diff --git a/paper/sl.tex b/paper/sl.tex index 51511afd85a215220a9f508ed13dcf0955893cb6..d77c6c139857cb94325ae69e48c39679a1e8a751 100755 --- a/paper/sl.tex +++ b/paper/sl.tex @@ -38,6 +38,7 @@ \newcommand{\ourtitle}{A Causal Approach for Selective Labels} \input{macros} +\usepackage{chato-notes} \title{\ourtitle} @@ -173,6 +174,14 @@ Alternatively, we can have an empirical measure \empiricalPerformance of perform \label{eqn:gp} \end{equation} +\note[MM]{ + Use the following for empirical performance? + \begin{equation} +\empiricalPerformance = \frac{1}{\datasize} \sum_{(\featuresValue, \outcomeValue)\in\dataset} \score{\featuresValue} \indicator{F(\featuresValue) < r} +\label{eqn:gp} +\end{equation} +} + \subsection{Comments} Roughly speaking, the above formulas should work well if `bail' cases (\decision = 1) cover well the area spanned by the observed features of defendants -- i.e., we do not have large areas of \features with no or too few bail cases.