diff --git a/paper/imputation.tex b/paper/imputation.tex index c236852280cb5fc82cdbb852acd3afe392342d3b..5ea43b965677b7bcd5d4de56d902cd2f1f913c85 100644 --- a/paper/imputation.tex +++ b/paper/imputation.tex @@ -137,8 +137,8 @@ Since the decision are ultimately based on the risk factors for behaviour, we mo \begin{equation} \prob{\decision_{\human} = 0~|~\leniencyValue_\human,\obsFeaturesValue, \unobservableValue} = \invlogit(\alpha_\human + \gamma_\obsFeaturesValue\obsFeaturesValue + \gamma_\unobservableValue \unobservableValue + \epsilon_\decisionValue) \label{eq:judgemodel} \end{equation}% -Note that index $j$ refers to decision maker $\human$. Parameter $\alpha_\human$ provides for the leniency of a decision maker by $\logit(\leniencyValue_\human)$. -Note that we are making the simplifying assumption that coefficients $\gamma$ are the same for all defendants, but decision makers are allowed to differ in intercept $\alpha_j \approx \logit(\leniencyValue_j)$ so as to model varying leniency levels among them. % (Eq. \ref{eq:leniencymodel}). +Intercept $\alpha_\human$ provides for the leniency of a decision maker $\human$ by $\logit(\leniencyValue_\human)$. +Note that we are making the simplifying assumption that coefficients $\gamma$ are the same for all defendants, but decision makers are allowed to differ in intercept $\alpha_\human \approx \logit(\leniencyValue_\human)$ so as to model varying leniency levels among them. % (Eq. \ref{eq:leniencymodel}). %The decision makers in the data differ from each other only by leniency. %\noindent @@ -219,7 +219,7 @@ We use prior distributions given in Appendix~X to ensure the identifiability of %\spara{Computing counterfactuals} For the model defined above, the counterfactual $\hat{Y}$ can be computed by the approach of Pearl. -For fully defined model (fixed parameters) $\hat{Y}$ can be determined by the following expression: +For fully defined model (fixed parameters) the counterfactual expectation can be determined by the following expression: %\begin{align} %\cfoutcome & = \int \prob{\outcome=1|\decision=1,\obsFeaturesValue,\unobservableValue} \prob{z|\leniency=\leniencyValue, \decision_{\human} =0, \obsFeaturesValue}\diff{\unobservableValue} %\end{align}