692]\nclass = 1", fillcolor="#399de51a"] ;
-157 -> 171 ;
-172 [label="X <= 0.32\ngini = 0.5\nsamples = 340\nvalue = [293, 247]\nclass = 0", fillcolor="#e5813928"] ;
-171 -> 172 ;
-173 [label="X <= 0.29\ngini = 0.5\nsamples = 321\nvalue = [270, 239]\nclass = 0", fillcolor="#e581391d"] ;
-172 -> 173 ;
-174 [label="gini = 0.47\nsamples = 74\nvalue = [76, 46]\nclass = 0", fillcolor="#e5813965"] ;
-173 -> 174 ;
-175 [label="gini = 0.5\nsamples = 247\nvalue = [194, 193]\nclass = 0", fillcolor="#e5813901"] ;
-173 -> 175 ;
-176 [label="X <= 0.32\ngini = 0.38\nsamples = 19\nvalue = [23, 8]\nclass = 0", fillcolor="#e58139a6"] ;
-172 -> 176 ;
-177 [label="gini = 0.44\nsamples = 16\nvalue = [17, 8]\nclass = 0", fillcolor="#e5813987"] ;
-176 -> 177 ;
-178 [label="gini = 0.0\nsamples = 3\nvalue = [6, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-176 -> 178 ;
-179 [label="X <= 0.32\ngini = 0.49\nsamples = 491\nvalue = [328, 445]\nclass = 1", fillcolor="#399de543"] ;
-171 -> 179 ;
-180 [label="X <= 0.32\ngini = 0.32\nsamples = 30\nvalue = [10, 39]\nclass = 1", fillcolor="#399de5be"] ;
-179 -> 180 ;
-181 [label="gini = 0.44\nsamples = 17\nvalue = [8, 17]\nclass = 1", fillcolor="#399de587"] ;
-180 -> 181 ;
-182 [label="gini = 0.15\nsamples = 13\nvalue = [2, 22]\nclass = 1", fillcolor="#399de5e8"] ;
-180 -> 182 ;
-183 [label="X <= 0.33\ngini = 0.49\nsamples = 461\nvalue = [318, 406]\nclass = 1", fillcolor="#399de537"] ;
-179 -> 183 ;
-184 [label="gini = 0.47\nsamples = 22\nvalue = [23, 14]\nclass = 0", fillcolor="#e5813964"] ;
-183 -> 184 ;
-185 [label="gini = 0.49\nsamples = 439\nvalue = [295, 392]\nclass = 1", fillcolor="#399de53f"] ;
-183 -> 185 ;
-186 [label="gini = 0.0\nsamples = 11\nvalue = [0, 21]\nclass = 1", fillcolor="#399de5ff"] ;
-156 -> 186 ;
-187 [label="X <= 0.67\ngini = 0.49\nsamples = 2739\nvalue = [2467, 1881]\nclass = 0", fillcolor="#e581393d"] ;
-155 -> 187 ;
-188 [label="X <= 0.67\ngini = 0.5\nsamples = 1835\nvalue = [1593, 1352]\nclass = 0", fillcolor="#e5813927"] ;
-187 -> 188 ;
-189 [label="X <= 0.67\ngini = 0.5\nsamples = 1822\nvalue = [1589, 1330]\nclass = 0", fillcolor="#e581392a"] ;
-188 -> 189 ;
-190 [label="X <= 0.39\ngini = 0.5\nsamples = 1818\nvalue = [1581, 1330]\nclass = 0", fillcolor="#e5813928"] ;
-189 -> 190 ;
-191 [label="X <= 0.39\ngini = 0.28\nsamples = 11\nvalue = [15, 3]\nclass = 0", fillcolor="#e58139cc"] ;
-190 -> 191 ;
-192 [label="gini = 0.38\nsamples = 8\nvalue = [9, 3]\nclass = 0", fillcolor="#e58139aa"] ;
-191 -> 192 ;
-193 [label="gini = 0.0\nsamples = 3\nvalue = [6, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-191 -> 193 ;
-194 [label="X <= 0.39\ngini = 0.5\nsamples = 1807\nvalue = [1566, 1327]\nclass = 0", fillcolor="#e5813927"] ;
-190 -> 194 ;
-195 [label="gini = 0.0\nsamples = 4\nvalue = [0, 6]\nclass = 1", fillcolor="#399de5ff"] ;
-194 -> 195 ;
-196 [label="gini = 0.5\nsamples = 1803\nvalue = [1566, 1321]\nclass = 0", fillcolor="#e5813928"] ;
-194 -> 196 ;
-197 [label="gini = 0.0\nsamples = 4\nvalue = [8, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-189 -> 197 ;
-198 [label="X <= 0.67\ngini = 0.26\nsamples = 13\nvalue = [4, 22]\nclass = 1", fillcolor="#399de5d1"] ;
-188 -> 198 ;
-199 [label="X <= 0.67\ngini = 0.17\nsamples = 11\nvalue = [2, 20]\nclass = 1", fillcolor="#399de5e6"] ;
-198 -> 199 ;
-200 [label="X <= 0.67\ngini = 0.44\nsamples = 2\nvalue = [1, 2]\nclass = 1", fillcolor="#399de57f"] ;
-199 -> 200 ;
-201 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-200 -> 201 ;
-202 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-200 -> 202 ;
-203 [label="X <= 0.67\ngini = 0.1\nsamples = 9\nvalue = [1, 18]\nclass = 1", fillcolor="#399de5f1"] ;
-199 -> 203 ;
-204 [label="gini = 0.2\nsamples = 5\nvalue = [1, 8]\nclass = 1", fillcolor="#399de5df"] ;
-203 -> 204 ;
-205 [label="gini = 0.0\nsamples = 4\nvalue = [0, 10]\nclass = 1", fillcolor="#399de5ff"] ;
-203 -> 205 ;
-206 [label="X <= 0.67\ngini = 0.5\nsamples = 2\nvalue = [2, 2]\nclass = 0", fillcolor="#e5813900"] ;
-198 -> 206 ;
-207 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-206 -> 207 ;
-208 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-206 -> 208 ;
-209 [label="X <= 0.85\ngini = 0.47\nsamples = 904\nvalue = [874, 529]\nclass = 0", fillcolor="#e5813965"] ;
-187 -> 209 ;
-210 [label="X <= 0.67\ngini = 0.47\nsamples = 884\nvalue = [863, 508]\nclass = 0", fillcolor="#e5813969"] ;
-209 -> 210 ;
-211 [label="gini = 0.0\nsamples = 8\nvalue = [16, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-210 -> 211 ;
-212 [label="X <= 0.67\ngini = 0.47\nsamples = 876\nvalue = [847, 508]\nclass = 0", fillcolor="#e5813966"] ;
-210 -> 212 ;
-213 [label="gini = 0.0\nsamples = 3\nvalue = [0, 7]\nclass = 1", fillcolor="#399de5ff"] ;
-212 -> 213 ;
-214 [label="X <= 0.68\ngini = 0.47\nsamples = 873\nvalue = [847, 501]\nclass = 0", fillcolor="#e5813968"] ;
-212 -> 214 ;
-215 [label="gini = 0.33\nsamples = 40\nvalue = [52, 14]\nclass = 0", fillcolor="#e58139ba"] ;
-214 -> 215 ;
-216 [label="gini = 0.47\nsamples = 833\nvalue = [795, 487]\nclass = 0", fillcolor="#e5813963"] ;
-214 -> 216 ;
-217 [label="X <= 0.85\ngini = 0.45\nsamples = 20\nvalue = [11, 21]\nclass = 1", fillcolor="#399de579"] ;
-209 -> 217 ;
-218 [label="gini = 0.0\nsamples = 3\nvalue = [0, 7]\nclass = 1", fillcolor="#399de5ff"] ;
-217 -> 218 ;
-219 [label="X <= 0.86\ngini = 0.49\nsamples = 17\nvalue = [11, 14]\nclass = 1", fillcolor="#399de537"] ;
-217 -> 219 ;
-220 [label="X <= 0.86\ngini = 0.5\nsamples = 15\nvalue = [11, 11]\nclass = 0", fillcolor="#e5813900"] ;
-219 -> 220 ;
-221 [label="gini = 0.5\nsamples = 14\nvalue = [9, 11]\nclass = 1", fillcolor="#399de52e"] ;
-220 -> 221 ;
-222 [label="gini = 0.0\nsamples = 1\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-220 -> 222 ;
-223 [label="gini = 0.0\nsamples = 2\nvalue = [0, 3]\nclass = 1", fillcolor="#399de5ff"] ;
-219 -> 223 ;
-224 [label="X <= 1.56\ngini = 0.31\nsamples = 2431\nvalue = [3089, 734]\nclass = 0", fillcolor="#e58139c2"] ;
-154 -> 224 ;
-225 [label="X <= 1.08\ngini = 0.35\nsamples = 1849\nvalue = [2240, 663]\nclass = 0", fillcolor="#e58139b4"] ;
-224 -> 225 ;
-226 [label="X <= 1.06\ngini = 0.4\nsamples = 824\nvalue = [942, 359]\nclass = 0", fillcolor="#e581399e"] ;
-225 -> 226 ;
-227 [label="X <= 0.99\ngini = 0.39\nsamples = 756\nvalue = [877, 318]\nclass = 0", fillcolor="#e58139a3"] ;
-226 -> 227 ;
-228 [label="X <= 0.99\ngini = 0.42\nsamples = 510\nvalue = [573, 241]\nclass = 0", fillcolor="#e5813994"] ;
-227 -> 228 ;
-229 [label="X <= 0.86\ngini = 0.41\nsamples = 508\nvalue = [573, 236]\nclass = 0", fillcolor="#e5813996"] ;
-228 -> 229 ;
-230 [label="gini = 0.0\nsamples = 12\nvalue = [18, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-229 -> 230 ;
-231 [label="gini = 0.42\nsamples = 496\nvalue = [555, 236]\nclass = 0", fillcolor="#e5813993"] ;
-229 -> 231 ;
-232 [label="gini = 0.0\nsamples = 2\nvalue = [0, 5]\nclass = 1", fillcolor="#399de5ff"] ;
-228 -> 232 ;
-233 [label="X <= 1.0\ngini = 0.32\nsamples = 246\nvalue = [304, 77]\nclass = 0", fillcolor="#e58139be"] ;
-227 -> 233 ;
-234 [label="X <= 0.99\ngini = 0.19\nsamples = 56\nvalue = [76, 9]\nclass = 0", fillcolor="#e58139e1"] ;
-233 -> 234 ;
-235 [label="gini = 0.31\nsamples = 29\nvalue = [34, 8]\nclass = 0", fillcolor="#e58139c3"] ;
-234 -> 235 ;
-236 [label="gini = 0.05\nsamples = 27\nvalue = [42, 1]\nclass = 0", fillcolor="#e58139f9"] ;
-234 -> 236 ;
-237 [label="X <= 1.05\ngini = 0.35\nsamples = 190\nvalue = [228, 68]\nclass = 0", fillcolor="#e58139b3"] ;
-233 -> 237 ;
-238 [label="gini = 0.38\nsamples = 168\nvalue = [193, 66]\nclass = 0", fillcolor="#e58139a8"] ;
-237 -> 238 ;
-239 [label="gini = 0.1\nsamples = 22\nvalue = [35, 2]\nclass = 0", fillcolor="#e58139f0"] ;
-237 -> 239 ;
-240 [label="X <= 1.06\ngini = 0.47\nsamples = 68\nvalue = [65, 41]\nclass = 0", fillcolor="#e581395e"] ;
-226 -> 240 ;
-241 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-240 -> 241 ;
-242 [label="X <= 1.06\ngini = 0.47\nsamples = 67\nvalue = [65, 39]\nclass = 0", fillcolor="#e5813966"] ;
-240 -> 242 ;
-243 [label="gini = 0.0\nsamples = 1\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-242 -> 243 ;
-244 [label="X <= 1.06\ngini = 0.47\nsamples = 66\nvalue = [62, 39]\nclass = 0", fillcolor="#e581395f"] ;
-242 -> 244 ;
-245 [label="gini = 0.47\nsamples = 10\nvalue = [5, 8]\nclass = 1", fillcolor="#399de560"] ;
-244 -> 245 ;
-246 [label="gini = 0.46\nsamples = 56\nvalue = [57, 31]\nclass = 0", fillcolor="#e5813974"] ;
-244 -> 246 ;
-247 [label="X <= 1.51\ngini = 0.31\nsamples = 1025\nvalue = [1298, 304]\nclass = 0", fillcolor="#e58139c3"] ;
-225 -> 247 ;
-248 [label="X <= 1.33\ngini = 0.3\nsamples = 966\nvalue = [1241, 273]\nclass = 0", fillcolor="#e58139c7"] ;
-247 -> 248 ;
-249 [label="X <= 1.32\ngini = 0.32\nsamples = 654\nvalue = [814, 204]\nclass = 0", fillcolor="#e58139bf"] ;
-248 -> 249 ;
-250 [label="X <= 1.09\ngini = 0.31\nsamples = 637\nvalue = [798, 192]\nclass = 0", fillcolor="#e58139c2"] ;
-249 -> 250 ;
-251 [label="gini = 0.13\nsamples = 39\nvalue = [51, 4]\nclass = 0", fillcolor="#e58139eb"] ;
-250 -> 251 ;
-252 [label="gini = 0.32\nsamples = 598\nvalue = [747, 188]\nclass = 0", fillcolor="#e58139bf"] ;
-250 -> 252 ;
-253 [label="X <= 1.32\ngini = 0.49\nsamples = 17\nvalue = [16, 12]\nclass = 0", fillcolor="#e5813940"] ;
-249 -> 253 ;
-254 [label="gini = 0.0\nsamples = 2\nvalue = [0, 5]\nclass = 1", fillcolor="#399de5ff"] ;
-253 -> 254 ;
-255 [label="gini = 0.42\nsamples = 15\nvalue = [16, 7]\nclass = 0", fillcolor="#e581398f"] ;
-253 -> 255 ;
-256 [label="X <= 1.37\ngini = 0.24\nsamples = 312\nvalue = [427, 69]\nclass = 0", fillcolor="#e58139d6"] ;
-248 -> 256 ;
-257 [label="X <= 1.34\ngini = 0.12\nsamples = 80\nvalue = [121, 8]\nclass = 0", fillcolor="#e58139ee"] ;
-256 -> 257 ;
-258 [label="gini = 0.28\nsamples = 17\nvalue = [20, 4]\nclass = 0", fillcolor="#e58139cc"] ;
-257 -> 258 ;
-259 [label="gini = 0.07\nsamples = 63\nvalue = [101, 4]\nclass = 0", fillcolor="#e58139f5"] ;
-257 -> 259 ;
-260 [label="X <= 1.37\ngini = 0.28\nsamples = 232\nvalue = [306, 61]\nclass = 0", fillcolor="#e58139cc"] ;
-256 -> 260 ;
-261 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-260 -> 261 ;
-262 [label="gini = 0.27\nsamples = 231\nvalue = [306, 59]\nclass = 0", fillcolor="#e58139ce"] ;
-260 -> 262 ;
-263 [label="X <= 1.52\ngini = 0.46\nsamples = 59\nvalue = [57, 31]\nclass = 0", fillcolor="#e5813974"] ;
-247 -> 263 ;
-264 [label="gini = 0.0\nsamples = 2\nvalue = [0, 6]\nclass = 1", fillcolor="#399de5ff"] ;
-263 -> 264 ;
-265 [label="X <= 1.56\ngini = 0.42\nsamples = 57\nvalue = [57, 25]\nclass = 0", fillcolor="#e581398f"] ;
-263 -> 265 ;
-266 [label="X <= 1.52\ngini = 0.4\nsamples = 55\nvalue = [57, 22]\nclass = 0", fillcolor="#e581399d"] ;
-265 -> 266 ;
-267 [label="gini = 0.0\nsamples = 5\nvalue = [7, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-266 -> 267 ;
-268 [label="gini = 0.42\nsamples = 50\nvalue = [50, 22]\nclass = 0", fillcolor="#e581398f"] ;
-266 -> 268 ;
-269 [label="gini = 0.0\nsamples = 2\nvalue = [0, 3]\nclass = 1", fillcolor="#399de5ff"] ;
-265 -> 269 ;
-270 [label="X <= 1.83\ngini = 0.14\nsamples = 582\nvalue = [849, 71]\nclass = 0", fillcolor="#e58139ea"] ;
-224 -> 270 ;
-271 [label="X <= 1.83\ngini = 0.2\nsamples = 304\nvalue = [426, 54]\nclass = 0", fillcolor="#e58139df"] ;
-270 -> 271 ;
-272 [label="X <= 1.63\ngini = 0.2\nsamples = 303\nvalue = [426, 53]\nclass = 0", fillcolor="#e58139df"] ;
-271 -> 272 ;
-273 [label="X <= 1.58\ngini = 0.09\nsamples = 92\nvalue = [133, 7]\nclass = 0", fillcolor="#e58139f2"] ;
-272 -> 273 ;
-274 [label="X <= 1.58\ngini = 0.23\nsamples = 22\nvalue = [33, 5]\nclass = 0", fillcolor="#e58139d8"] ;
-273 -> 274 ;
-275 [label="gini = 0.15\nsamples = 21\nvalue = [33, 3]\nclass = 0", fillcolor="#e58139e8"] ;
-274 -> 275 ;
-276 [label="gini = 0.0\nsamples = 1\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5ff"] ;
-274 -> 276 ;
-277 [label="X <= 1.6\ngini = 0.04\nsamples = 70\nvalue = [100, 2]\nclass = 0", fillcolor="#e58139fa"] ;
-273 -> 277 ;
-278 [label="gini = 0.11\nsamples = 25\nvalue = [32, 2]\nclass = 0", fillcolor="#e58139ef"] ;
-277 -> 278 ;
-279 [label="gini = 0.0\nsamples = 45\nvalue = [68, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-277 -> 279 ;
-280 [label="X <= 1.63\ngini = 0.23\nsamples = 211\nvalue = [293, 46]\nclass = 0", fillcolor="#e58139d7"] ;
-272 -> 280 ;
-281 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5ff"] ;
-280 -> 281 ;
-282 [label="X <= 1.66\ngini = 0.23\nsamples = 210\nvalue = [293, 45]\nclass = 0", fillcolor="#e58139d8"] ;
-280 -> 282 ;
-283 [label="gini = 0.35\nsamples = 33\nvalue = [45, 13]\nclass = 0", fillcolor="#e58139b5"] ;
-282 -> 283 ;
-284 [label="gini = 0.2\nsamples = 177\nvalue = [248, 32]\nclass = 0", fillcolor="#e58139de"] ;
-282 -> 284 ;
-285 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5ff"] ;
-271 -> 285 ;
-286 [label="X <= 2.08\ngini = 0.07\nsamples = 278\nvalue = [423, 17]\nclass = 0", fillcolor="#e58139f5"] ;
-270 -> 286 ;
-287 [label="X <= 1.95\ngini = 0.03\nsamples = 127\nvalue = [195, 3]\nclass = 0", fillcolor="#e58139fb"] ;
-286 -> 287 ;
-288 [label="gini = 0.0\nsamples = 64\nvalue = [92, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-287 -> 288 ;
-289 [label="X <= 1.95\ngini = 0.06\nsamples = 63\nvalue = [103, 3]\nclass = 0", fillcolor="#e58139f8"] ;
-287 -> 289 ;
-290 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5ff"] ;
-289 -> 290 ;
-291 [label="X <= 1.96\ngini = 0.04\nsamples = 62\nvalue = [103, 2]\nclass = 0", fillcolor="#e58139fa"] ;
-289 -> 291 ;
-292 [label="gini = 0.28\nsamples = 5\nvalue = [5, 1]\nclass = 0", fillcolor="#e58139cc"] ;
-291 -> 292 ;
-293 [label="gini = 0.02\nsamples = 57\nvalue = [98, 1]\nclass = 0", fillcolor="#e58139fc"] ;
-291 -> 293 ;
-294 [label="X <= 2.09\ngini = 0.11\nsamples = 151\nvalue = [228, 14]\nclass = 0", fillcolor="#e58139ef"] ;
-286 -> 294 ;
-295 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5ff"] ;
-294 -> 295 ;
-296 [label="X <= 2.31\ngini = 0.1\nsamples = 150\nvalue = [228, 13]\nclass = 0", fillcolor="#e58139f0"] ;
-294 -> 296 ;
-297 [label="X <= 2.3\ngini = 0.19\nsamples = 70\nvalue = [100, 12]\nclass = 0", fillcolor="#e58139e0"] ;
-296 -> 297 ;
-298 [label="gini = 0.07\nsamples = 68\nvalue = [100, 4]\nclass = 0", fillcolor="#e58139f5"] ;
-297 -> 298 ;
-299 [label="gini = 0.0\nsamples = 2\nvalue = [0, 8]\nclass = 1", fillcolor="#399de5ff"] ;
-297 -> 299 ;
-300 [label="X <= 2.55\ngini = 0.02\nsamples = 80\nvalue = [128, 1]\nclass = 0", fillcolor="#e58139fd"] ;
-296 -> 300 ;
-301 [label="gini = 0.03\nsamples = 41\nvalue = [63, 1]\nclass = 0", fillcolor="#e58139fb"] ;
-300 -> 301 ;
-302 [label="gini = 0.0\nsamples = 39\nvalue = [65, 0]\nclass = 0", fillcolor="#e58139ff"] ;
-300 -> 302 ;
-}
\ No newline at end of file
diff --git a/analysis_and_scripts/tree.png b/analysis_and_scripts/tree.png
deleted file mode 100644
index ebfc7534aaecc522bbd0dd5f4043c3c9be8cf6dd..0000000000000000000000000000000000000000
Binary files a/analysis_and_scripts/tree.png and /dev/null differ