From 5857cc2cbc27a145e5760092832e7bf584de1e5f Mon Sep 17 00:00:00 2001 From: Michael Mathioudakis <mmathioudakis@gmail.com> Date: Wed, 29 May 2019 10:11:21 +0300 Subject: [PATCH] alternative empirical formula --- paper/sl.tex | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/paper/sl.tex b/paper/sl.tex index 51511af..d77c6c1 100755 --- a/paper/sl.tex +++ b/paper/sl.tex @@ -38,6 +38,7 @@ \newcommand{\ourtitle}{A Causal Approach for Selective Labels} \input{macros} +\usepackage{chato-notes} \title{\ourtitle} @@ -173,6 +174,14 @@ Alternatively, we can have an empirical measure \empiricalPerformance of perform \label{eqn:gp} \end{equation} +\note[MM]{ + Use the following for empirical performance? + \begin{equation} +\empiricalPerformance = \frac{1}{\datasize} \sum_{(\featuresValue, \outcomeValue)\in\dataset} \score{\featuresValue} \indicator{F(\featuresValue) < r} +\label{eqn:gp} +\end{equation} +} + \subsection{Comments} Roughly speaking, the above formulas should work well if `bail' cases (\decision = 1) cover well the area spanned by the observed features of defendants -- i.e., we do not have large areas of \features with no or too few bail cases. -- GitLab