diff --git a/Kandi.pdf b/Kandi.pdf index 661d9e394f5e6a459f91742cbe7edf1784c572f9..9503544e2ea040eea14b49af9f64e0b8cae65e8c 100644 Binary files a/Kandi.pdf and b/Kandi.pdf differ diff --git a/Kandi.synctex.gz b/Kandi.synctex.gz index 6eb2f692f28996592bcd0045aa66e9742749b315..3df2b871e8bb736662453ec4008bb27649947107 100644 Binary files a/Kandi.synctex.gz and b/Kandi.synctex.gz differ diff --git a/Kandi.tex b/Kandi.tex index f575705e23b4cadf23166aeab6d16078b7640987..0cdc83828db43f4f23d88667b12a760154db72a0 100644 --- a/Kandi.tex +++ b/Kandi.tex @@ -61,7 +61,7 @@ \newtheorem{kor}[equation]{Korollaari} \theoremstyle{definition} -\newmdtheoremenv[linewidth=1pt]{maar}[equation]{Määritelmä} +\newmdtheoremenv[linewidth=0pt]{maar}[equation]{Määritelmä} \newtheorem{konj}[equation]{Konjektuuri} \newtheorem{esim}[equation]{Esimerkki} @@ -100,7 +100,7 @@ Tämän tutkielman aikana on tullut esiin takuujärjestelmään liittyvät ongelmat ja sovellusalueen yhteiskunnallinen merkitys. Tutkielman teko on ollut minulle erityisen mielekässtä antoisan aiheen ja mieleisten yhteistyökumppanien vuoksi. Olen kirjoittanut tämän kandidaatintutkielman yhteistyössä Helsingin yliopiston tietojenkäsittelytieteen osaston apulaisprofessorin Michael Mathioudakiksen ja tohtoritutkijan Antti Hyttisen kanssa. He tarjosivat minulle aiheen ja merkittävää tukea sekä tärkeitä kommentteja tämän tutkielman kirjoittamisen aikana. -Tämän tutkielman on tarkastanut XYZ. Haluan kiittää kaikkia edellä mainittuja henkilöitä sekä ystäviäni ja perhettäni, jotka tukivat minua tämän tutkielman tekemisessä. +Tämän tutkielman on tarkastanut XYZ. %Haluan kiittää kaikkia edellä mainittuja henkilöitä sekä ystäviäni ja perhettäni, jotka tukivat minua tämän tutkielman tekemisessä. \bigskip @@ -153,11 +153,11 @@ Tämän tutkielman tavoitteena on luoda kausaalipäättelyn avulla algoritmi, jo \section{''Kausaalipäättely uutena paradigmana''}\label{para} -% miksi halutaan siirtyä (frekventistisen/bayes-ppäättelyn ongelmat), edut, esiintyminen, erot, käyttö +% miksi halutaan siirtyä (frekventistisen / bayes-päättelyn ongelmat), edut, esiintyminen, erot, käyttö -Kuten Pearl ja Mackenzie esittävät kirjassaan Miksi, ihmisillä on luontainen kausaalisen päättelyn taito \cite{miksi}. Tavalliset tilastollisen päättelyn menetelmät eivät tarjoa tapaa määritellä kausaalista yhteyttä: aineistosta voidaan päätellä erilaisia \emph{korrelaatioita}, mutta päättely \emph{A johtuu B:stä} vaatii uudenlaista lähestymistapaa. Käytännön tutkimuksessa kausaaliset yhteydet kiinnostavat erityisesti lääketieteen alalla. Kuten Kalisch toteaa, aiemmin kausaalisuuden päättely on perustunut korrelaatioiden havaitsemiseen. On hypotetisoitu, että biomarkkerin ja taudin samanaikainen ilmaantuminen viittaisi siihen, että markkeri aiheuttaa taudin. Voimmeko siis markkeria käsittelemällä vaikuttaa tautiin tai jopa parantaa se? \cite{kalisch14} +Kuten Pearl ja Mackenzie esittävät kirjassaan Miksi, ihmisillä on luontainen kausaalisen päättelyn taito \cite{miksi}. Tavalliset tilastollisen päättelyn menetelmät eivät tarjoa tapaa määritellä kausaalista yhteyttä: aineistosta voidaan päätellä erilaisia \emph{korrelaatioita}, mutta kausaalinen päättely \emph{A johtuu B:stä} vaatii uudenlaista lähestymistapaa. Käytännön tutkimuksessa kausaaliset yhteydet kiinnostavat erityisesti lääketieteen alalla \cite{pearl10}. Kuten Kalisch toteaa, aiemmin kausaalisuuden päättely on perustunut korrelaatioiden havaitsemiseen. On hypotetisoitu, että biomarkkerin ja taudin samanaikainen ilmaantuminen viittaisi siihen, että markkeri aiheuttaa taudin. Voimmeko siis markkeria käsittelemällä vaikuttaa tautiin tai jopa parantaa se? \cite{kalisch14} -Syy-seuraussuhteen matemaattinen määrittely vaatii uutta lähestymistä myös todennäköisyyslaskennan merkintöihin. Pearl käyttää alkuperäisessä, englanninkielisessä kirjallisuudessa merkintää 'do' ilmaisemaan interventiota. Merkinnällä halutaan erottaa tavanomainen ehdollinen todennäköisyys $\pr(Y|X=x)$ interventiosta, jossa asetamme muuttujan $X$ arvoon $x$: $\pr(Y|\text{do}(X=x))$. Kimmo Pietiläinen käyttää kirjan suomennoksessa do-operaattorista käännöstä \emph{tee}, mutta seuraan tässä tutkielmassa Pearlin merkintöjä, ellen erikseen muuta mainitse \cite{miksi}. Alalla käytetään myös muita, alaindekseillä rikastettuja merkintätapoja \cite{pearl10}. Esittelen käyttämäni merkinnät tarkemmin kappaleessa \ref{kausaalimerk}. +Syy-seuraussuhteen matemaattinen määrittely vaatii uutta lähestymistä myös todennäköisyyslaskennan merkintöihin. Pearl käyttää alkuperäisessä, englanninkielisessä kirjallisuudessa merkintää 'do' ilmaisemaan interventiota. Merkinnällä halutaan erottaa tavanomainen ehdollinen todennäköisyys $\pr(Y|X=x)$ interventiosta, jossa asetamme muuttujan $X$ arvoon $x$: $\pr(Y|\text{do}(X=x))$. Kimmo Pietiläinen käyttää kirjan suomennoksessa do-operaattorista käännöstä \emph{tee}, mutta seuraan tässä tutkielmassa Pearlin merkintöjä, ellen erikseen muuta mainitse \cite{miksi}. Alalla käytetään myös muita, alaindekseillä rikastettuja merkintätapoja \cite{pearl10}. Esittelen käyttämäni merkinnät tarkemmin kappaleessa \ref{kausaalimerk_laus}. Kausaalipäättelyssä mallit voidaan esittää graafeina, eli verkkoina. Verkoista voidaan suoraan lukea eri muuttujien relaatiot kausaalisuuden suuntien ja riippuvuuksien suhteen. @@ -165,13 +165,13 @@ Kausaalipäättelyssä mallit voidaan esittää graafeina, eli verkkoina. Verkoi \section{Valikoitumisharha -- seulotun aineiston ongelma}\label{sl} -Aineiston luova mekanismi on esitetty kuvassa \ref{valikoitumisharha} ja toimii siten, että aluksi jokin henkilö tai muu entiteetti saapuu päätöksentekijän eteen seulottavaksi. Päätöksentekijän tavoitteena on estää haitallinen tulos ($y=0$) pitäen samalla myönteisten päätösten ($t=1$) määrä mahdollisimman pienenä. Seuloja pyrkii siis antamaan kielteisen päätöksen kaikille niille, joilla epätoivottava tulos on todennäköisin. Päätöksen jälkeen henkilö siirtyy vaiheeseen, jossa Kohtalo määrittää hänelle tuloksen $y\in\{0, 1\}$. Kielteisen päätöksen saaneille tulos voidaan merkitä puuttuvaksi tai onnistuneeksi, koska haitallista tapahtumaa ei havaita. +Havaintoja voi puuttua erilaisissa tutkimuksissa useista eri syistä. Kyselytutkimuksissa vastauskatoa voi syntyä esimerkiksi vastaajan haluttomuudesta vastata kysymykseen tai yksinkertaisesti siitä syystä, että vastaajaa ei tavoiteta. Jos aineiston puuttuneisuusmekanismi on luonteeltaan täysin satunnainen, eli vastauksen puuttuneisuus ei liity millään tavalla mitattuihin muuttujiin, voidaan sanoa aineistoa puuttuvan \emph{täysin satunnaisesti}. Käänteisessä tapauksessa voidaan puhua \emph{ei-satunnaisesta puuttuvuudesta}. \cite{laaksonen13} -Aineiston generoivaa mekanismia voidaan havainnollistaa lääke- ja oikeustieteen alan esimerkeillä. Henkilöllä viitataan ensin mainitussa potilaaseen ja jälkimmäisessä epäiltyyn. Seuloja voi olla esimerkiksi lääkäri, joka päättää annetaanko potilaalle vahvempaa ja samalla kalliimpaa lääkettä, jolloin relapsia ei havaita. Oikeudellisessa asetelmassa seulojalla voidaan tarkoittaa tuomaria, joka päättää epäillyn vapauttamisesta takuita vastaan ilman pelkoa rikoksen uusimisesta. Molemmilla päättäjillä on selkeä kannustin estää haitalliset tulokset -- sairauskohtaukset tai rikokset -- pitäen samalla päätöksistä aiheutuvat rasitteet yhteiskunnalle ja yksilöiden elämille mahdollisimman pienenä. +Tässä tutkielmassa tarkasteltavassa asetelmassa havaintojen puuttuminen liittyy sekä havaittuihin että havaitsemattomiin muuttujiin. Puuttuneisuuden voidaan sanoa olevan \emph{satunnaista ehdollisesti}, koska aineistoa puuttuu vain yksilöiltä, joilla on korkea todennäköisyys haitalliseen tulokseen. (Erilaisia aineiston puuttuneisuusmekanismeja esitelllään laajemmin esimerkiksi Laaksosen kirjassa \emph{Surveymetodiikka}.) Puuttuneisuutta voidaan korjata imputoinnilla, jolla yritetään tehdä mahdollisimman hyvä arvaus puuttuvasta arvosta. Todistan tutkielmassani myöhemmin, että kausaalipäättelyä hyödyntämällä voimme estimoida havaitusta, valikoitumisharhaisesta aineistosta haluttuja tunnuslukuja ilman imputointia harhattomasti. \cite{laaksonen13} Englanninkielisessä kirjallisuudessa seulotun aineiston ongelmasta on alettu käyttää Lakkarajun esittämää termiä \emph{selective labels} \cite{lakkaraju17}. % se lähde, missä näin väitettiin -Havaintoja voi puuttua erilaisissa tutkimuksissa useista eri syistä. Kyselytutkimuksissa vastauskatoa voi syntyä esimerkiksi vastaajan haluttomuudesta vastata kysymykseen tai yksinkertaisesti siitä syystä, että vastaajaa ei tavoiteta. Jos aineiston puuttuneisuusmekanismi on luonteeltaan täysin satunnainen, eli vastauksen puuttuneisuus ei liity millään tavalla mitattuihin muuttujiin, voidaan sanoa aineistoa puuttuvan \emph{täysin satunnaisesti}. Käänteisessä tapauksessa voidaan puhua \emph{ei-satunnaisesta puuttuvuuudesta}. \cite{laaksonen13} +Aineiston luova mekanismi on esitetty kuvassa \ref{valikoitumisharha} ja toimii siten, että aluksi jokin henkilö tai muu entiteetti saapuu päätöksentekijän eteen seulottavaksi. Päätöksentekijän tavoitteena on estää haitallinen tulos ($y=0$) pitäen samalla myönteisten päätösten ($t=1$) määrä mahdollisimman pienenä. Seuloja pyrkii siis antamaan kielteisen päätöksen kaikille niille, joilla epäonnistuminen on todennäköisin. Päätöksen jälkeen Kohtalo määrittää havainnolle tuloksen $y\in\{0, 1\}$. Kielteisen päätöksen saaneille tulos voidaan merkitä puuttuvaksi tai onnistuneeksi, koska haitallista tapahtumaa ei havaita. -Tässä tutkielmassa tarkasteltavasssa asetelmassa havaintojen puuttuminen liittyy sekä havaittuihin että havaitsemattomiin muuttujiin. Puuttuneisuuden voidaan sanoa olevan \emph{satunnaista ehdollisesti}, koska aineistoa puuttuu vain yksilöiltä, joilla on korkea todennäköisyys haitalliseen tulokseen. (Erilaisia aineiston puuttuneisuusmekanismeja esitelllään laajemmin esimerkiksi Laaksosen kirjassa \emph{Surveymetodiikka}.) Puuttuneisuutta voidaan korvata imputoinnilla, jolla yritetään tehdä mahdollisimman hyvä arvaus puuttuvasta arvosta. Todistan tutkielmassani myöhemmin, että kausaalipäättelyä hyödyntämällä voimme estimoida havaitusta, valikoitumisharhaisesta aineistosta haluttuja tunnuslukuja ilman imputointia harhattomasti. \cite{laaksonen13} Englanninkielisessä kirjallisuudessa seulotun aineiston ongelmasta on alettu käyttää Lakkarajun esittämää termiä \emph{selective labels} \cite{lakkaraju17}. % se lähde, missä näin väitettiin +Aineiston generoivaa mekanismia voidaan havainnollistaa lääke- ja oikeustieteen alan esimerkeillä. Henkilö on ensin mainitussa potilas ja jälkimmäisessä epäilty. Seuloja voi olla esimerkiksi lääkäri, joka päättää annetaanko potilaalle vahvempaa ja samalla kalliimpaa lääkettä, jolloin relapsia ei havaita. Oikeudellisessa asetelmassa seulojalla voidaan tarkoittaa tuomaria, joka päättää epäillyn vapauttamisesta takuita vastaan ilman pelkoa rikoksen uusimisesta. Molemmilla päättäjillä on selkeä kannustin estää haitalliset tulokset -- sairauskohtaukset tai rikokset -- pitäen samalla päätöksistä aiheutuvat rasitteet yhteiskunnalle ja yksilöiden elämille mahdollisimman pienenä. Lisäksi erityisesti oikeudellisessa asetelmassa on selvää, kuinka takuukäsittelystä kielteisen tuloksen saaneet eivät voi syyllistyä uuteen rikokseen, joten heidän tulosmuuttujan arvo voidaan koodata joko onnistumiseksi tai havaitsemattomaksi. \begin{figure}%[H] \centering @@ -218,21 +218,21 @@ Tässä tutkielmassa tarkasteltavasssa asetelmassa havaintojen puuttuminen liitt %\section{Synteettinen}\label{synteettinen} -Synteettinen aineisto luotiin Lakkarajun selostamalla tavalla. Aineistoon simuloitiin kolme muuttujaa $X$, $Z$, ja $W$. Näistä muuttujista $X$ vastaa informaatiota, joka on sekä mallin että päätöksentekijän havaittavissa. Käytännössä muuttuja $X$ vastaa kirjallista informaatiota, joka on kirjattu erilaisiin pöytäkirjoihin tai rekistereihin. Muuttujalla $Z$ kuvataan tietoa, jonka vain päätöksentekijä voi havaita: kuten Lakkaraju havainnollistaa, tällaista voi olla oikeudessa esimerkiksi tieto siitä, onko vastaajalla perhettä mukana oikeussalissa. $W$ tuo malliin kohinaa. Muuttujalla esitämme aineistossa informaatiota, joka ei ole saatavilla päätöksentekijöille eikä mallille, mutta vaikuttaa silti epätoivottavan tuloksen riskiin. Aineistossa nämä ovat kaikki riippumattomia standardinormaalijakautuneita satunnaismuuttujia, eli $X, W, Z \sim N(0, 1) \independent$. \cite{lakkaraju17} +Synteettinen aineisto luotiin Lakkarajun selostamalla tavalla. Aineistoon simuloitiin kolme muuttujaa $X$, $Z$, ja $W$. Näistä muuttujista $X$ vastaa informaatiota, joka on sekä mallin että päätöksentekijän havaittavissa. Käytännössä muuttuja $X$ vastaa kirjallista informaatiota, joka on kirjattu erilaisiin pöytäkirjoihin tai rekistereihin. Muuttujalla $Z$ kuvataan tietoa, jonka vain päätöksentekijä voi havaita: kuten Lakkaraju havainnollistaa, tällaista voi olla oikeudessa esimerkiksi tieto siitä, onko vastaajalla perhettä mukana oikeussalissa. $W$ tuo malliin kohinaa. Muuttujalla esitämme aineistossa informaatiota, joka ei ole sacaatavilla päätöksentekijöille eikä mallille, mutta vaikuttaa silti epätoivottavan tuloksen riskiin. Aineistossa nämä ovat kaikki riippumattomia standardinormaalijakautuneita satunnaismuuttujia, eli $X, W, Z \sim N(0, 1) \independent$. \cite{lakkaraju17} Aineistossa jyvitämme jokaiselle $M=100$ päätöksentekijälle 500 arvioitavaa. Kaikille päättäjille arvotaan hyväksymisprosentti ottamalla arvoja tasajakaumasta suljetulta väliltä [0,1; 0,9] ja sitten pyöristämällä saadut arvot 10 desimaalin tarkkuuteen. Tulosmuuttuja Y määritetään ehdollisen todennäköisyyden \begin{equation} \label{y_ehd} \pr(Y=0|X, Z, W)=\dfrac{1}{1+\text{exp}\{-(\beta_XX+\beta_ZZ+\beta_WW)\}} \end{equation} -mukaisesti. Jos $\pr(Y=0|X, Z, W) \geq 0,5$, tulosmuuttujan arvoksi asetetaan 0 ja vastaavasti jos $\pr(Y=0|X, Z, W) < 0,5$ muuttujan arvoksi asetetaan 1. Lausekkeissa \ref{y_ehd} ja \ref{t_ehd} olevat kertoimet $\beta_X$, $\beta_Z$ ja $\beta_W$ on asetettu arvoihin 1, 1 ja 0,2 vastaavassa järjestyksessä. \cite{lakkaraju17} +mukaisesti. Jos $\pr(Y=0|X, Z, W) \geq 0,5$, tulosmuuttujan arvoksi asetetaan 0 ja vastaavasti jos $\pr(Y=0|X, Z, W) < 0,5$ muuttujan arvoksi asetetaan 1. Lausekkeissa \ref{y_ehd} ja \ref{t_ehd} olevat kertoimet $\beta_X$, $\beta_Z$ ja $\beta_W$ ovat 1, 1 ja 0,2 vastaavassa järjestyksessä. \cite{lakkaraju17} Päätösmuuttuja $T$ määritetään kaksivaiheisesti: ensin määritetään todennäköisyys kielteiselle päätökselle ja sitten muuttujan arvo asetetaan näiden todennäköisyyksien keskinäisen suuruuden mukaisesti. Muuttujan $T$ ehdollinen todennäköisyys \begin{equation} \label{t_ehd} \pr(T=0|X, Z)=\frac{1}{1+\text{exp}\{-(\beta_XX+\beta_ZZ)\}} + \epsilon, \end{equation} -missä $\epsilon \sim N(0, 0,1)$ vastaa pientä määrää kohinaa. Henkilölle $i$ annetaan kielteinen päätös, eli $T_i=0$, jos muuttujan $T$ ehdollinen todennäköisyys on päättäjän $j$ suurimman $(1-r)\cdot 100\%$ joukossa. Toisin sanoen tuomari $j$ antaa myönteisen päätöksen $r$ prosentille hänen arvioitavakseen annetuista henkilöistä, joilla on alin todennäköisyys kielteiseen päätökseen. \cite{lakkaraju17} +missä $\epsilon \sim N(0, 0,1)$ vastaa pientä määrää kohinaa. Henkilölle $i$ annetaan kielteinen päätös, eli $T_i=0$, jos ehdollinen todennäköisyys $\pr(T=0)$ on seulojan $j$ suurimman $(1-r)\cdot 100\%$ joukossa. Toisin sanoen seuloja $j$ antaa myönteisen päätöksen $r$ prosentille hänen arvioitavakseen annetuista henkilöistä, joilla on alin todennäköisyys kielteiseen päätökseen, oli se sitten rikoksen uusinta tai relapsi. \cite{lakkaraju17} -Kun aineisto saatiin simuloitua, se jaettiin koneoppimisen käytäntöjen mukaisesti kahteen yhtä suureen osaan, niin sanottuihin koulutus- ja testiaineistoihin. Lopuksi koulutusaineistoa muokattiin siten, että tulosmuuttujan arvo oli saatavissa vain yksilöille, joille oli annettu positiivinen päätös $(T=1)$. Kielteisen päätöksen saaneille tulosmuuttujan arvo asetettiin arvoon NA, kuten kuvassa \ref{valikoitumisharha}. Syntetisoidun aineiston keskeisimmät hajontaluvut on esitetty taulukossa \ref{synt_hl}. \cite{lakkaraju17} +Kun aineisto oli simuloitu, se jaettiin niin sanottuihin koulutus- ja testiaineistoihin. Lopuksi molempia aineistoja muokattiin siten, että tulosmuuttujan arvo oli saatavissa vain yksilöille, joille oli annettu positiivinen päätös $(T=1)$. Kielteisen päätöksen saaneille tulosmuuttujan arvo asetettiin arvoon NA, kuten kuvassa \ref{valikoitumisharha}. Syntetisoidun aineiston keskeisimmät hajontaluvut on esitetty taulukossa \ref{synt_hl}. \cite{lakkaraju17} \begin{table}[H] \centering @@ -241,7 +241,7 @@ Kun aineisto saatiin simuloitua, se jaettiin koneoppimisen käytäntöjen mukais Muuttuja & Keskiarvo & Keskihajonta & Minimi & 25\% & 50\% & 75\% & Maksimi \\ \hline acceptanceRate\_R & 0.48 & 0.23 & 0.10 & 0.26 & 0.47 & 0.65 & 0.89 \\ - X & -0.00 & 1.00 & -4.66 & -0.67 & -0.00 & 0.67 & 3.83 \\ + X & 0.00 & 1.00 & -4.66 & -0.67 & 0.00 & 0.67 & 3.83 \\ Z & 0.01 & 1.00 & -4.85 & -0.67 & 0.00 & 0.68 & 4.24 \\ W & 0.01 & 1.00 & -4.03 & -0.67 & 0.01 & 0.68 & 4.29 \\ result\_Y & 0.50 & 0.50 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ @@ -539,7 +539,7 @@ Mallit vaikutukset laskettiin Pythonilla versio 3.6. Syötteett sklinear mallli %%%%%%%%% %%%%%%%%% -\chapter{Diskussio}\label{diskussio} +\chapter{Johtopäätökset}\label{diskussio} - Jatkosuunnitelmat: tutkitaan beta zetan vaikutusta tuloksiin, kuinka hyvin estimoituu. Sovelletaan oikeaan data settiiin. Mielenkiintoiseksi on osoittautunut propublica julkaisun artikkelissa machine bias käyttämä COMPAS-aineisto. diff --git a/analysis_and_scripts/Analysis_07MAY2019_new.ipynb b/analysis_and_scripts/Analysis_07MAY2019_new.ipynb index 7b41b37cbb83876e54cb675b296e29f11648720c..ec0494b1acddd60f9da96cdd2e953277a7b2cdd6 100644 --- a/analysis_and_scripts/Analysis_07MAY2019_new.ipynb +++ b/analysis_and_scripts/Analysis_07MAY2019_new.ipynb @@ -54,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -120,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -158,20 +158,20 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>16884</td>\n", - " <td>6985</td>\n", - " <td>23869</td>\n", + " <td>16267</td>\n", + " <td>6842</td>\n", + " <td>23109</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>8128</td>\n", - " <td>18003</td>\n", - " <td>26131</td>\n", + " <td>8765</td>\n", + " <td>18126</td>\n", + " <td>26891</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", - " <td>25012</td>\n", - " <td>24988</td>\n", + " <td>25032</td>\n", + " <td>24968</td>\n", " <td>50000</td>\n", " </tr>\n", " </tbody>\n", @@ -181,12 +181,12 @@ "text/plain": [ "result_Y 0.0 1.0 All\n", "decision_T \n", - "0 16884 6985 23869\n", - "1 8128 18003 26131\n", - "All 25012 24988 50000" + "0 16267 6842 23109\n", + "1 8765 18126 26891\n", + "All 25032 24968 50000" ] }, - "execution_count": 193, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -264,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -308,11 +308,11 @@ " <tbody>\n", " <tr>\n", " <th>0.0</th>\n", - " <td>4082</td>\n", + " <td>4317</td>\n", " </tr>\n", " <tr>\n", " <th>1.0</th>\n", - " <td>8923</td>\n", + " <td>9047</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", @@ -321,11 +321,11 @@ "text/plain": [ "decision_T 1\n", "result_Y \n", - "0.0 4082\n", - "1.0 8923" + "0.0 4317\n", + "1.0 9047" ] }, - "execution_count": 194, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -378,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -424,20 +424,20 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>15659</td>\n", - " <td>8417</td>\n", - " <td>24076</td>\n", + " <td>15791</td>\n", + " <td>8833</td>\n", + " <td>24624</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>9426</td>\n", - " <td>16498</td>\n", - " <td>25924</td>\n", + " <td>9157</td>\n", + " <td>16219</td>\n", + " <td>25376</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", - " <td>25085</td>\n", - " <td>24915</td>\n", + " <td>24948</td>\n", + " <td>25052</td>\n", " <td>50000</td>\n", " </tr>\n", " </tbody>\n", @@ -447,9 +447,9 @@ "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", - "0 15659 8417 24076\n", - "1 9426 16498 25924\n", - "All 25085 24915 50000" + "0 15791 8833 24624\n", + "1 9157 16219 25376\n", + "All 24948 25052 50000" ] }, "metadata": {}, @@ -490,20 +490,20 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>7902</td>\n", - " <td>4220</td>\n", - " <td>12122</td>\n", + " <td>7960</td>\n", + " <td>4327</td>\n", + " <td>12287</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>4723</td>\n", - " <td>8155</td>\n", - " <td>12878</td>\n", + " <td>4634</td>\n", + " <td>8079</td>\n", + " <td>12713</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", - " <td>12625</td>\n", - " <td>12375</td>\n", + " <td>12594</td>\n", + " <td>12406</td>\n", " <td>25000</td>\n", " </tr>\n", " </tbody>\n", @@ -513,9 +513,9 @@ "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", - "0 7902 4220 12122\n", - "1 4723 8155 12878\n", - "All 12625 12375 25000" + "0 7960 4327 12287\n", + "1 4634 8079 12713\n", + "All 12594 12406 25000" ] }, "metadata": {}, @@ -556,20 +556,20 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>7757</td>\n", - " <td>4197</td>\n", - " <td>11954</td>\n", + " <td>7831</td>\n", + " <td>4506</td>\n", + " <td>12337</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>4703</td>\n", - " <td>8343</td>\n", - " <td>13046</td>\n", + " <td>4523</td>\n", + " <td>8140</td>\n", + " <td>12663</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", - " <td>12460</td>\n", - " <td>12540</td>\n", + " <td>12354</td>\n", + " <td>12646</td>\n", " <td>25000</td>\n", " </tr>\n", " </tbody>\n", @@ -579,9 +579,9 @@ "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", - "0 7757 4197 11954\n", - "1 4703 8343 13046\n", - "All 12460 12540 25000" + "0 7831 4506 12337\n", + "1 4523 8140 12663\n", + "All 12354 12646 25000" ] }, "metadata": {}, @@ -671,7 +671,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -729,25 +729,51 @@ "metadata": {}, "source": [ "### Causal algorithm\n", - "\n" + "\n", + "Generalized performance:\n", + "\n", + "$$\n", + "\\mathbf{gp} = \\sum_x f(x)\\delta(F(x) < r)P(X=x)\n", + "$$\n", + "\n", + "and empirical performance:\n", + "\n", + "$$\n", + "\\mathbf{ep} = \\dfrac{1}{n} \\sum_{(x, y) \\in \\mathcal{D}} \\delta(y=0) \\delta(F(x) < r)\n", + "$$\n", + "\n", + "where\n", + "\n", + "$$\n", + "F(x_0) = \\int P(x)~\\delta(P(Y=0|T=1, X=x) > P(Y=0|T=1, X=x_0)) ~ dx\n", + "$$\n", + "\n", + "and\n", + "\n", + "$$\n", + "f(x) = P(Y=0|T=1, X=x).\n", + "$$" ] }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ - "def f(x, model, class_value):\n", + "def getProbabilityForClass(x, model, class_value):\n", " '''\n", + " Function (wrapper) for obtaining the probability of a class given x and a \n", + " predictive model.\n", + " \n", " Parameters:\n", - " x = individual features\n", - " model = a trained sklearn predictive model. Predicts probabilities for given x.\n", - " class_value = the result (class) to predict (usually 0 or 1).\n", + " x = individual features, an array, shape (observations, features)\n", + " model = a trained sklearn model. Predicts probabilities for given x. Should\n", + " accept input of size (observations, features)\n", + " class_value = the resulting class to predict (usually 0 or 1).\n", " \n", " Returns:\n", - " The probabilities (as vector) of class value (class_value) given \n", - " individual features (x) and the trained, predictive model (model).\n", + " The probabilities of given class label for each x.\n", " '''\n", " if x.ndim == 1:\n", " # if x is vector, transform to column matrix.\n", @@ -755,7 +781,37 @@ " else:\n", " f_values = model.predict_proba(x)\n", "\n", - " return f_values[:, model.classes_ == class_value].flatten()" + " # Get correct column of predicted class, remove extra dimensions and return.\n", + " return f_values[:, model.classes_ == class_value].flatten()\n", + "\n", + "def cdf(x_0, model, class_value):\n", + " '''\n", + " Cumulative distribution function as described above.\n", + " \n", + " '''\n", + " prediction = lambda x: getProbabilityForClass(np.array([x]).reshape(-1,1), model, class_value)\n", + " \n", + " prediction_x_0 = prediction(x_0)\n", + " \n", + " results = np.zeros(x_0.shape[0])\n", + " \n", + " x_values = np.linspace(-10, 10, 50000)\n", + " \n", + " for i in range(x_0.shape[0]):\n", + " results[i] = si.simps(scs.norm.pdf(x_values) * (prediction(x_values) > prediction_x_0[i]), x=x_values)\n", + " \n", + " return results\n", + "\n", + "#%timeit cdf(np.ones(1), logreg, 0)\n", + "#%timeit cdf(np.ones(10), logreg, 0)\n", + "#%timeit cdf(np.ones(100), logreg, 0)\n", + "#\n", + "#x_values = np.linspace(-10, 10, 1000)\n", + "#\n", + "#print(getProbabilityForClass(s_train.X.head(1), logreg, 0))\n", + "#\n", + "#plt.plot(x_values, getProbabilityForClass(x_values, logreg, 0))\n", + "#plt.show()" ] }, { @@ -775,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -803,7 +859,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 104, "metadata": {}, "outputs": [], "source": [ @@ -826,12 +882,14 @@ }, { "cell_type": "code", - "execution_count": 200, - "metadata": {}, + "execution_count": 105, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAH/CAYAAABD8tytAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XlcVNX7wPHPAdndUFRcEnfMJc0wcQFxxS3TzC2X7Jdmu0umqaWg4pZb2lcrLddSy0pNy8oSV8xIrdwzFfddAxRE4Pz+uDMjAwMMyqY+79drXjrnnnvuc++ZqXk8556rtNYIIYQQQgghhMh+DnkdgBBCCCGEEEI8qCThEkIIIYQQQogcIgmXEEIIIYQQQuQQSbiEEEIIIYQQIodIwiWEEEIIIYQQOUQSLiGEEEIIIYTIIZJwCSFEJpRSE5RSWinVJEVZS1PZu3kZmxBCCCHyN0m4hBAPBKVUBVMClN7rel7H+KB4mJNNpdSPpnPfm9exZKeHuU+zg1Jqm1IqMa/jEELkTwXyOgAhhMhmh4EVNsrj76HNWcAyIOoe2hD3OaVUOaAloIE6SqnHtdZ78jgsIYQQ+ZwkXEKIB80hrXVIdjaotb4MXM7ONsV9qR/GzJDpwFvA/wFv5GVAQggh8j+ZUiiEeOgopVyUUoOUUhuVUmeUUglKqbNKqWVKqco26qe5hyuddquY6i2wd5tS6rRS6qhSqrhS6hOl1DmlVHKq+8WqKqUWp4j1lFLqQ6WUl53nW8B07I1KKR+l1Aql1CVTWTlTnS5KqS+VUseUUvFKqWtKqZ+VUs1TXwvgZ9Pb8SmmbCamqlfaFONxpdQtpdR5pdQSpZSPHfEqpVSUKUandOr8a4rR2fTeTSn1jlJqn1IqVin1n1LqkFLqM6VUaXuukx36AdeA0cAx4DmllEsG59FSKbXedB7xSqkTSqmlSqmaqeoVVUqFKaUOKKXilFJXlVK/KaWGptPmD6Y68aZ9hiulCqSq19/UL72VUj2UUntNbZ9RSr2vlHJPUTfTPlVK1VdKzTUdL0YpdUMp9YdS6mUbMab8vJU2fa+uKKVuKqV+VUrVTed6VVNKLVRKnTR9Zs4ppTYopdqnqueglHpZKbXL1NexSqntSqmn0+sLG8eyfKeVUgOVUn+ZrucC0/ZySqnxSqnflVKXTfH8o5SaqpQqmPpcgcaAo7KexvxuqmN2U0ptNn0245RSu5VS/e2NWQhx/5IRLiHEw6gExijFZmAtEA1UB3oAbZVS9bTWuTl90BUIx/hHsK8AJyAGQBmJ1/eAC7AGOAE8CrwKtFZKPam1tvf+tBJABHAaWAp4ArdN2yYDsRjX5AJQGugE/KyUekZrvcZU71egPNAH2ARsMZUnmw+ilPI1nU9JYD2wyrRPTyBYKeWvtT6eXpBaa62U+gJ4B2htasNCKeUPVALma60TTMVfmOLdCvxoKqsAdAE+Ac5ldnEyopRqClQGPtZa31JKLQPGAE8DX9qoPxyYAvwHrDYd/xGMKYm/AftN9UqbYq5sKp8DuAG1Tec/I0Wbg03vL5ravAYEmo5TH+hqI/SeQAuMabYbgGBgGFBXKRWstU7Gjj4FBpr23QJ8BxQ2vZ+nlKqitR5m49jFgO2meBdj9Edn4FelVHWt9cUU59bM1K4rsA44CHgBDYEXMH0GlFIOGNe7C7APWITxvWkPrFZKvaG1/tBGLOkZDTQyHfsH4KypPAgYBPxiOgcN+ANvAwFKqQCtdaLpGoVijHaWA8alaNt8HVFKzQQGA8cx+iIeaAXMV0r5aq3fzkLMQoj7jdZaXvKSl7zu+xfGjzkNHAJCbLyqp6jrCpS20UZzIAn4KFX5BFPbTVKUme/leTdFWRVT2QIbbdvchpH8aIwf0M6ptrkAp4ArgG+qbT1N+82y49oUMNXVwIeAslGnoo2y0hg/QA+lKk9z7qm278L4Qdk4VXkTIBFYbUfMtUzH+MLGtjmmbYGm98VN77+0UdcN8MiGz9ci0zEam95XNb3/wUZdP4wf4kcB71TbnICSKd6vNbXzto12yqX4+2Oma7cdKJyiXAHzTG10SlHe31SWnOpz64CRXGigbxb61AdwsPG5+tkUV7lU5ebP24yUnzdgfOrzNfXReSAh9WfGtL1sir+/Ztr/g5TxAAWBSNPnztvWOaRq0/ydvgZUs7G9JOBuozzEtF+PVOXbgMR0jtXetM8qwCVFuXOKvnj8Xj+j8pKXvPLvS6YUCiEeNL7AWBuv6uYKWut4rXWaEQ+t9a8Yi260zJ1QrYzQd0ZrzJ7G+Ffz8Vrrwyk3aK2XA39ijMrZKw7jB7VOvUHbGHEyXaPVgK8yTT3MjFLqSYzRlo+01ttTtbcNY/SiQ8ppWbZorfcBfwEdlVIeKdovAHQHTmKMDIHxg9V8fqnbidNa37An9vQopQoBzwLHzeektf4HY0SqtVKqbKpdBmIkQu9orc+niue2No3smK7pU8DfGCOuqWM/neLty4Aj8JrWOjpFHQ2MMr219Vn43nTdzfWTMUZ1AHpndN6pYoky7ZuyLBGYb4oryMZuMaT9vC0y/emXouwZoBTwSerPjOk4Z1K8fQ3jfsphKePRWsdiJFEuGCOd9vpIa33ExjEvaq1v2qg/1/RnVv4b8RpG4jtQa30rxTESgPdMb7tnoT0hxH1GphQKIR40a7TWmf7gUkrVx5ge1BjjX7NT/vfQ1g+tnBSbOqEyaWD68zGlVIiN7S5AKaVUUW3ftMJ/06tnmto2CmOa2CMYo4AplcYYjcuMOeby6cRcCuMHehUgs6XVlwFTMX5Af24qa4UxNXKy+Ye81vqqUmoj0FcZ94itwUjG9mitk+yIOTPdAA9TPCktxTjf54GJKcrrm/78KZN2zUnHxtTJjA0NMEZfOyulbH2+40nxjwopbEtdoLX+SykVDdTJ5JgWSilXjCl23YBqGCNKKdm6T+6wjaTFnDwVTVFm1/VSShXGmE57HBitlEpdpZTpT1vXIT2RGRyvO/ASUNcUb8p/pM7KfYENMKaWvmEjZvM9gFmJWQhxn5GESwjx0DHdj2OeCvUjxtSvmxgjJf8HlMnlkC6mU17M9OcLmezvAdiTcNk8jlKqBPA7xnlvwbiX5T+Mf5VvDgRw54dhZswxdza90uORwTaz5Rj3lj3HnYSrl+nP1MlPZ4x7qnpy576nS0qpGcAUW6N6WWC+/qmPuRKYibGYRsqEqwhwI+VIVDqKmP48m2EtQzGMRHVMBnVsXdNL6dS9iDF6aq/VGMn4AYz75S5hfH8qYdz7Zevz8Z+NMvNCHI4pyuy9Dp6mPytijFqnx57Plll634mRGH16AeMeytPALYyk6z3s/z6AEbci+2IWQtxnJOESQjyMRmHcS9NEa70r5QalVC/bu9jFPErhaGNb4Qz2Sy8ZMP9gb6a1Dr/boOw4Tn+gLDBca/1+yg2m6XIBWTiGOeYXtNaLshxhClrr00qpLRjT9rwwkuJOwJ9a6/2p6sYCw4HhpkU7WgBvApOAGxj3fWWZUqoaxigowGEbIxQAVU2LKJinOF4HKiilCmeSdJmTZHsS/GiMBU48tNa3M6ucQol0yktyp68ypJRqiJFsrQOeTjkaZ/q+9MlCPLbYex3M8W7WWgfd4zHN0nwnlLHy5SiM+yfraq2vpthWljvTAO0VA1zTWle4hziFEPcxuYdLCPEwqgxcsJFslcFYfONumX84pr6nB+Dxu2jPHJ//3YVjN/NS+N+lLFRGdtHQRn3zND1biWV2x/w5xj8OdsNItmxN7bOitT6stZ4LtDEVdbyH45tHt34FPrXx+i5VPTBGC8FYYTEjkRg/+FuYVt/LyC6MfyR4wr6wLdI8ykAp9RjGPwD8maI4oz41fz7W25j62Dh15btg1/XSWl/DGI2urVIsa58DSmJMmdyRMtkySe98kzA90cDGtl0YU2xze+RcCJFPSMIlhHgYnQRKmEYvAOPZXBgr+N31yL/px9kJoKlK8bwppVQp7ixskBXfYEyzGqWU8ku9USnlrpRqkHa3LDtp+jP1j8lhQE3SMv8ItZVY7gB2A/2VUu1Sb1RKOalMnmeWylcYU7l6mV7JGFMNU7ZZSillKxEx39MTl6Kuu1KqulLqkcwOrJRyBPpiTIPrqbXun/qFsRT7NaBrioVAPjbFOVkp5Z2qzQJKqZJgWQziO4wVCG09cyvl9Z1ranNu6jZNdb2VUrbuA2qnrJ/p5gCEmd6mTFwz6lObnw+lVGPgRRv1s+pbjKl7LymlGqXemCpRmYMxvfJDZeMZaEqpWsrO59NlwLxi4hOme9dSxhGWzj5XMX5T2bq3aw7GlMJPTfehpY65krLj+XRCiPuXTCkUQjyMPgSaARFKqZUYP2RbYvxg+huocQ9tzzK9diqlVmEsed0RYxGHSllpSGsdp5TqinEPyW9KqZ8w7qFxwriPpSnGPVcd7iFeMJ6R9DbGM5VaYCR55tUGvwdSJ04HMO596aWUijfVT9ZaT9Vaa6VUD4znOa03TQnci3GNfTCmJ17AWPY9U1rr/5RS6zHu0UoGwlOtWgfGIh+/K6X2mo51DmN6WmeMZGl2irqNMO7f+4XMV5oLNrWzRqd4ZlSq+G4ppZZjPBetK7BQa/2HUmoUxv1nh5RS32D8iC9rOuYkjM8gGKsP1gLeV0p1wficuGAkurUxJY1a6z1KqUEYy6EfUUp9j5HcF8NYoj4A47ldh1KF+APGs9RWmmJojTHauhHrhCvdPsVIovcAvU1Jxx8Yo14dMZa1fyaT65gh0+e8J8aUxS1KqXWmeIpjjJT+g7FKJBjXrRHGiGJzpdQmjM9TGYzEtQ7G5/byPcSTqJT6GHgD2GO61sUwVpQMx1jwJbVNGCOwXymlfsRI2LZorXdordcqpd7H+I4dNX2PT2OMpD2KsahGNyA3n/0nhMhNebUevbzkJS95ZeeLO8/hyvQZT6b6PTF+nN/E+CH6GcYPoDTP08HO53Cl2PYWcAzjR9cRjHuJzM9tsvUcrqOZxOqDMcJxDGO05yrGkukfAH52nKv5uUgbM6jzBEYSct30+sFUlubcTfWbmK7VDdP21NesBMYDeQ9ijDBFm/6+AOOetKz07TPcea7TCza2e2I8H2mrqS9vYYzKrALqp6pr7rd0r0WKul+R6vlW6dTzM9Xbmqq8DcaiLNcwVhE8DiwBHk1Vr5jpWv1jiv0KsBMYZONYjYGvuTMKcx7jYdbvYv0sLPNzuHpjLBe/1xTDWWAatp8xlW6fAt6m2M9hfGciTe3aeh5dup+3TLY9irHy4znTuZ3FSPjbpqqnMO4bCzd9VuMxkpUNGEvypzk3G8ey+blOsd3F9Jk6amr/KMaCJW624sd4ptZMjO9zYuprYqrTHuN7ddl0fmdM5zAUKJ6V74S85CWv++ultL6XhZuEEEIIkd8opfpjPCOrj9Y6w3vehBBC5Cy5h0sIIYQQQgghcogkXEIIIYQQQgiRQyThEkIIIYQQQogcIvdwCSGEEEIIIUQOkREuIYQQQgghhMgh8hwuG7y8vHSFChXyOgwAbty4gYeHR16HIVKRfsl/pE/yJ+mX/Ef6JH+Sfsl/pE/yp/zUL3/88cdlrXWJzOpJwmVDhQoViIyMzOswAAgPDycoKCivwxCpSL/kP9In+ZP0S/4jfZI/Sb/kP9In+VN+6hellF0PLJcphUIIIYQQQgiRQyThEkIIIYQQQogcIgmXEEIIIYQQQuQQSbiEEEIIIYQQIodIwiWEEEIIIYQQOUQSLiGEEEIIIYTIIbm+LLxS6hFgJtAKUMBGYLDW+mQW2xkJTAS2a62bpNrmAIwABgLewGFgnNb663s/A0N0dDQXL17k9u3b2dWkTUWKFOHgwYM5egyRddIv9nFycqJkyZIULlw4r0MRQgghhMgTuZpwKaXcgV+BW8DzgAYmAJuUUo9prW/Y2U4lYDRwMZ0q44Fhpjp/AD2Ar5RSHbTW39/bWRjJ1oULFyhbtixubm4ope61yXTFxMRQqFChHGtf3B3pl8xprYmLi+PMmTMAknQJIYQQ4qGU2yNcA4BKgK/W+iiAUuov4B+M0agZdrYzD/gc8CXVOSilSmIkW5O11tNMxZuUUlWAycA9J1wXL16kbNmyuLu732tTQjywlFK4u7tTtmxZzp49KwmXEEIIIR5KuX0PV0dgpznZAtBaHwe2A0/b04BS6jmgHjAynSrBgDOwLFX5MqC2UqpiVoNO7fbt27i5ud1rM0I8FNzc3HJ86q0QQgghRH6V2wlXTWCfjfL9QI3MdlZKeWLc/zVca301g2PcAo6mKt9v+jPT49gjJ6cRCvEgke+KEEIIIR5muZ1wFQOu2Si/Cnjasf/7wBFgUSbHuK611jaOYd4uhBBCCCGEEDku11cpxFgoI7VM/wlcKRUA9AXq2UimUreV5WMopV4CXgIoVaoU4eHh6dYtUqQIMTExmYWcLZKSknLtWMJ+0i9ZEx8fn+F3KjvExsbm+DFE1km/5D/SJ/mT9Ev+I32SP92P/ZLbCdc1bI8weWJ75Culj4FPgdNKqaKmsgKAo+l9nNb6FqbRMqWUSpWYmUfQbE5F1Fp/AnwC4Ofnp4OCgtIN5ODBg7m2Ql1Or4Znz3QvHx8fTpw4kWMx2Oudd95hypQpNrc1aNCAnTt3ZvsxDx06xKOPPsry5cvp0aOHpTw7+2XVqlWcPXuWN99806p8w4YNtG3bloiICPz9/bPlWHnF1dWVxx9/PEePER4eTkbfW5E3pF/yH+mT/En6Jf+RPsmf7sd+ye2Eaz/GPVap1QAOZLLvo6bXyza2XQOGALNMx3ABKmN9H5f53q3MjvNQiYiIsHrfuXNn6tSpQ0hIiKXMxcUll6NKn6OjI9u2bUtTfj8v0b5q1SoiIyPTJFwNGzYkIiKCWrVq5VFkQgghhBDiXuV2wrUWmKaUqqS1PgaglKoANAbeyWTfZjbKZgGOwBvcSa42AAlALyA0Rd3ewD7TqojCJPXIiYuLC15eXnaPqNy6dSvXE7L7fbTHXkWKFHlozlUIIYQQ4kGV24tmzAdOAGuUUk8rpToCa4BTGFMGAVBK+SilEpVSY8xlWuvw1C/gOvCf6f1pU72LGCsZjlRKDVVKBSml5gHNgVG5dJ4PpB49elClShW2bNmCv78/bm5ujBkzhvj4eJRSTJ482ar+oUOHUEqxYsUKq/KNGzcSFBREwYIFKViwIO3bt+fgwYPZEuOSJUtQSnHkyJE025o1a2aVwMycORN/f388PT3x9PSkcePG/PTTT5kew9/fn86dO6cp9/b25uWX7wzAnjt3jgEDBlC1alXc3d0pX748ffv25fz585Y6PXr0YOXKlfz7778opVBKUb16dcCYUqiUspoqmZyczNSpU6latSrOzs6ULVuWQYMGcePGnWeGm/tjwoQJTJ8+HR8fHwoVKkSLFi04fPhwpucnhBBCCJEfnbh+goyXcsifcjXh0lrfwEh8jgBLMR5efBxorrWOTVFVYYxc3W18o4EJwCDgR4wRtG5a6+/usj1hcvnyZfr06UPfvn354YcfePbZZ7O0/zfffENwcDBeXl588cUXLF26lEuXLhEYGMi5c+fsaiMxMTHNKzk5GYAuXbrg4eHBsmXWj2E7deoUW7ZsoU+fPpayqKgoBg4cyNdff83y5cupVasWbdq0YdOmTVk6p/RcvnyZQoUKMWXKFDZs2MDkyZP5+++/CQwMtDyXasKECbRs2ZJy5coRERFBREQEK1euTLfNYcOGMWLECDp06MC6desYMmQI8+fPp2PHjmn+A7RgwQJ+/fVXPvzwQxYsWMCRI0fo3Lmz5VoJIYQQQtwP/rrwFz1W9aDSB5XYc31PXoeTZbm+SqHW+iTQJZM6J7Bj5UKtdVA65UkYCdeErEd4dwZvGMze83uzvd2kpCQcHR3tqlvXuy6z2szK9hhS+u+//1i5ciXBwcGWsvj4eLv2TU5OZtCgQQQHB7Nq1SpLedOmTalUqRIffPBBmlGy1JKSknByckpT/tZbbzFt2jQ8PDzo3Lkzy5YtIzQ01LIoyOeff46joyPdu3e37DNr1p1rlZycTMuWLTl48CAfffQRzZrZmsGaNbVr12bGjBmW94mJidSvX59q1aqxceNG2rZtS5UqVShevDguLi6ZTh88f/48c+bMYeDAgcycOROA1q1bU7RoUQYMGMDPP/9M69atLfU9PDxYu3at5fNz+/Zt+vTpw969e6lXr949n58QQgghRE767fRvhG0N47sj31HIuRAjGo+gYnLFvA4ry3J7SqG4z7m7u1slW1mxf/9+Tp8+Te/eva1GpwoXLkz9+vXZsmVLpm04Ojry+++/p3kNHjzYUqdPnz4cP36c7du3W8qWLVtGu3bt8PLyspT99ttvtG3blpIlS+Lo6IiTkxNbt27Ntml3Wmtmz55N7dq1KViwIE5OTlSrVg3gro6xY8cOEhMT6d27t1V5r169UEqxefNmq/Lg4GCrZL127doAnDx5MsvHFkIIIYTIDVprNp/YTKulrfD/1J/tp7YTGhRK1OAoJrWchKezPY/uzV/y4jlcD6ScGlnK6WXhs8rb2/uu97148SJgJAi9evVKs92cjGTGz88vw+0tW7akTJkyLF26lCZNmrB79272799PaOidNVSOHTtGy5YtqVevHnPnzqVcuXIUKFCAESNGcObMmSycVfqmTZvGiBEjGD58OC1atKBo0aLExcXRtGlTu0cFU7p61XiiQenSpa3K3dzcKFy4sGW7WbFi1k9gMC9ucjfHFkIIIYTISVprNhzdQNjWMLaf2k4pj1K83+p9Bj4xkEIu+ee38N2QhEtkia3ndjk5OeHo6EhCQoJV+ZUrV6zeFy9eHIDp06cTGBiYph1XV9dsidHBwYHnnnuOTz/9lNmzZ7Ns2TI8PT3p0KGDpc769euJjY3l66+/thr1io2NtdVkmjjN92CZJScnc/36dauyFStW0K5dO6tpkveyOIg5gTp//jyVK1e2lMfFxREdHW25vkIIIYQQ94tknczqQ6sJ2xrG7nO7eaTwI3zY9kP+7/H/w83JLa/DyxaScIl75ujoSNmyZdm3b59V+fr1663e165dmzJlynDw4EGGDh2aozH17duXadOmsWbNGpYvX063bt2slq+/efMmAAUK3PkK7Nu3j8jISKpWrZph2z4+Pvz0009W99dt3LiRW7duWdW7efNmmvvNFi5cmKY9FxcX4uLiMj2nRo0aUaBAAVasWEHjxo0t5V988QVaa5o2bZppG0IIIYQQ+UFiciIr961k4raJHLh0gCrFqvBpx0/p/VhvnB2d8zq8bCUJl8gWPXr0YMaMGUyZMgU/Pz82bdrEV199ZVXH0dGRDz/8kK5du3Lz5k26dOlC8eLFOX/+PNu3b6datWq8/vrrmR4r5TLpZk5OTjzxxBOW97Vr16ZOnToMHTqU8+fPW61OCMZiE6NGjaJ3794MGjSI06dPM3bsWMqXL2/XuS5ZsoT+/fvTq1cvjh49yuzZs/Hw8LCq16ZNG+bMmcPUqVOpV68eP/74I6tXr07TXo0aNViyZAmffvopjz32GO7u7tSsmfb54N7e3rzxxhvMmjULV1dXWrduzV9//cWYMWNo3rw5LVu2zDR2IYQQQoi8lJCUwJI/lzB522T+vfYvtUrW4otnvqBrza4UcHgwU5MH86xErhs7diwxMTHMnDmTmzdv8tRTT7Fo0SKaNGliVa9z585s2rSJiRMn8uKLLxIXF0fp0qVp2LBhmsUgbElKSqJhw4ZpyosXL87ly5etyvr06cOwYcOoVKmS1YgQwOOPP87ixYsZN24cTz31FFWrVmXmzJl89dVX7N2b8WqTbdu2ZerUqXz00UesWLECPz8/li9fnmYxkfHjxxMbG8v777/PrVu3aN68OevXr8fX19eq3iuvvEJkZCRvvfUW//33H76+vhw6dMjmsadNm4a3tzfz58/ngw8+wMvLi/79+zNx4kSb0z2FEEIIIfKDuNtxLNi9gKk7pnI6+jR+Zfz4tvW3dPTtiIN6sNfxU/fjw8Nymp+fn46MjEx3+8GDB3n00UdzJZb8tmiGMEi/ZE1ufGfCw8MJCgrK0WOIrJN+yX+kT/In6Zf8R/oke8TcimFe5DymR0zn4o2LBJQPYHTAaFpXbn1X/1icn/pFKfWH1jrj1dyQES4hhBBCCCFENrsad5XZv81m9m+zuRZ/jeDKwYwOGE2AT0Beh5brJOESQgghhBBCZIsLsReYETGDuZFziU2IpVP1ToxqMor6ZevndWh5RhIuIYQQQgghxD059d8p3t/xPvN3zychKYHuNbszsslIapeqndeh5TlJuIQQQgghhBB35ejVo0zeNpklfy5Bo+n7WF/eafIOVYtn/Jidh4kkXEIIIYQQQogs2X9xPxO3TWTFvhU4OTjx0hMv8Xajt/Ep6pPXoeU7knAJIYQQQggh7PLH2T8I2xrGt4e+xcPJg6H+QxnacCilC5XO69DyLUm4hBBCCCGEEBnadnIbYVvD2HB0A0VdizImcAxvNniT4u7F8zq0fE8SLiGEEEIIIUQaWms2HttI2NYwNkdtpoR7CSa1mMSr9V+lsEvhvA7vviEJlxBCCCGEEMJCa813R74jbGsYu87sokyhMswKnsWAJwbg7uSe1+HddyThEkIIIYQQQpCUnMSqA6sI2xrG3xf/pmLRinzc4WOer/M8LgVc8jq8+5ZDXgcg8t6iRYtQSnH06NF7bisoKIgmTZpkQ1SGfv36UaFChWxrLyQkBKVUtrWXleP++uuvuX5cIYQQQojM3E66zaK9i6gxtwY9vu5BYnIiSzot4cgbR3jpiZck2bpHknAJkQtCQ0Ml4RJCCCFEvhKfGM+83+dRdU5VXljzAu5O7qzquop9r+6jT50+FHCQyXDZQa6iEEIIIYQQD5HYhFg+jvyY6RHTORd7joblGjK3/VzaVmmbJzOBHnQywiXs8vvvv/Pss89Srlw53Nzc8PX1ZdSoUcTFxdmsv2bNGmrVqoWLiwvVq1fnyy+/TFPnzz//pGPHjnh6euLm5kbjxo3ZunVrprHcvHmTESNGULFiRZydnalYsSJhYWEkJydb1duzZw8BAQG4urooUP6wAAAgAElEQVRStmxZxo8fj9barvO9ffs27777LhUqVMDZ2ZkKFSrw7rvvcvv2bUud8PBwlFKEh4db7WueonnixAkAy3+4wsLCUEqhlCIkJMRSf/PmzbRq1YoiRYrg4eFBnTp1+PTTT7MUy4kTJ1BK8dFHHzFy5Ei8vb0pVKgQvXv35ubNmxw9epTg4GAKFixIlSpVWLx4cZpztqc/fv/9d1q1akXx4sVxd3enUqVKvPrqq3ZdUyGEEELkrevx15mwZQIVZlVg2M/DqFGiBr/2/ZXt/7eddlXbSbKVQ2SES9jl5MmT1K1bl379+lGoUCH279/PuHHjOHbsGCtWrLCqe/ToUd58801CQkIoWbIk8+bNo0ePHpQoUYJmzZoBsHv3bgICAnj88ceZP38+7u7ufPTRR7Rs2ZIdO3bwxBNP2IwjMTGR4OBgDhw4wHvvvUft2rXZuXMn48eP5+rVq0yfPh2Ay5cv07x5c7y9vVm8eDEuLi68//77nDx50q7zff755/nyyy8ZNWoUTZo0ISIiggkTJnDs2DG++OKLLF27iIgIGjZsSL9+/Rg4cCAA5cqVA4zEtEuXLjRu3JiPP/4YLy8v9u/fT1RU1F3FMmnSJIKCgli8eDEHDhxg+PDhODg4sGfPHgYMGMCwYcOYN28eL7zwAn5+ftSsWdPu/oiNjSU4OJgnn3ySRYsWUahQIU6cOMGOHTuydD2EEEIIkbsu3bjErJ2z+PD3D4m+FU2Hah0YHTAa/3L+eR3aQ0ESrmwyePBg9u7dm+3tJiUl4ejoaFfdunXrMmvWrGyPAaBLly6Wv2utady4MYULF6Zv377873//o3jxOw+9u3DhAhEREfj7G1/iNm3aULNmTcaMGWMZMXn77bcpX748v/76K87OzgAEBwdTq1Ytxo8fz+rVq23GsXz5crZt28bmzZsJDAwEoEWLFoBxn9SIESMoWbIkM2fO5MaNG/z444+UL18egFatWuHj45Ppue7bt4/ly5czduxYy0hU69atcXR05L333uOdd96hYsWKdl8783UoW7as5e/m6zho0CDq1q3Lpk2bcHAwBpxbtmyZpVgee+wxS/3KlStbRq+Cg4PZunUrS5cuZenSpfTu3RsAPz8/1q5dy6pVqywJlz39cejQIa5du8bUqVOtjtmvXz+7r4UQQgghcs+Z6DNM2zGNT3Z/QtztOJ6t8SyjAkZR17tuXof2UJEphcIu0dHRjBgxgsqVK+Pi4oKTkxN9+vRBa80///xjVfeRRx6xSiwcHR3p2rUru3btIjk5mbi4ODZv3kzXrl1xcHAgMTGRxMREtNa0bNmSLVu2pBvHhg0b8PHxoVGjRpb9EhMTad26Nbdv32bnzp0AloTPnGwBeHh48NRTT2V6rubjmxMUM/P7zZs3Z9qGPQ4fPkxUVBT9+/e3JFv3Gkvbtm2t3levXh0wkiczT09PSpYsyalTpwDs7o+qVatStGhRBg4cyLJlyyz7CyGEECJ/OX7tOC+ve5lKsysxZ9ccnq3xLAdeO8CXXb+UZCsPyAhXNsmpkaWYmBgKFSqUI21nxQsvvMDGjRsZN24cdevWxcPDg127dvHaa68RHx9vVbdUqVJp9i9VqhQJCQlcunSJxMREkpKSGD9+POPHj7d5vOTkZJtJyMWLF4mKisLJycnmfleuXAHg3Llz1KpVy2Ycmbl69SoApUuXtir39va22n6vzLGapxdmRyyenp5W782jVbbKzf129epVu/qjSJEibNq0ifHjx/Pqq68SExNDzZo1CQ0NtRoBFUIIIUTeOHT5EJO2TeLzvz7H0cGRF+q+wIjGI6joaf/MHJH9JOESmYqPj2fNmjWEhIQwaNAgS/nff/9ts/6FCxdsljk7O1OiRAni4uJwcHDgtddeo2/fvjbbSG/Ep3jx4lSsWNHmIhyA5ZldpUuXTjeOzBQrVgyA8+fPU7lyZUv5+fPnLTEAuLq6ApCQkGC1vzmRyoyXlxcAZ86cuedY7kXRokXt7o+6devy9ddfk5iYSGRkJJMmTaJbt278+eefNhNcIYQQQuS8vef3MnHrRFYdWIVrAVfebPAmbzV8i7KFy+Z1aAJJuIQdbt26RVJSUppRpUWLFtmsf+rUKXbu3GmZVpiUlMRXX33Fk08+iYODAx4eHgQEBPDnn39Sr169dJMrW9q0acPXX39NwYIFLdPlbGnYsCHvv/8+p06d4pFHHgHgxo0bfPfdd5keo2nTpgCsWLGC0aNHW8o///xzAMu9Y+b7wfbt20fr1q0t9b7//vs0bTo7O6dZ0bFatWpUqFCBBQsW8NJLL9lcGcjeWO7F3fRHgQIF8Pf3Z/z48axdu5aDBw9KwiWEEELksp2ndxK2NYx1R9ZR2KUwI5uMZLD/YEp4lMjr0EQKknAJiw0bNlimqpkVKVKEVq1a4e/vz/Tp0yldujReXl589tln6Y7MlCpViu7duxMaGkqJEiWYN28eR44cYd68eZY6M2bMIDAwkODgYF588UVKly7N5cuX2b17N0lJSUyePNlm27169WLhwoW0aNGCt956izp16pCQkMC///7L2rVrWb16Ne7u7gwZMoS5c+fSunVrQkJCLKsUurm5ZXodatasSc+ePQkJCSExMZFGjRoRERHB+PHj6dmzJ4899hgxMTGULl2apk2bMmnSJLy8vChZsiTLli3j33//TdNmjRo1WL9+PW3atMHT05MyZcpQpkwZZs2axTPPPEPz5s15+eWXKVGiBAcPHuTixYuEhobaFUt2sKc/1q1bxyeffEKnTp2oWLEiN27cYPbs2RQqVIiGDRtmSxxCCCGEyJjWmvAT4YRtDeOX479Q3K0445uN5/UnX6eoa9G8Dk/YorWWV6rXE088oTNy4MCBDLdnp+jo6Bw/xsKFCzVg81WzZk2ttdbHjx/Xbdq00QULFtQlSpTQr732ml63bp0G9KZNmyxtNW3aVDdu3FivWbNG16xZUzs7O+tq1arpFStWpDnugQMHdPfu3XWJEiW0s7OzLlu2rH7qqaf0+vXrLXWef/557ePjY7VfXFycHjt2rPb19dXOzs7a09NT+/n56bFjx+rbt29b6v3xxx+6SZMm2sXFRZcpU0aPGzdOjxkzRhsf+4wlJCTo0aNH6/Lly+sCBQro8uXL69GjR+uEhASt9Z1+OXXqlO7QoYMuUqSILlWqlB45cqSeP3++BvTx48ct7W3btk3Xq1dPu7i4aECPHTvWsu2XX37RQUFB2sPDQ3t4eOjHHntMf/bZZ3bHYu4fQM+fP9/qPMaOHasBq+uitdY+Pj66V69eWeqPQ4cO6W7duukKFSpoFxcX7eXlpdu2bat37tyZ6fXMje9Mys+hyD+kX/If6ZP8Sfol/8lvfZKcnKzXH1mvG33aSBOC9p7mradtn6ZjbsXkdWi5Kj/1CxCp7cgtlLbzQbAPEz8/Px0ZGZnu9oMHD/Loo4/mSiz5ZdEMYU36JWty4zsTHh5OUFBQjh5DZJ30S/4jfZI/Sb/kP/mlT5J1Mt8e/JawrWHsOb+H8kXK807jd3jh8RdwLeCa1+HluvzSLwBKqT+01n6Z1ZMphUIIIYQQQuQzicmJLP97OZO2TeLg5YNULVaVhU8vpFftXjg52l6tWeRPknAJIYQQQgiRT9xKvMXiPxczZfsUjl07Ru2StVnRZQXP1ngWRwfHvA5P3AVJuIQQQgghhMhjN2/fZP4f83l/x/uciTnDk2WfZGbwTDpU64CDsn9FZ5H/SMIlhBBCCCFEHom+Fc3c3+cyI2IGl25eoqlPUxY+vZCWlVrafGSMuP9IwiWEEEIIIUQuu3LzCh/89gFzds3hevx12lRpw+iA0TQp3ySvQxPZTBIuIYQQQgghcsn52PNM3zGdeZHzuHH7Bp2rd2Z0wGieKPNEXocmcogkXEIIIYQQQuSwk/+dZOr2qSzYvYDbybfpUasHI5uMpFbJWnkdmshhknAJIYQQQgiRQ/658g+Tt01myV9LUCj61unLO03eoUqxKnkdmsglub7kiVLqEaXUKqXUf0qpaKXUN0qp8nbs56OUWqOUilJKxSmlLiulwpVSbW3U1em86ubMWQkhhBBCCHHHvov7eO7r56j+v+p8se8LXvF7hX/f/JcFHRdIsvWQydURLqWUO/ArcAt4HtDABGCTUuoxrfWNDHYvCFwG3gVOA4WBAcD3SqkuWutvUtVfBHycquzIPZ+EEEIIIYQQ6Yg8G0nY1jBWH1pNQeeCDGs4jKENh1KqYKm8Dk3kkdwe4RoAVAI6aa1Xa63XAB0BH2BgRjtqrfdrrV/UWi/VWm8y7dsJI/l6wcYuZ7TWO1O9bmbz+TwQFi1ahFKKo0ePptmWmJiIUoqQkJDcD+wBltPXNDw8nJCQEJKTk63KT5w4gVKKRYsW5dixhRBCiIfRlqgtBC8Lpv78+mw+sZmxTccSNTiKKa2mSLL1kMvthKsjsFNrbfllr7U+DmwHns5qY1rrROA/4Ha2RSjEAyA8PJzQ0NA0CVfp0qWJiIigffv2eRSZEEII8eDQWvPj0R8JXBhI00VN2Xt+L1NaTiFqcBQhQSEUcyuW1yGKfCC3F82oCayxUb4f6GpPA0opB4xE0QtjxKwaMMhG1VeUUm8DScBOYKzWeuvdBC3Eg8LFxQV/f/+8DkMIIYS4ryXrZNYeXkvY1jAiz0ZSrnA5ZreZzYv1XsTdyT2vwxP5TG4nXMWAazbKrwKedrYxFXjL9PdYoIfW+pdUdZYB64CzGNMV3wZ+VUq10lqH22pUKfUS8BJAqVKlCA+3WQ2AIkWKEBMTY2e49yYpKSnHjxUfHw9AbGxsmmMlJiYCcOvWLcu2iRMnMnnyZKKjo63qvvzyy2zbto19+/YBEBUVRe3atZk5cyanTp1i2bJl3Lx5k3bt2jF79mzOnTvHW2+9xW+//UbJkiUZPnw4vXr1srT377//MnnyZHbu3MmFCxfw9vamRYsWjBkzBk9PT6vjhoeHs3LlSoYPH87evXspXbo0b7zxBi+++GKm53/lyhUmTJjA999/z5UrV/Dx8eH111/nhReMmaqRkZE0b96clStX0ratsUaLuV+GDBnC6tWrOXLkCE5OTqxatYpFixaxf/9+4uPjqVy5Mq+88orVeZmlvKapr51Zu3btAPj+++8tfRUSEsKmTZs4efIkHh4e1KtXjwkTJlCtWjWr/gFwcnKytBUdHW3pk3nz5lnFtGLFCmbPns0///yDh4cHrVq1Yvz48Xh7e1vq1KpVC39/f9q0acPkyZM5ffo0vr6+TJ48mYYNG2Z4jePj4zP8TmWH2NjYHD+GyDrpl/xH+iR/kn7Jf2z1SZJOIvxSOJ+f/JzjN45TxrUMw6oNo3Wp1jjFObFr+668CfYhcj9+V/JiWXhto0xlYf9ZwArAG+gLfKGUelZrvc5yAK37pKi/VSm1BtiHsUCHzcd3a60/AT4B8PPz00FBQekGcPDgQQoVKpSFkO9eTExMjh/L1dUVADc3N9zc3Ky2JSUlAcbIiDkOFxcXgDRxOTk5oZSylBcsWBCAmTNnEhQUxJIlSzhw4ADDhw/HxcWFPXv2MGDAAN555x3mzZvHq6++SkBAADVr1gSMBKFixYr07NkTT09Pjh07xsSJE+nevTsRERFWx42JiWHAgAEMHjyY0NBQFi5cyJAhQ6hTpw7NmjVL99yjo6MJDg4mLi6O0NBQKlasyI8//siQIUNQSvHGG2/QrFkzfH19WbVqFd26dQOMfnFxceHbb7/lueeeo1gxY8rAuXPn6N69O1WqVMHBwYEtW7bwxhtvAEZSlVLKa5r62pk5OjpaXevk5GRu3brFmDFjKF26NFevXmXu3Lm0aNGCQ4cO4e3tzWuvvcalS5f49NNP2bZtm1Ub5j5xdXW1tPnJJ58wcOBAunfvzpQpUzh79iyjRo1i9+7d7N6927KPUoqdO3dy7NgxwsLCcHV15b333qNbt26cOHGCokWLpnudXV1defzxx9Pdnh3Cw8PJ6Hsr8ob0S/4jfZI/Sb/kPyn7JCEpgWV/LWPStkkcvXqUGiVqsKz1MrrX6k4BB3nKUm66H78ruf0JuYYxypWaJ7ZHvtLQWp/GWCgDYJ1SKhyYhjGild4+MUqp9UDmwx13a/Bg2Ls325t1S0oC0w/mTNWtC7Nm3fWxqlevftf7ZqRy5cosXrwYgODgYLZu3crSpUtZunQpvXv3BsDPz4+1a9eyatUqS8IVGBhIYGCgpZ1GjRpRpUoVAgIC2LNnj9UP+JiYGObOnWtJrgIDA/npp59Yvnx5hgnXBx98QFRUFH///TdVq1YFoGXLlly/fp3Q0FBeeeUVChQoQJ8+fZgwYQL//fcfRYoUAYxRp6tXr9Knz538ftSoUZa/JycnExQUxLlz55g3b16ahOtuFClShAULFljeJyUlERwcTKlSpVi+fDlDhgyhXLlylCtXDoAGDRpQoED6X/OkpCTee+89goKCWLFihaW8evXqBAQE8Nlnn/Hmm29ayqOjo9m7d69lhNHb25v69evz/fff89xzz93z+QkhhBD5SdztOD7b8xlTtk/hVPQp6pWux9fdvqZT9U44qFx/upK4T+X2J2U/xn1cqdUADtxlm5GAPQ8zUNgeXRMm3377Lb///rvVa+fOnffcrnkanpk5sQsODraUeXp6UrJkSU6dOmUpS0hIYOLEiVSvXh03NzecnJwICAgA4PDhw1Zturu7WyVWLi4uVK1alZMnT2YY24YNG2jQoAEVK1YkMTHR8goODubKlSscOGB8LHv37s2tW7f46quvLPsuXboUX19fnnzySUvZP//8Q8+ePSlbtixOTk44OTmxYMGCNPHeiy+//JIGDRpQtGhRChQogIeHB7GxsXd1jMOHD3Px4sU0Ux6bNGmCj48Pmzdvtipv2LCh1XTO2rVrA2R6nYUQQoj7SWxCLCtPraTiBxV5/YfXKV+kPN8/9z2RAyJ55tFnJNkSWZLbI1xrgWlKqUpa62MASqkKQGPgnaw2ZlpAownwbyb1CgPtgd+yegy73cPIUkbicmFKoVmtWrWoUsU6dzXfw3UvUv5AB3B2dk633Hw/GcDIkSOZM2cOY8aMoVGjRhQqVIjTp0/zzDPPWNWz1RYYSVfqeqldvHiRo0ePWt3rlNKVK1cA8PHxITAwkKVLl9K/f3+uX7/O+vXree+99yx1Y2NjadWqFe7u7kyePJnKlSvj7OzMvHnz+OyzzzKMw17fffcd3bt35/nnn2fs2LF4eXnh4OBAu3btMj1XW65evQoYqxem5u3tbdluZp46aWaeXno3xxZCCCHym+hb0Xy460NmRMzgStwVWlZqycqAlQT6BKJUVu6AEeKO3E645gOvA2uUUu9ijDiNB06R4iHFSikfjCRqnNZ6nKksBGM64nbgPMY9XC8CTwLPpdh3GOALbOLOohnDTPXTrlwgssx8z1dCQoIleYI7yUl2WbFiBX379uXdd9+1lMXGxmbrMYoXL07JkiX54IMPbG739fW1/L1Pnz4MGDCAqKgo1qxZQ0JCgtXIUEREBFFRUWzdupUmTe7cKmhP0urq6kpCQkKa8itXrlC8eHHL+xUrVlClShWr52jdvn07TWJkL3MCdf78+TTbzp8/j5+f3121K4QQQtxPrsdfZ/Zvs5m1cxbX4q/Rvmp72hVsx6sdX83r0MQDIFfHQ7XWN4DmwBFgKfA5cBxorrVO+UtaAY6p4tsN1ALmAD9hrFYYDwRorVekqHcYY4ribOBnYIbpGE1kWfjs4ePjA2C1ot7169fZsWNHth7n5s2baUaeFi5cmK3HaNOmDYcOHaJ8+fL4+fmleaUcXezatSuurq58/vnnrFixgsDAQCpUqGAVL1ivDHjt2jXWrLH1JARrPj4+XLhwgcuXL1vK/v333zTTBG/evJnmnqylS5daFjcxM488xcXFZXhcX19fSpUqZXX/FsCOHTuIioqiadOmmcYuhBBC3K+uxl1l7KaxVJhVgbHhYwn0CSRyQCTrnltHjcI18jo88YDI9WVVtNYngS6Z1DlBqpULtdZrMaYkZtb+d8B39xCiyETbtm0pUqQIAwYMIDQ0lFu3bjF16lTLanbZpU2bNixevJjatWtTpUoVvvnmm2xP6oYMGcLKlSsJCAhgyJAh+Pr6cuPGDQ4dOsTWrVutkqXChQvTsWNH/ve//3Hu3Dnmz59v1VajRo0oXLgwr732GqGhody4cYMJEybg5eXFf//9l2EcXbt25b333qNXr14MHTqUy5cvM2nSJLy8vKzqtWnThtWrVzNkyBA6dOjAH3/8wezZs9OsEFijhvE/ienTp9O2bVscHR1tjlY5Ojoybtw4Bg4cSO/evenduzdnzpxh9OjRVK1a1bI0vhBCCPEguXzzMjMjZjJn1xxiEmLo8mgX3g18l7redfM6NPEAkjv+RJYVLVqUdevW4eDgQLdu3Rg5cqRl+fTsNGfOHDp27Mjo0aPp3r07MTExLF++PFuPUaRIEXbs2EG7du2YMmUKwcHB/N///R9r1qyxeT59+vTh7NmzuLi48Oyzz1ptK1GiBN9++y1JSUk8++yzjBw5kv79+1tWYsxIlSpVWLVqFWfOnKFTp05MnTqVGTNmWJ6tZTZgwABGjx7NypUreeqpp1i/fj3fffedZeVEsw4dOvDqq68yd+5cGjZsSP369dM99ksvvcTSpUv5+++/efrppxk+fDitWrVi8+bN2Z5ECyGEEHnp4o2LjPh5BBVmVWDStkm0rdqWv17+i1XdVkmyJXKM0loW7kvNz89PR0ZGprv94MGDPProo7kSS248h0tknfRL1uTGd+Z+fC7Hw0D6Jf+RPsmfpF9y1vnY80zbMY15kfOIT4ynR60ejA4YTY0S6U8blD7Jn/JTvyil/tBaZ3rDuzypTQghhBBCPJDOxpxl6vapfPzHxyQkJdD7sd6MajIKXy/fzHcWIptIwiWEEEIIIR4op6NPM3nbZBbsXkBiciJ96/RlVMAoqhSz59GtQmQvSbiEEEIIIcQDIep6FJO3TeazvZ+RrJPpV6cfIwNGUsmzUl6HJh5iknAJIYQQQoj72rFrx5i0dRKL/lyEQvHi4y/yTpN38Cnqk9ehCSEJlxBCCCGEuD8dvXqUiVsnsuTPJRRwKMDLT7zM8MbDeaTII3kdmhAWknAJIYQQQoj7yuHLhwnbGsbnf3+Os6Mzrz/5OsMbD6dMoTJ5HZoQaUjCJYQQQggh7gsHLh0gbGsYK/atwLWAK0P8hzCs0TC8C3rndWhCpEsSLiGEEEIIka/9feFvJmydwFf7v8LdyZ23G73N0IZDKelRMq9DEyJTknAJIYQQQoh8ae/5vYzfMp5vDn5DIedCjGwykiENh+Dl7pXXoQlhN0m4hBBCCCFEvvLH2T8Yv2U8aw6voYhLEcYEjmGQ/yCKuRXL69CEyDKHvA5A5B8RERF069aNMmXK4OzsTPHixWnVqhWLFy8mKSkpR44ZHh5OSEgIycnJOdJ+ZmbNmsU333yTpjwkJASlVB5ElFZQUBBBQUF5HYYQQgiR43ad2UWHLzrgN9+PLVFbGBc0jhODTxDaLFSSLXHfkoRLAEbi0bhxY65evcqUKVPYuHEjn332GdWqVeOVV15h3bp1OXLc8PBwQkND813C1b9/fyIiIvIgIiGEEOLhs+PUDtosa0ODBQ2IOB1BWPMwTgw+wXtN36Ooa9G8Dk+IeyJTCgVbtmxh6NChvP7668yePdtq29NPP83QoUO5ceNGHkV3x+3btylQoECujDyVK1eOcuXK5fhxhBBCiIfZ1qithG4O5Zfjv1DCvQRTWk7hFb9XKORSKK9DEyLbyAiXYPLkyRQrVoypU6fa3F65cmUee+wxy/tdu3bRsmVLChYsiIeHBy1atGDXrl1W+/Tr149y5cqxZ88eAgICcHd3p2rVqnz00UeWOiEhIYSGhgLg5OSEUsqSTJ04cQKlFHPnzmX48OGUKVMGFxcXrl+/zqVLlxg4cCDVqlXD3d2dRx55hOeee44zZ86kif3PP/+kc+fOFC9eHDc3N3x9fZk0aRIAFSpUICoqis8//9xy7H79+lliS53YRUdH8/rrr1OmTBm8vLzw9fVl5syZaK0tdcLDw1FKsXbtWl5//XW8vLwoUaIEvXv35vr16/Z2SaYOHz5M586dKVq0KG5ubvj7+7Nhw4Y09ZYvX0716tVxdXWldu3arF27VqYoCiGEyFNaazYd30Szxc0IXBTIvov7mNZqGscHHWd44+GSbIkHjoxwPeSSkpIIDw+nU6dOuLq6Zlr/r7/+omnTptSoUYNFixahlGLy5Mk0bdqUnTt3UqdOHUvd6OhonnvuOQYPHsyYMWNYuHAhr7zyCr6+vjRr1oz+/ftz+vRpPv30U7Zt24ajo2Oa44WFhVG/fn0++eQTkpKScHV15eTJk7i6ujJp0iRKlCjB2bNnmT59Oo0bN+bQoUOW89i1axdBQUFUqVKFmTNnUq5cOf755x/++usvAL799lvatWtHnTp1CAkJAaBEiRI2zzs5OZn27duze/duxo0bR+XKldm0aRNDhw7l0qVLTJw40ar+oEGD6NChA1988QWHDx9m+PDhODo6snjxYrv6JSNnz56lSZMmFCpUiA8//JAiRYrwv//9j/bt27Nu3Tratm0LwM8//0yvXr3o2LEj06dP5/LlywwePJj4+HiqVat2z3EIIYQQWaG15pfjvzBu8zi2ntxK6YKlmRU8iwFPDMDdyT2vwxMix0jClU0GD4a9e7O/3aQkN2zkITbVrQuzZmWt/cuXLxMXF4ePj49d9ceNG4eLiwu//PILRYsac6pbtWpFhQoVCA0NtbofKiYmhrlz59KsWTMAAgMD+emnn1i+fDnNmjWzmrbXoEEDChRI+3EsVaoU3377rdVok6+vLx988IHlfVJSEo0bN6Z8+fL88MMPdO7cGYBhw4ZRvNVAo8cAACAASURBVHhxdu7cibu78R/y5s2bW/Z7/PHHcXFxwcvLC39//wzP+/vvv2fbtm0sXLiQfv36ERMTQ6dOnbhx4wbTp09n6NCheHndWaI2MDCQOXPmANC6dWsOHz7MggULLEnqvZgxYwbXrl0jIiKCKlWqANCuXTtq1KjB6NGjLQnX2LFjqVGjhtX1q127Nk888YQkXEIIIXKN1pof//2RcZvHEXE6gnKFy/Fh2w95sd6LuBbI/B97hbjfyZRCkSVbtmyhQ4cOlmQLoHDhwnTs2JHNmzdb1XV3d7ckWwAuLi5UrVqVkydP2n28Tp062UxQ5s2bR506dShYsCAFChSgfPnygDHVDuDmzZts376dXr16WZKte7FlyxYcHBzo2bOnVXnv3r1JSEhIs8BG+/btrd7Xrl2bW7duceHChWyJxd/f35JsATg6OtKzZ0/27t1LdHQ0SUlJREZG0qVLF6vrV69ePSpWrHjPMQghhBCZ0Vqz7sg6GixoQNvP23Im5gzz2s/j6BtHee3J1yTZEg8NGeHKJlkdWbJXTEwchQrl3Fxm871NUVFRdtW/evUqpUuXTlPu7e3NtWvXrMo8PT3T1HNxcSE+Pt7u+Gwda86cObz55psMHTqU999/H09PT5KTk/H397e0fe3aNZKTk7Nt4YurV69SrFgxXFxcrMq9vb0t21MqVsx66Vrzflk594xiefzx/2fvvuNzvN4Hjn9OZBA7VmqEqlVbjVIjWlGjZlFUlRalateqPUoSxN57l1aNFv3SlhhBFS0tUVpiqyDIJsn5/XHIj9RISJ4743q/XnmJ+7mf+1xP7jzkyjnnuir857irqytaa4KCgggPD+fevXvkzp37P+flyZPnhWMQQgghnkRrzXd/fceY3WM4cuUIhbIVYkHjBXxY7kMc0zlaHZ4QNicJVxpnb29P7dq1+fHHH4mMjPxPQhGXi4sLV69e/c/xq1ev/ifJSAyPm91as2YNderUwcfHJ/bY2bNnHzkne/bs2NnZPbaQxvNwcXHh5s2b3L17F0fH///P4sHXIkeOHIkyTnxjedI9UErh4uKCs7MzDg4OXLt27T/n/fvvv7EzgkIIIURiidExbPDfwNjdYzn671Feyf4Ki5ss5oOyH+CQzsHq8ERKd+oUjBqFfevWVkeSYLKkUDB48GBu3LjBgAEDHvv42bNnYwtNuLu7s2XLFoKDg2MfDw4O5vvvv8fd3T3BYz9I8MLDw+P9nLCwMBwcHv2He8mSJY/83dnZmRo1arBy5cqnXtvJySleY7u7uxMTE8M333zzyPFVq1bh6Oj4zD1gielBgZKAgIDYY9HR0axdu5YKFSqQOXNm0qVLR6VKlfj2228fqaJ4+PDh/ySnQgghxIuIjonm6+NfU25uOVp+05LwqHCWN1vOyR4n+ajCR5JsiRdz+zb07w+lS8PmzWT++2+rI0owSbgEtWrVYvLkycycOZO6deuyatUq9uzZw3fffUfv3r0pXbp07A/pw4cPJzw8nDp16vDtt9+yfv16PDw8CAsLY8SIEQkeu2TJkgD4+Pjwyy+/cOjQoWc+p379+mzbto3x48fz008/MWTIENasWfOf8yZNmsSNGzeoVq0aK1asYOfOnSxatIiePXs+Mv6ePXvYvHkzhw4deiSJeViDBg2oUaMG3bp1Y+rUqezYsYO+ffuycOFCPv/880cKZsRXx44dn6uARt++fcmWLRt169Zl9erVbN68mcaNG3Pq1CnGjRsXe97o0aM5fvw4zZs3Z+vWrSxfvpxWrVrh6uqKnd2jb317e3s6deqU4FiEEEKkXdEx0az+YzVl5pSh9brW5u/vruZE9xO0L9ceeztZSCVeQHQ0LFwIRYvC5MnQoQOcPk1QxYpWR5ZgknAJAPr06cPevXvJli0b/fv356233qJjx474+/szb948GjduDEDZsmXx9fUlS5YsdOjQgfbt25MpUyZ27dr1SEn4+GrUqBHdu3dn9uzZVKtWjcqVKz/zOSNGjKBr165MmTKF5s2bc+zYMbZt2/af8ypXroyfnx8FChSgZ8+eNGzYkIkTJz6yr8vT05PixYvz3nvvUbly5djy8HHZ2dmxZcsWOnTogLe3N61atWLLli1Mnjz5kSQnIUJDQ59rP1XevHnZu3cvpUqV4tNPP6Vly5bcvHmTLVu2UL9+/djzHiTP/v7+NG/eHG9vb3x8fHB1dSVr1qyPXDM6Opro6Ojneh1CCCHSlqiYKJYfXU7J2SVpt74d6ezSsbblWv749A/almlLOrt4llcW4kl274ZKlaBLFyheHA4dggULIIXuQ1cPLzcSRqVKlfTTZlr8/f159dVXbRJLcHBwkhbNEM8nMe5Lvnz56N27NwMHDkykqJ7t4sWLFClShKFDhzJ8+HCbjWuL94yvr680dE6G5L4kP3JPkqeUcF/uRd9j5bGVjNszjn+C/qFcnnKMcB9BsxLNsFOp73f4KeGepDoBATBwIHzzDbi5wcSJ0KoVPLQiKDndF6XUYa11pWedJ3O9Qljg9OnTRERE0L179yQbIzw8nH79+uHh4UHOnDk5c+YMEyZMwNnZmc6dOyfZuEIIIVKXu9F3Wfb7MsbvHU/ArQBee+k1NrbeSJPiTV64t6QQAISGgpeXSbDSpYMxY8y+rQwZrI4sUUjCJYQFihYtyo0bN5J0jHTp0nH16lV69OjBjRs3yJgxIzVr1uSbb755bLl9IYQQ4mGRUZEs/m0xnns9uXDnAlXyVWFmg5k0LNpQEi2ROGJiYPVqGDwYLl2Cdu1M4pVIbX2SC0m4hEilHB0d2bBhg9VhCCGESGEioiJYeGQhXnu9uBR8iWr5q7Gg8QLefuVtSbRE4jl4EHr3hgMHoHJls4ywWjWro0oSknAJIYQQQgjC7oUx//B8JvhN4ErIFWq41WBps6XUebmOJFoi8Vy+DF98AcuXg6srLF0K7duDXerbB/iAJFxCCCGEEGlY6N1Q5hyaw8R9E7kWeo03C73J6harcS/oLomWSDwREaa8+/jxEBVlkq4vvoA0UBxOEi4hhBBCiDQoODKY2b/OZtL+SVwPu45HYQ9G1BpBzYI1rQ5NpCZaw/r1pghGQAC8+64pjlG4sNWR2YwkXEIIIYQQacjtiNvMPDiTyQcmczP8JvWL1Gd4reG8UeANq0MTqc3Ro2af1q5dULYs7NgBb75pdVQ2JwmXEEIIIUQacCviFtN/mc6UA1O4FXGLRsUaMbzWcKrkq2J1aCK1CQyEYcNg4ULInh3mzoXOnU3J9zRIEi4hhBBCiFTsZvhNph6YyrRfpnEn8g5NizdleK3hVMxb0erQRGpz9y7MnGn6aIWGQq9eMGKESbrSMEm4hBBCCCFSoeth15m8fzIzDs4g5G4ILV5twbBawyjvWt7q0ERqtHUr9O0Lp05BgwamQEaJElZHlSyk3vqLIsH279/Pe++9R968eXF0dCRHjhzUrVuXZcuWER0dbXV4TxUQEIBSiqVLlybaNcePH4+bmxv29vaUL2/+c7p69SpNmjTBzc0NpRRTp05NtPEApk6dyvr16xP1mkIIIdKWa6HXGPTjIApNLYTXXi/eKfoOx7odY9176yTZEonP398kWO+8A0rBli0m+ZJkK5bMcAnA/KDfr18/3nrrLby9vSlYsCBBQUFs376dTz/9lGzZstG0aVOrw7SZgwcPMnToUAYMGECzZs3IfL9k6ZgxY9i1axdz5syhcOHCFCpUKFHHnTp1KjVq1ODdd99N1OsKIYRI/a6GXGWi30TmHJpDZHQkbUq3YWjNoZTMVdLq0ERqFBQEo0fDrFmQMSNMmQKffQYODlZHluzYPOFSShUApgB1AQX8BPTRWp9/xvMKAtOB8kBuIBT4E/DWWv8Q59z0wFjgAyAb8DswSGu9O3FfTeqwe/du+vXrR48ePZg+ffojjzVt2pR+/foRGhpqUXTW8Pf3B6Bbt24Ufqhsqb+/P+XKlaNx48axSZgQQghhpcvBl/He6838I/O5G32XD8p+wJAaQyies7jVoYnUKCoKFiyA4cNN0vXJJ2bPVq5cVkeWbNl0SaFSyhnYAZQAOgDtgaLATqVUxmc8PRNwHRgGNAQ6ASHAVqVU3OmARUAXYATQCLgCbFNKyTz6Y3h5eeHi4sKECRMe+/grr7xC2bJlAQgMDKRr164UK1YMZ2dnChQowPvvv8+lS5ceeU7Hjh0fO/tTu3ZtateuHfv3kJAQevbsiZubG05OTuTJkwcPDw9OnjwZe87MmTOpVq0aLi4uZMuWjapVq7Jly5bnfr1Hjx6lSZMmZM+enQwZMlC9enX27NnzSIwdO3aMfe1KKTp27IhSCl9fX/bs2UOWLFlQShEQEADA2bNnadeuHbly5cLJyYny5cuzYcOGx47dvHlzcuTIQYYMGShevDienp4AFCpUiHPnzrFq1SqUUrHjCiGEEI9z4fYFemztQeFphZn16yzalm7LXz3+YlmzZZJsiaSxYwe89hp07w5lysCRIzBnjiRbz2DrGa4uQGGguNb6bwCl1DHgNNAVmPykJ2qtj2OSrFhKqS3AWeAjYP39Y+WA94GPtdZL7h/bBRwHxgBNEvclpWzR0dH4+vrSrFkz0qdP/8zzb968Sfr06fH09CRXrlxcvnwZHx8fqlevzsmTJ+N1jYf17duX7777jvHjx1O0aFFu3LiBn58ft27dij0nICCAzp07U6hQIaKiovj+++9p1KgRW7dupUGDBgka78iRI9SsWZMKFSqwYMECnJ2dmTt3Lh4eHuzbt4+KFSsye/ZsVq5ciaenJ+vXr+ell17ipZdeolu3bnTt2pV06dIxceJEMmbMyEsvvcSFCxd4/fXXyZ07N1OmTCFXrlysXbuWFi1asHHjRpo0Md9yBw8epHbt2hQpUoQpU6aQP39+Tp8+zbFjxwDYsGEDDRs2pFy5cowaNQqAXPIPmBBCiDgCbgXgtdeLxb8tRqP5qPxHfFHjC17O/rLVoYnU6swZ07h4wwYoVAi+/RaaNzd7tsQz2TrhagIceJBsAWitzyql/ICmPCXhehytdZRS6jZwL84Y94C1cc5bAwxWSjlprSNf5EU8Vh/MwsVEliE6A8S3ZUF5IIE1HK5fv054eDgFCxaM1/nFixdn2rRpsX+Pjo6mevXquLm58cMPP9C8efMEjb9//37atWtHp07/n0vHvcakSZNiP4+JiaFOnTqcOnWKuXPnJjjhGjBgAG5ubuzYsQNHR0cA6tWrR+nSpRk7diwbN26kZMmSscsIK1SoEDtTV7BgQTJnzoy9vT1VqlSJXVI4atQotNbs2rWLHDlyxF7zwoULjBgxIjbh6t+/Pzly5ODAgQM4OzsD8NZbb8XGVqFCBZycnMiZMydVq1ZN0OsSQgiR+p0JOsP4PeNZdnQZCkWnCp0YXGMwBbPF7/9wIRIsOBjGjzcVBx0czOd9+0ICf8Ge1tm6SmEpzL6ruI4D8drRqZSyU0rZK6VclVLDgWLArDhjnNVahz1mDEegSMLDFg+bM2cO5cqVI1OmTNjb2+Pm5gbAX3/9leBrVa5cmaVLlzJ+/HgOHTr02GqIhw8fplGjRuTJkwd7e3scHBz48ccfEzxeeHg4u3btolWrVtjZ2REVFUVUVBRaazw8PNi9+/m2+P3vf/+jYcOGZM2aNfaaUVFR1KtXj6NHj3Lnzh3CwsLw8/OjXbt2scmWEEIIER+nb5zmo00fUWxGMVYeW0m3it34p9c/zGk0R5ItkTRiYmDpUihWDLy8oG1bU+79iy8k2XoOtp7hcgGCHnP8JhDfjmgTgM/vfx4CtNFa/xzPMR48nvgStzp4rPDg8CQtzvBgL9G5c+fidf6MGTPo1asX/fr1Y+LEiWTPnp2YmBiqVq1KREREgsefMWMGrq6uLF68mKFDh+Li4sKHH37IuHHjcHZ25sKFC9SpU4eSJUsyY8aM2DLtw4cPjy1sEV83b94kOjqasWPHMnbs2MeeExMTg51dwn4Pce3aNZYvX87y5csf+/iNGzdwdHQkJiaG/PnzJ+jaQggh0q6T108ybs84Vv+xGsd0jvSs0pMB1QeQN3Neq0MTqdm+fdC7Nxw6BFWrwqZNUKWK1VGlaFaUhdePOZaQBaBTgTWAK/AhsFop1VJrvfmhayV4DKXUJ8AnAHny5MHX1/eJ52bNmpXg4OAEhPz8oqOjk3ysGjVqsH37dq5fv46Tk9NTz121ahW1a9eO3WMExBaOiIyMjI01Xbp0j/z9gcDAQFxcXB45PmTIEIYMGcL58+fZtGkTI0eOBEwJ9o0bN3L79m0WL15Mvnz5Yp8THByM1jr2OiEhIQBEREQ88euVLl067Ozs6NKlC23btn3sOQ+qMT5IHkNCQh65XnR0NEqpR+6Li4sLb7zxBn369HnsNTNnzkx0dDR2dnacPXv2qfdTa829e/ds9v1lKxEREU99TyWGkJCQJB9DJJzcl+RH7kny9PB9CQgNYMX5Fey8thMnOyda5mtJ6wKtcXF04dThU5zilLXBphFp7b3idO0ahefNI8+OHUTmzMk/Q4ZwzcMDwsIgGX0dUuJ9sXXCFcTjZ5iy8/hZqf/QWl8ELt7/62allC8wCXiQcN0E3J4wxoPHH3fd+cB8gEqVKumHK+nF5e/vb7OS4MHBwUk+1rBhw6hduzZjxoz5T1l4IDZJKFu2LJGRkWTPnv2RmL755hsAnJycYo8XKVKEa9euERkZSc6cOQH4559/OH36NG+88cZjX1OpUqUoVaoU69at49SpU2TOnJmYmBiAR8Y8deoUBw4cIH/+/LHHMmXKBED69Omf+PXKnDkzNWvWxN/fn5o1az51JutB8Y9MmTI9cr106dLFfjw43qBBA/bv30+VKlXIkCHDE69Zo0YNvv76a7788ssnnpc+fXqioqJSXcn59OnTU6FChSQdw9fXl6e9b4U15L4kP3JPkidfX19cXnXhy91fsu7EOpwdnBlYfSD9qvUjd8bcVoeXJqWZ90pYGEyaZJYOag3Dh+M0aBAlM2aM334fG0uJ98XWCddxzB6ruEoCJ57zmocwJSseHqO5Uso5zj6uksBd4G/EI2rVqsXkyZPp168f/v7+dOzYETc3N4KCgvj5559ZuHAhq1evpmzZstSvXx9vb2/Gjx9PlSpV2LFjB+vWrfvPNVu1asXw4cNp164d/fr14/r163h6esYmXw9Uq1aNJk2aUKZMGTJlysSuXbs4evQoHTp0AMDDwwN7e3s+/PBDPv/8c65cucLIkSNxc3OLTcYSYvLkydSqVYt69erRqVMnXnrpJa5fv86RI0eIjo7Gy8srwdccM2YMVapUoVatWvTo0YNChQoRFBTEn3/+yZkzZ1i8eDFgin+4u7tTrVo1Pv/8c/Lnz8+ZM2f4/fffmTFjBgAlS5Zkz549bN68GVdXV3LmzJnozZWFEEIkL79f/Z0Rx0ewZ9ceMjtmZkjNIfSp2oeczjmf/WQhnpfW8PXXMGAAXLgA770HEyZAPAupiQTQWtvsA5MYRQGFHzpWCFNV8PPnuJ4dcAD466Fj5TFLCjs8dMwe8Ae+j891K1asqJ/mxIkTT308Md25c8dmY/n5+emWLVtqV1dXbW9vr7Nnz67r1q2rV6xYoaOjo7XWWoeFhelu3brpnDlz6kyZMul33nlHnzlzRgN65MiRj1xvw4YNulSpUjp9+vS6bNmyetu2bdrd3V27u7vHnjNw4EBdvnx5nSVLFu3s7KxLly6tp02b9sh11q5dq4sXL66dnJx0yZIl9VdffaU7dOigCxYsGHvO2bNnNaCXLFnyzNd54sQJ3bp1a50rVy7t6Oio8+XLpxs3bqy3bNkSe86CBQs0oM+ePfvIc6tXr67d3d3/c18uXLigO3XqpPPmzasdHBy0q6ur9vDw0CtWrHjkvCNHjuhGjRrprFmz6vTp0+vixYtrLy+v2Mf9/f11jRo1dIYMGTSgO3To8MzXkxLY4j2zc+fOJB9DJJzcl+RH7knysTtgt26wsoFmFDrj2Ix6xI4R+kbYDavDEvel6vfKoUNa16ihNWhdoYLWu3ZZHVG8Jaf7AhzS8cgtlDnXNu43Nz4KhGMaGGtgLJAZKKu1Drl/XkHgH2CM1nrM/WOjMMsR/YCrmD1cnQAP4H2t9ZqHxlkD1AMGYPp0fYppgPyG1vrIs+KsVKmSPnTo0BMf9/f359VXX03IS39utlhSKBJO7kvC2OI9kxKXGKQFcl+SH7kn1tJas+X0Frz2euF3wY+czjnp83ofyt0tRyOPRlaHJx6SKt8rV6/C0KGwZIlpVjx+PHTsCOni24PIesnpviilDmutKz3rPJsuKdRahyql3gKmACswhSx+Bvo8SLbuU5juUw9vsjmCmSFrA2TFJF1HgZpaa784Q30EjAO+BLLdP69+fJItIYQQQojEFhUTxdo/1+Ll58Wf1/7ELasbMxrM4OMKH+Ps4JziigCIFCYyEqZNgy+/hIgI+PxzGDYMsma1OrI0weZVCrXW54EWzzgngDhVBbXW3wHfxXOMcKDf/Q8hhBBCCEuE3wtnye9LmLhvIgG3AiiZqyTLmy2nTek2OKRzsDo8kdppDd99ZxKsf/6Bxo3BxweKFrU6sjTFirLwQgghhBCp2u2I28w5NIepB6byb+i/vJ7vdabWm0rj4o2xUwnr9yjEc/nzT+jbF376CUqWhG3b4O23rY4qTZKESwghhBAikfwb8i9TD0xl9qHZ3Im8Q71X6jG4xmDcC7qjVELajgrxnG7cgJEjYe5cyJIFpk+Hbt3AQWZUrSIJlxBCCCHECzobdJaJ+yay+LfF3I2+S8uSLRlcYzCvvfSa1aGJtOLePZNkjRwJd+7Ap5/CqFGQI4fVkaV5knA9J621/KZKiHiwZSVUIYSwtT/+/QNvP2/W/LkGO2VHh3IdGFh9IEVzyB4ZYUPbt5vlgydOgIcHTJkCpUtbHZW4TxKu5+Dg4EB4eDjOzs5WhyJEshceHo6DLGMQQqQyfuf98NzryZbTW8jokJE+VfvQt2pf8mXJZ3VoIi05fdoUxPj+e3jlFdi0yRTGkEmBZEUSrueQO3duLl26RL58+ciQIYPMdAnxGFprwsPDuXTpEnny5LE6HCGEeGFaa/739//w3OvJnvN7yJEhB2Nqj+GzKp/hksHF6vBEWnL7tinxPm0apE8PEyZAr17g5GR1ZEnm3j1YvBiKFEl5P3dLwvUcsmTJAsDly5e5d+9eko4VERFB+vTpk3QMkXByX+LHwcGBPHnyxL5nhBAiJYqKiWLdiXV47fXi6L9HKZClANPqT6NThU5kdMxodXgiLYmONk2Lhw6FwED4+GOTeLm6Wh1Zkjp+HDp0gMOHYfToHNSpY3VECSMJ13PKkiWLTX6I9PX1pUKFCkk+jkgYuS9CCJH6RURFsOz3ZUzYN4EzQWcokbMES5ou4f0y7+OYztHq8ERas3s39O4Nv/8ONWrADz/Aa6m7KEt0tGkbNny4Kbi4bh3kyHHd6rASTBIuIYQQQoiH3Im8w9xDc5lyYApXQ65SOW9lJtWdRNMSTaWHlrC9c+dgwAD45hsoUADWrIH33kv1+7ROnYKOHWH/fnj3XZgzB3LnBl9fqyNLOEm4hBBCCCGAa6HXmP7LdGb9OotbEbfwKOzBqndX8WahN2W/trC90FDw9oaJE01yNXo09O8PqbxoW0wMzJwJgweb7WmrVkHbtik7v5SESwghhBBpWsCtAHz2+bDwt4VERkXy7qvvMrjGYCrlrWR1aCIt0hpWr4ZBg+DSJXj/ffDyMrNbqdzZs2Zbmq8vNGwICxZA3rxWR/XiJOESQgghRJp0/NpxvP28Wf3HauyUHe3Ltmdg9YEUz1nc6tBEWnXwoNmndeAAVKoEX38Nb7xhdVRJTmuYP99M4CkFixbBRx+l7Fmth0nCJYQQQog05cDFA3ju9eS7v77D2cGZXq/3ol+1fuTPkt/q0ERadfkyfPEFLF9uKg4uWQIffgh2qX/P4IUL0Lmz6d3s4WGSLTe3J5yctMXBk4wkXEIIIYRI9bTWbP9nO557Pdl1bhcuGVwY6T6SnlV6ksM5h9XhibQqIgImT4bx402jqcGDYcgQyJzZ6siSnNawbBn06WNe+uzZ0K3bE2a1LgJzgQWQ0TMj1LZtrC9KEi4hhBBCpFrRMdF86/8tXnu9+O3qb+TLnI/Jb0+mS8UuZHLMZHV4Iq3SGtavN2voAgKgeXOYNAkKF7Y6Mpu4ehU++QS+/x5q1jQTeq+8EuckDewBZgLrgRigMZAClxlKwiWEEEKIVCcyKpLlR5czYd8E/r75N8VyFGNRk0V8UPYD6aElrHX0qJnW8fWFMmXg55/hrbesjsomtIa1a+GzzyAszEzu9e4dZ+VkGLAKk2gdA7ID/YBPgZch1DfU9oG/IEm4hBBCCJFqBEcGM//wfCYfmMzl4MtUfKki61qto1mJZqSzS2d1eCItCww0HXwXLIDs2c0aui5dwD5t/DgeGAjdu5vmxa+/DkuXQokSD51wBpgDLAKCgLLAAuB9IIVXwk8bd1gIIYQQqVpgaCAzDs5g5sGZBEUE8dbLb7Gs2TLqvFxHemgJa929C7NmmT5aoaHQsyeMHGmSrjRiwwazPysoCDw9zUpKe3vMssEfMbNZmwE7oAXQA6hBilw++DiScAkhhBAixTp/+zw++3xYcGQB4VHhNC/RnME1BlMlXxWrQxMCtm6Fvn3h1CmoXx+mTIkzrZO6BQVBr16wciVUqAA//WRWUXIHWI5JtP4CcgNDgW5APuviTSqScAkhhBAixfEP9Mfbz5tVf6wC4IOyHzDwjYG8mutViyMTAjh5Evr1gx9+gGLFYMsW08k3DfnhB1Pu/do1M6E3dCg4/AP0BJYCIcDrwAqgFeBkXaxJTRIuIYQQQqQYBy8dxGuvFxtPbiS9fXq6V+rO5298jlvWJzXuEcKGgoJgzBiYKE90awAAIABJREFUORMyZjRVIT77DBzTTqGWO3dMrrloEZQqBd9tgIpXgXcwywcdgdaYxKuylZHajiRcQgghhEjWtNb8dOYnvPy82HF2B9nSZ2NYrWH0er0XOZ1zWh2eEBAVBQsXwrBhcPOmqXk+dizkymV1ZDb188/w8cdw8SKM6gVDXwL7NsBZzFLBL4EumCWEaYgkXEIIIYRIlqJjotlwcgNee704fOUweTPnZVLdSXxS8RMyO6X+xrAihdixw5R5/+MPcHeHqVOhfHmro7Kp0FAYNMjUBmlcEA42gjwLgHCgFjABaEaazTzS6MsWQgghRHJ1N/ouK4+txNvPm1M3TlHEpQgLGi+gfdn2ONmn4o0eImU5c8aU29uwAQoVMvXO330X0lhVzL17oXMHKHcG/s4Hr5wDrgEfYKoNlrU2vuRAEi4hhBBCJAshd0NYcHgBPvt9uBR8iQquFfi65de8++q70kNLJB/Bwaa2uY8PODjAuHFm01L69FZHZlPh4eDVF2Lmwc508BKY/VmTgI8xDYsFIAmXEEIIISx2I+wGMw7OYMbBGdwMv0ntQrVZ1GQRb7/ytvTQEslHTAwsXw5ffAFXr8KHH5rEK29eqyOzueOL4Z++MOSOKS4YVRvoAzQA5Hcj/yEJlxBCCCEscfHORXz2+TD/yHzC7oXRpHgTvqjxBVXzV7U6NCEetW8f9O4Nhw7B66/Dxo3mz7QkEu6thH+HQ6kr4Kbg36bg5g32xa0OLnmThEsIIYQQNvXX9b+Y4DeBFcdWEKNjeL/M+wyqPohSuUtZHZoQj7p40VSDWL3azGStWAHvvw92dlZHZjsXgblwbzY4BEEwsLIqNP4G3PJbHVzKIAmXEEIIIWzi0OVDeO31Yr3/epzsnehasSv93+hPwWwFrQ5NiEeFh1Nw2TL4+muzlHDYMJN4ZcpkdWS2oYHdwEzQG4AY+AFYmR0+XAYfNLY2vJRGEi4hhBBCJBmtNTsDduK515OfzvxEVqesDKk5hF6v9yJ3xjTWjEekDCdOQIsWvHzyJLRqBRMmmCqEaUEosBqYAfwBUVlgdU4Y+S9UawtzZkCOHBbHmAJJwiWEEEKIRBejY9h0chNefl4cvHQQ10yuTPCYQNdKXcnilMXq8IR4vLVroVMnyJiRoxMnUq5/f6sjso0zwGxgEXALdDn4Xwto+x04OMLcddCihcUxpmCScAkhhBAi0dyNvsvqP1bj7efNyesnKZy9MHPfmUuH8h1Ib5+2ymaLFOTePRgwAKZNg2rV4JtvCDp92uqoklYM8CMwE9gC2AEt4HxTaDMD9n9r2orNmQO5ZTL6hUjCJYQQQogXFno3lIVHFuKz34cLdy5QLk85vmrxFS1LtsTeTn7cEMnY5cvw3nvg5we9esHEieDoCKk14boDLAVmAaeA3MAwiOkCM9bDF51NS7FVq6Bt2zTXxzlJyL+AQgghhHhuN8NvMuvgLKb9Mo0b4Teo6VaTeY3mUb9IfemhJZK/XbugdWsICYGvvoI2bayOKOn4Y5KsZUAI8DqwEmgJZy/DR+3Nl6NhQ1iwIE22F0syknAJIYQQIsEu3bnElANTmHd4HiF3Q2hUrBGDqw+mult1q0MT4tm0Bh8fGDwYihSBn3+GUqmwLUE0sBmzbPAnwBFoA/QAKpsvw/z58PnnptL9okXw0Ucyq5XYJOESQgghRLydvnGaCX4TWH5sOdEx0bQp3YZB1QdRJk8Zq0MTIn7u3DFZxfr1phLE4sWQJZUVcrkBLMYUwggA8gPjgM6YJYTAhQvQuTNs3w4eHibZcnOzJtzUThIuIYQQQjzTkStH8NrrxboT63BM50jnCp3p/0Z/Xs7+stWhCRF/f/5pKkGcOQOTJkG/fqlrOud3zGzWKiACcAcmAU2J/alfa1i2DHr3huhomD0bunVLXV+G5EYSLiGEEEI8ltaaXed24bnXk+3/bCeLUxYGVR9En6p9yJMpj9XhCZEwq1dDly6QOTPs2AG1alkdUeK4B2zA9M7aC2QAPgQ+A8o+euqVK9C1K3z/PdSsCUuWwCuv2DjeNMjO1gMqpQoopdYppW4rpe4opdYrpZ45gamUqqSUmq+UOqmUClNKnVdKrVJK/edXa0qpAKWUfsxHs6R5VUIIIUTq8aCH1huL3+DNZW/y+9Xf8azjyfk+5/H08JRkS6Qsd+9Cz57Qrh289hocOZI6kq2rwFigENAauAz4AJeAeTySbGkNa9ZA6dLw448weTL4+kqyZSs2neFSSjkDO4BIoAOggS+BnUqpslrr0Kc8vQ1QCpgOHAfyAcOBQ0qp8lrrC3HO3waMinPsrxd+EUIIIUQqdS/6Hmv+XIO3nzfHA4/zcraXmd1wNh3LdySDQwarwxMi4S5eNCXf9++Hvn3B2xscHKyO6vlp4BfMssGvMbNb9TAJVgMg3X+fEhgI3bvDunXw+uuwdCmUKGGziAW2X1LYBSgMFNda/w2glDoGnAa6ApOf8lxvrXXgwweUUn7A2fvXHRHn/Ota6wOJFbgQQgiRWoXdC2Pxb4uZtG8S526fo0zuMqx6dxXvlXpPemiJlGvHDlPmPTwcvv4aWrWyOqLnF4FJsGYAh4DMwKdAd6D4k5+2YYNZQnjrFnh6Qv/+YC9vaZuz9Ze8CXDgQbIFoLU+ez9xaspTEq64ydb9Y+eUUoGY2S4hhBBCJMCtiFuxPbQCwwKpXqA6sxrOomHRhtJDS6RcWsOECTBkCBQvDt9+C6++anVUz+cCMBeYD1wHSmBmtz7EJF1PEBRkVlGuWgUVKpiq92WkkKhlbJ1wlQI2Peb4cSDBv3ZQSr2KKW7p/5iHGyulwjCTq78BXlrrjQkdQwghhEhtrgRfYcqBKcw9NJfgu8E0LNqQwdUHU7NgTatDE+LF3L4NHTrApk1mKeHChaZIRkqigd2Y2ayNQAxmyqIHUAd4xu9Ctm415d4DA2HkSBg6NGWvokwNbJ1wuQBBjzl+E8iekAsppewxOX8gsCjOw98Dv2KWG+bBfItuUEq111qvTGjQQgghRGpwJugMPqd82L53O1ExUbQu1ZpB1QdRzrWc1aEJ8eKOHTN9tQICYMoUU/c8Jc3UhmLKuc8E/sD8ZNwPs2yw0LOffueOqXK/aJHp4bx5s6kRIqyntNa2G0ypu4CP1vqLOMfHAYO01vFOAJVSc4FOwDta6+3PODcdcABw1VoXeMI5nwCfAOTJk6fimjVr4htKkgoJCSFTpkxWhyHikPuS/Mg9SZ7kviQPVyOusuLcCrb9uw2FooFrA1oXaE2+DLIiP7mQ98qLyfPjjxTz8SEqUyZOjBzJ7URYP2ere5L+UnrybcqH6w+uOIQ4EPJKCBebX+RanWvEpI+J1zUOH87GxIklCAx0ok2b83ToEICjo+1+xrel5PReefPNNw9rrSs96zxbz3AFYWa54srO42e+Hksp5YlJjjo8K9kC0FpHK6W+AbyVUi9pra885pz5mBWyVKpUSdeuXTu+4SQpX19fkkss4v/JfUl+5J4kT3JfrHXu1jnG7RnHkt+XkE6l47PKn1HTriYt67W0OjQRh7xXnlNkpKk+OGcOuLuTbs0aKri6Jsqlk/SexADbMbNZWzEbYFoAPSBT9UyUUCUowbNLCYaGwqBBMGsWFCsGGzdC1aoFgYJJE3cykBLfK7ZOuI5j9nHFVRI4EZ8LKKWGAoOBXlrrFQkY+8GccupM94UQQoj7zt8+z/g941n822KUUnSr2I3BNQaTL0s+fH19rQ5PiMRx/rypPHjwoCm/5+mZ/Evw3QaWYRKt05hKBMMwtboTOOG8dy907AhnzkCfPjBuHDg7J264InHY+rvyO2CSUqqw1voMgFKqEFAdk0Q9lVKqF6Zv11Ct9Yz4Dnp/v1cr4LzW+upzxC2EEEIkexfvXGT8nvEsPLIQpRRdXuvCFzW/IH+W/FaHJkTi+uknU/L97l1ThfDdd62O6OlOALOA5UAIUBUYCbQEnBJ2qfBwGDbMbFMrVMg0ME4NfZxTM1snXAswBSw2KaWGYWabxmKKXs57cJJSqiDwDzBGaz3m/rE2wFTgf8AOpVTVh657R2t94v55bTEl5rfev24e4DOgItA2SV+dEEIIYYFLdy7hudeTBUcWoLWmU4VODKk5hAJZH7ttWYiUKybGzGQNHw4lS5pkq/hTGlFZKRrYjKk2+DPgCLQBegLP3PXzeL/8Yma1Tp6Ebt1g4kRIJtuZxFPYNOHSWocqpd4CpgArMMv8fgb6aK1DHjpVYVaz2j10rP794/XvfzxsF1D7/udnMRO0EzH7xcIwFQvra623JebrEUIIIax0OfgyXnu9mH94PtE6mo/Lf8yQmkMomC317t8QaVhQkCn5/v330LYtzJ+fPLONG5j62bOBc0B+YBzQBcj1fJeMjITRo8HbG/Lmhe3boW7dRIpXJDmbL3TVWp/HbAt82jkBxOkyoLXuCHSMx/UPAG89d4BCCCFEMncl+Areft7MOzyPqJgoOpbryNBaQymUrZDVoQmRNH7/3ZR8P38eZsyAzz5LfiXff8PszVoNRADugA9m3dUL/MT9228mz/zjD/joI7OUMGvWRIhX2ExCyrCXxWzrq4WZOaqqtT6ilPoS2B2faoFCCCGEeH7/hvyLt583cw7N4V70PTqU68DQWkMpnL2w1aEJkXSWLTPr51xcYPduqFbN6oj+3z1gPWbZoB/gDHyI2UDzgpXp790zqyfHjoWcOc3EXqNGLxivsES8Ei6l1BuYpX/nMd9WXR962A7ohiluKYQQQohEdi30GhP8JjD719lERkfSvmx7htUaRhGXIlaHJkTSiYgwzYvnz4c334Q1ayB3bqujMq5imgnNBa4AhTGzWR9hmh29oOPHzazW4cPw/vswfTrkyPHi1xXWiO8Mlzcm4WrC/ydYDxwC2iVyXEIIIUSaFxgayMR9E5n16ywioiJoV6Ydw2sNp2iOolaHJkTSOncOWraEQ4dMo6kvv7S+5LsGfsHMZn2Dmd2qhykJVx9TfeAFRUfDpEkwYgRkyQLr1pmVlCJli+93bkWghdY6Rqn/LJi9jqkEKIQQQohEcD3sOpP2TWLmwZmER4XTtnRbhtcaTvGcybQamxCJads2M60TFQUbNkCzZtbGEwGsxSRah4HMwKeYGtjFEm+YU6fMrNaBA6bK/Zw5yWdCT7yY+CZckUCGJzzmimnjJoQQQogXcCPsBj77fZhxcAahd0NpU7oNI9xHUCJnCatDEyLpxcSYmaxRo6B0aVPyvah1s7lO15xgCGYG6zrwKqaXVntM0pVIYmJMHZDBgyFDBli1yhRhTG41QcTzi2/CtRfopZTa+NAxff/Pj4GdiRqVEEIIkYbcDL/J5P2Tmf7LdELuhvBeqfcY4T6CkrlKWh2aELZx8yZ88AH88IP5c+5cyJjRmlgOAROg6rf3W742xvTOeos4NbRf3NmzpvLgrl3QsCEsWGDKvovUJb4J1whM0vUbZtWqBj5QSk3A9MqukjThCSGEEKlXUHgQUw5MYdov07gTeYdWJVsx0n0kpXKXsjo0IWznyBGzUenSJZg921QktPX0jsaUf/PGTCNkgQutLuDm5QaFkmA4DfPmQf/+YGcHixaZxEtmtVKneCVcWuvflFK1gUnAKEx+3wfYB7yptfZPqgCFEEKI1OZWxC2mHpjK1ANTuR15mxavtmCk+0jK5HnBOtJCpDSLFpmeWrlywZ498Prrth0/CrM/awJwDMh7//OucObIGdwKuSX6kBcuQOfOpnmxh4f5Ergl/jAiGYl3uRet9a+Au1LKGcgJBGmtg5MsMiGEECKVuR1xm2m/TGPKgSncirhF8xLNGek+knKu5awOTQjbioiAHj1MtuHhAatXm6TLVkKBRcBk4BxQAlgMvA84Jc2QWpuWYr17m2qEVk3mCduLbx+u+cB4rXWA1joM04/rwWNuwDCt9SdJFKMQQgiRot2JvMP0X6Yzef9kgiKCaFq8KaNqj6K8a3mrQxPC9s6eNSXfjxyBoUNh9GhIlwg11eMjEJh5/+MmUB2YDjTCND5KIleuwCefwObNULMmLFkCr7ySdOOJ5CW+M1ydgYVAwGMeywV0AiThEkIIIR4SHBnMjIMz8Nnvw83wmzQu1phRtUfx2kuvWR2aENb44Qdo186U5vvuO2jc2DbjnsHMZi0GwjGdZQdiEq4kpLXp19yjB4SFweTJZobLLgmTO5H8JEYHuTyYb10hhBBCACF3Q5h5cCaT9k3iRvgN3in6DqNqj6JS3kpWhyaENaKjYcwYGDsWypY1Jd9tMcVzBJgIfI1pTPwBMABT4j2JBQZC9+6mefHrr5vlhMWllV6a9MSESynVFGj60KHhSqnAOKdlANwx385CCCFEmhZ6N5RZv85i4r6JXA+7ToMiDRhVexRV8kkxX5GG3bhhZrW2bTOdfWfPBmfnpBtPAz9hil/8hOmZ9TnQG8iXdMM+bMMG6NoVbt0CT09TjdA+MaY5RIr0tFtfGKh7/3ONKf1+N845kZhuBYMSPzQhhBAiZQi7F8bsX2czwW8CgWGB1HulHqNqj6Jq/qpWhyaEtQ4dMvu1rlwxddC7dEm6KhFRwDpMovUb4Ap4AV2BbEkzZFxBQdCzp2leXKEC/PwzlJHio2neExMurfUUYAqAUuoC0EhrfdRWgQkhhBDJXdi9MOYemou3nzfXQq9Rt3BdRtceTbUC1awOTQhraW26+PbsCa6usHcvVK6cNGOFAUsAH+AsUAxYALQnySoOPs7Wrabce2AgjBxp6oE4ONhufJF8xbcPV4GkDkQIIYRIKcLvhTPv8Dy8/by5GnKVOi/XYXTt0VR3S+Id+EKkBOHhZvPS0qXw9ttmuidnzsQf5wYwC5gBXAdexyRdTUnSioNx3bkDffvC4sVQqpSpRPia1MURD0nQalKlVBagCJA+7mNa632JFZQQQgiRHEVERTD/8Hy89npxJeQKbxZ6k69bfk3NgjWtDk2I5OHMGWjRAn7/HUaMMB+JXfI9AFNxcBFmdqsRpuJgDcDGPa1+/hk+/hguXoTBg2HUKHCy4ayaSBni24fLCTM525Yn/87ARg0UhBBCCNuKiIpg4ZGFeO715HLwZdwLuvNVi69wL+RudWhCJB+bN0P79ubzLVugYcPEvf5RzP6stZjEqh3QHyiduMPER0gIDBpk6n8UKwZ+flBVtmyKJ4jvDNcwTAGNzphVsr0wBTM6Yvpw9UuK4IQQQggrRUZFsui3RYzfM55LwZeo6VaTlc1X8ubLb1odmhDJR3S02bQ0bpypFPHtt/Dyy4lzbQ3sxCRa24BMmGqDfQCLNrzs2QMdO5r+zX36mJedlEUXRcoX34SrFTAGWIlJuPZprY8AC5RS64E6wOakCVEIIYSwrbvRd1n822LG7xnPhTsXqF6gOsuaLeOtl99CJVWFNSFSouvX4f334ccfzdq6mTMhQ4YXv240sB6TaB0CcgPjgE+B7C9++ecRHg7DhsGUKVCoEPj6Qq1a1sQiUpb4JlxuwHGtdbRS6h6Q8aHHFmL6dvdN7OCEEEIIW7obfZelvy9l3J5xnL99nmr5q7GoySI8CntIoiVEXAcPmpLv167BwoXQqdOLXzMcWAZMAv7BVA6YB3zIYyoI2M4vv5gWYn/9Bd26wcSJkCmTdfGIlCW+CdcNzCQuwEWgLLDn/t+zYxogCyGEECnSveh7LDu6jHF7xhFwK4Aq+aowr9E86r1STxItIeLSGubOhd69IV8+s4GpYsUXu+ZNYDYwHQgEKgPeQDMsrRIQGQmjR4O3N+TNC9u3Q926z36eEA+Lb8L1C1AO2IqZ4B2rlHLGtJgbCPglTXhCCCFE0rkXfY8Vx1bw5e4vOXvrLJXyVmJWw1k0KNJAEi0hHicszEzxrFgBDRrAypXg4vL81zuP6fq6AAgFGmB+snTH5hUH4zp9OhO9esEff8BHH5mlhFmzWhuTSJnim3BNAAre//xLTEs5T0zFwkNA98QPTQghhEgaUTFRrDy2ki93f8k/Qf9Q8aWKTG8wnXeKviOJlhBP8vffpuT7H3+YaZ9hw8DuORte/QFMBL7CFMZoCwzArKGyWFgYeHqCp+dr5MoF338PjRpZHZVIyeLb+PggcPD+57eBpkqpDEB6rXVQEsYnhBBCJJqomChW/7GasbvH8vfNv6ngWoFNbTbRuFhjSbSEeJpNm+DDD8HeHrZuhfr1E34NDezG/Bp/K6YiQA9MxcGCT3mejWhtXmafPnDuHHh4BLJmTR5y5LA6MpHSPTPhUko5AnuBoVrrHx8c11qHY7Y2CiGEEMladEw0X/35FWN3j+XUjVOUy1OODa030LR4U0m0hHiaqCgYPhy8vMw+rXXrTIm+hIgGNmH2ZB3ENBQai1kf9QKrERPTqVNmS9r//gelSsHOnQD+5MiRx+rQRCrwzIRLa31XKVUM83YRQgghUozomGjWHl/LmF1j+OvGX5TJXYZv3/uWZiWaYaeecymUEGnFtWvQti3s2AGffALTpkH6BJQKjABWYCoOngIKYwpjdCTZlFsLDTV9tHx8wMkJJk+GHj3AwcGUfRciMcR3D9dPgAewIwljEUIIIRJFjI7h6+NfM2bXGPyv+1M6d2m+afUN7776riRaQsTHgQOm5PuNG7Bkien0G1+3gDnANOBfoCKwFmiBpRUHH6a16c/crx9cuADt28OECeDqanVkIjWKb8I1GVitlLIDNgJXMCtxY2mtzydybEIIIUSCxOgY1p1Yx+hdozkReIKSuUqytuVaWpZsKYmWEPGhNcyaZTKR/Plh/34oXz5+z70ITMX0zQoB3gYGAW9iecXBh508CT17wk8/QdmysHo11KhhdVQiNYtvwrX3/p8DMTVkHieZ/M5CCCFEWhOjY1jvv57Ru0bz57U/KZGzBF+1+IpWJVuRzk7+exIiXkJDzdLB1avhnXdM6ffs2Z/9vBOYQhirML+Ofw/zE2M88zRbCQ6GsWNNefeMGWHGDFPh3j6+Pw0L8Zzi+y32CXFmtIQQQgirxegYNp7cyOhdozn27zGK5yjOqndX0bpUa0m0hEiIU6dMyffjx+HLL+GLL55e8l1jurB6A5sxe7I+BfoCL9sg3gTQGtauhc8/h8uXTU8tLy/IndvqyERaEd+y8AuTOhAhhBAivrTWbPprE6N3jeb3q79T1KUoK5qvoG3ptpJoCZFQ69ebPVqOjrBtG9St++RzY4DvMDNa+4EcwCjgMyBnkkeaYMePm+WDO3fCa6+ZIovVqlkdlUhrZBJVCCFEiqG15vtT3zPKdxS/Xf2NIi5FWNZsGe+XeR97O/kvTYgEiYqCIUNg4kSoXNlkI25ujz83EliJaVb8F1AImAF8DDjbJtyEuHMHRo2C6dMhSxaYMwe6dIF08vsYYQH530kIIUSyp7Vmy+ktjPIdxeErhymcvTBLmi7hg7IfSKIlxPP4919o08bUPv/0U7Oxycnpv+fdxhTBmIopmVYe+ApoSbL8KVJrWLUKBgwwL7FzZxg/HnImw9k3kXYkw7eKEEIIYWit+eHvHxjlO4pfL//Ky9leZlGTRbQv2x6HdA5WhydEyuTnB61awa1bsHy5qYke12VMWfe5wB1Mc6Bl9/9MRhUHH3b0qOmhtXevmbD77jvzpxBWk4RLCCFEsqO1Zts/2xjlO4pfLv1CwawFWdB4AR3KdZBES4jnpbVZY9e/PxQsCD/8AOXKPXrOScyywRVANNAKU5+6oq2Djb9bt2DECFPNPnt2WLAAPv746TU/hLAlSbiEEEIkG1prfjzzI6N8R7H/4n7csroxr9E8OpbviGM6R6vDEyLlCgkx6+vWroUmTWDZMsiW7f8f34+pOLgJSA90AfoBr1gRbPzExJgJukGDIDDQlHj/8ktwcbE6MiEeleCESymVAXAB/tVaRyV+SEIIIdIarTU/n/2ZUb6j8LvgR/4s+Znzzhw+rvCxJFpCvKiTJ03J95MnwdMTBg400z8xwBZMxcG9mJ/uRgA9gFwWxhsPR46Y5YP790PVqmay7rXXrI5KiMeL92SrUqqBUuogEAycA8rePz5PKdUmAdcpoJRap5S6rZS6o5Rar5R6QkmcR55XSSk1Xyl1UikVppQ6r5RapZT6T7cHpZSdUuoLpVSAUipCKXVUKdUivjEKIYSwnZ1nd+K+1J26K+oScCuAWQ1n8XfPv+lWqZskW0K8qHXrzEamwEDYvh0GD4YoO1gKlAGaAOcx+7XOAaNJ1snWzZvQvTtUqgR//w2LF5staZJsieQsXgmXUqoxpq1dMDAszvMuAB3jeR1nYAdQAugAtAeKAjuVUhmf8fQ2QClgOtAAGAy8BhxSShWIc+5YTFeImffPPQB8o5RqGJ84hRBCJL1dAbuovbQ2by1/i3+C/mFGgxn83etvulfujpP9Y6qlCSHi79490+m3VSsoXdpMCVWuAz5AYeAjzDqnlcDfQC8gk4XxPkNMjNmbVawYzJtnZrdOnTJNjGWvlkju4rukcBSwXGv9kVLKHhj/0GN/AN3ieZ0umLd5ca313wBKqWPAaaArMPkpz/XWWgc+fEAp5QecvX/dEfeP5Qb6A15a60n3T92plCoCeAFb4xmrEEKIJLDn3B5G+o5kZ8BOXDO5Mq3+ND6p+Anp7dNbHZoQqcOVK9C6NezZYzKTAT4wyxHmYMq8vwksBOqRbCsOPuzXX+Gzz8yfNWrAzJn/rfUhRHIW34SrJGZGCUDHeSyI+PcWbwIceJBsAWitz95PnJrylIQrbrJ1/9g5pVQgkO+hw/UAR8zvbB62ElislHpZa302nvEKIYRIJH7n/RjpO5Kfz/5Mnox5mFJvCl0rdiWDQwarQxMi9dizB957z3T+nbgJTjUxa4nuAS2AgUAKKZV+/brpy7xwIeTJAytWQLt2oFJAkijEw+KbcAUDOZ7wWEHgP8nQE5TC1L+J6zim8GiCKKVeBXID/nEGKbcNAAAgAElEQVTGiMRMkMcdA0zyKAmXEELYyP4L+xnpO5Ifz/xI7oy58Xnbh26VuuHs4Gx1aEKkHlqb5sUDB0LeZlBtEQzMan4F/THwOVDE4hjjKfr/2LvvuKrL94/jrw8gigO3oKgoSxDKPXNrpmk5M9PKlvX9NbTp1nJrOXNkamVfc1SmtvuWK1yZZk5UlogbFRGQzbl/f9zKUFTUA58DXM/Hw4d2/HA+F48T4HWu+37f6Xr54OjRcOUKvPkmfPABODubXZkQ98ZQ6saBVQ4XGcYqwA9oA1xFv0/SCN3EBAKHlFIv5eJ5UoBZSqkRNzw+CRihlMp1auK1pY0br9VVRyl1+drji4HHlVKuN1zvhV66+KxSankOz/cy8DKAi4tLo9WrV+e2lDwVHx9P6dI2vKi6iJLXxfbIa2J7gmKD+CzsM/bG7qVcsXL0r9Gfx6s9jpO9TLTMJF8rtul+Xhf7hATqTP+QKoElSSk7GccrDUgtncqZnmc41esUqRVSrVxt3gkKcmbOHG9CQspQr14MQ4eGULv2VVNqka8V22RLr0v79u3/UUo1vtN1uW1wRgF/o4/D+xm9rPA9oB568tX3LmrLqcO7l+HwfKAl0O16s5Xlue76HkqpxcBigMaNG6t27drdQ0nWt2XLFmylFpFJXhfbI6+J7Th28RgjN45k3dF1ODs4M73TdF5t8iqlHW3jB2RRJ18rtumeX5f9QTDgSzg7D3gAxzIK3odiLxXDvYw77rhbu9Q8ERWlAxS/+AKqVYNVq+DJJ8thGOatf5SvFdtUEF+XXDVc1/ZZNQYmAI9de/hh4DdgjFLqVC7vdxl9ysONyl/7u1wxDGMqeho1SCn1+w1/HQ2UNwzDUNnHd+Wz/L0QQggrOxt3lvF/jmfp3qU4FXNifLvxNE5tzKMPSUCsEFYXD7z2LyyvBGo61I7Xke79DShmdnG5l5YGixbB2LH6bOb33tN/LlPG7MqEsJ5cNVzXItvPKKUG3ef9DqP3WN2oLhCUy1pGowM8huS0NPDaPYqjz0bPuo+r7rXfc3UfIYQQuROXHMdHOz5i5s6ZpKSn8J/G/2Fc23FUKVWFLVu2mF2eEIXLeWBOOsxOguQG4PwvzHOCZyoViMTBrLZt0yGK+/dDp04wbx74+ppdlRDWd8eTCwzDKIYOEe1qhfv9ADQ3DMMjy/PXAh669nd3qmUIMAkYrZSad4vLfgNSgIE3PP40eq+ZBGYIIYQVpKSnMP/v+Xh+7MnEwIl08+5G0KtBzH90PlVKVTG7PCEKl1Dg/wB3BdMMSP4N+s2GiwHwbMFqts6dg2efhdat9UHG336rz2SWZksUVneccCmlUg3DiALSrHC/JcDrwPeGYYxB77WaiD48+dPrFxmG4Q6EAROUUhOuPdYfmINuqDYZhtE8y/PGKqWCrtUbZRjGbGCkYRhxwF7gSaADOnpeCCHEfVBK8W3Qt4zaOIqwy2G0dW/Lhw9/SFO3pmaXJkThswf4EPgOsLeA/QpwmgWfD4f+b5lc3N1JTYUFC+D99yExEUaO1EmEpUqZXZkQeSu3oRkr0WeS39ehwUqpq4ZhdABmA8vR78dsBN5USsVnudQA7Mk+gety7fEu135l9SfQLst/j0avbh4KuALHgH5KqR/vp34hhCjqtkRsYdgfw9h9ZjcBVQL46amfeNT7UQw5GEcI61HA78B0YDNQVkHbXfBnX/AoDd99B/457dCwXX/+qZcPHjoEjzwCH38MPj5mVyVE/shtwxUMPGkYxk70OVpnuSEJUCn139w8kVIqEn303u2uieCG4bhS6jnguVzeIx299HBSbq4XQghxewfPH2TExhH8EvIL1Z2r8/njn/NsvWext7M3uzQhCo804Gv0ROsA4AZMSoJdL8GPK6BvX/jsswJ1INWZM/Duuzp10N0d1q2DHj3k8GJRtOS24Vp07Xc3oFkOf6+AXDVcQgghCo6TV04ybss4vtz3Jc7FnZnWcRpDmg3BqZicpSWE1VwFt+/c9NvKJ9AnjH4B1DsMT/aC8HCYORPeeqvAdCopKTB3LkyYoJcSjh2rY99LynnnogjKbcPlnadVCCGEsCkxSTFM3TqVj//+GIuy8FbztxjVehQVS1Y0uzQhCo/zwAL9yzvaG1oB84BuwOqV0GqwnmZt2gRt2pha6t3YuFEvHzx6FLp1042Xp6fZVQlhntyewxWW14UIIYQwX1JaEgv+XsDkrZOJSYph4IMDmdh+IrXK1TK7NCEKj2PALOBLdK7y47C3014avt5Qj4aGvgPz50OrVvDNN1C1qrn15tLJk/DOOzp10MMDfvwRunc3uyohzJfbCZcQQohCzKIsrDiwgjGbxxB5JZLOnp2Z3mk69V3rm12aEIXHduAj9EE4jsAg4G2gDsRuiYVTp6BfP9i5E95+G6ZNg2K2f4pxcjLMng0TJ4LFAuPHw7BhUKKE2ZUJYRtye/BxCDeEZNxIKSVZM0IIUcAopfg97HeGbxjO/vP7aeDagM8e/4xOHp3MLk2IwiEdHTc2A9gJVADGoA/JyXJcXbm9e3WzlZiop1pPPGFCsXfvf/+DIUMgOBh69oRZs6B2bbOrEsK25HbCtYubG66KQHMgFgi0ZlFCCCHy3t6zexn2xzA2Ht9IrXK1WNF7Bf0D+mNn2N35g4UQt5cILEMvHQwFPID56GCMrOdOpafDRx9Rb/RoqFNHR777+eV3tXftxAmd4bFuHXh5wa+/QpcbD+0RQgC538P1dE6PG4ZRAX0Q8c/WLEoIIUTeOX75OKM3jWbVoVVUdKrI7Edm83+N/4/iDsXNLk2Igu8CsBDdXF0EmgDfAL3RJ4xm9fff8Oqr8M8/XGjXjio//gilS+dvvXcpKQlmzIApU/R/T56s920Vl28fQtzSfe3hUkpFG4bxITABfXKEEEIIG3Ux4SKTAiexcPdCHOwcGNlqJMMfGk7ZEmXNLk2Igi8UPc36AkgCHgPeBVpzw8miQHQ0jBwJS5aAqyusXEmQqytVbLzZ+vlnGDoUwsL0kWAzZ0LNmmZXJYTts0ZoRgIgX25CCGGjElITmPPXHKZvn058SjzP13+e8e3G4+bsZnZpQhR8f6GDMNYBxYBngHfQZ2ndyGKBZctg+HC4fFl3L+PH6+j3LVvyreS7FR4Ob76pUwfr1IHff4eHHza7KiEKjntuuAzDsAPqAuOAI1arSAghhFWkWdJYtm8Z7295nzNxZ3jM5zGmdZpG3cp1zS5NiILNAvyIbrS2A+WAkcAbgOstPmbfPnjtNdixAx56CBYsgHr18qfee5SYqIMSp08HBwf48EPdIzo6ml2ZEAVLblMKU7k5NMMOPSSPRx/RJ4QQwgYopfgx+EdGbhxJ0IUgmldvzuo+q2nt3trs0oQo2JKA/wIzgWDAHZgLvADcajXglSswbpw+V6tCBfjiC3j2WbCz3XAapeCHH/RUKyIC+vfX+7bcZCguxD3J7YRrOjc3XEnACeBnpdRlq1YlhBDinvx16i/e++M9tkVuw7uCN2ueWENvv94Yxo2bSIQQuXYJ+ASYB0QBDYFVQF9u/S8ppWDVKp0ocf48vPKKTpioUCF/ar5HISF6ivXrr1C3LmzaBO3bm12VEAVbblMKx+R1IUIIIe7dsYvHGLVpFGuPrMWllAsLH13ISw1fopi97R+aKoTNCgdmA5+jd6x3Bd4D2nFzEEZWQUHw+uuweTM0bqzHRU2a5Hm59+PqVZ08OGOGThycORPeeKNAnLsshM2zRmiGEEIIk5yLP8f4LeNZsncJJRxK8EHbD3in5TuUdrTttDMhbNpu9P6s79BR7gPRQRgBd/i4+HiYOFGf/lu6NHzyCQweDPY35sHbDqVg7Vp9ptbJk/D003qvVtWqZlcmROFxy4bLMIzFd/E8Sin1ihXqEUIIkQtxyXHM2DGDmTtnkpyezCuNXmFc23G4lHYxuzQhCiYL8Au60QoEyqKnWUOAanf4WKX0CcBvvqm7luee00kTVarkacn369gxPcX64w944AFYsQJay1ZPIazudhOuR7l539at5PY6IYQQ9yE1PZXF/yxmQuAEoq5G0bduX6Z0mIJ3RW+zSxOiYEoGvkIHYRwBalz782CgTC4+PjRUdy2//QYPPggrV0KrVnlXrxXEx8OkSXoQ5+QEc+fq85cdZN2TEHnill9aSqnq+VmIEEKIW1NKsSZoDaM2jSI0OpQ27m34of8PNKvezOzShCiYLgOLgI+Bc0A9dOPVD32e1p1kzUx3dITZs/W+LRvuWpSCb77ROR6nT+tB3LRp4CKDcSHylO1+VxBCCAHAnxF/MmzDMP4+/Tf+lf356amfeNT7UUkeFOJenEAHYSwFrgKdgeVAR24fhJHVL7/oqVZ4uM5MnzkTqt1p3aG5goJ0yZs2QYMGuvFq2dLsqoQoGm63h6saEKWUSrv259tSSp2xamVCCFHEHYo6xIgNI/g55Gfcyrjx2eOfMajeIOztbHcDvhA2ay96f9a36MbqKeBd4MG7eI4TJ/Q+rfXrwdcXNmyAjh3zoFjriY2F8ePh4491jseCBTqh3oZzPIQodG434ToJtAD+Bk5x531a8qUrhBBWcCr2FOM2j+PL/V9SxrEMUztOZWizoTgVczK7NCEKFgX8BswANqH3ZL2FDsKocRfPk5Kip1gTJ4JhwNSp8PbbeimhjVJKbyd77z04dw5efFHHvleubHZlQhQ9t2u4XgbCsvxZgjGEECIPxSTFMG3bNObumotFWRjabCijW4+mYsmKZpcmRMGSAqxEh18cAtzQ063B6PTBu7FxI7z2mo7069kT5swBd3fr1mtlBw/q7WSBgfoYsPXroWlTs6sSoui6XWjGZ1n+vDR/yhFCiKInOS2ZBbsXMHnrZKIToxn4wEAmdZhErXK1zC5NiIIlBlgMzAXOAA8AXwL9gbsdRp05o9MlVq8GDw/4+Wd49FHr1mtlMTHw/vt62WC5crB4MbzwgiwfFMJsEpohhBAmsSgLKw+uZMymMZy4coKHPR5meqfpNKjawOzShChYTgJzgCVAHDoA43N0IMbdZsukpcG8ebpzSUnRvw8frvPTbZTFAsuXw7BhcOGC3qM1aRJUlOG4EDYh1w2XYRiVgCeBOkCJG/5aDj4WQoi78HvY7wzfMJx95/bRwLUBSx5bwsOeD5tdlhAFy370UsGv0RsfngTeARre4/Nt26YPpDp4ELp00Y2Xl5eVis0b//6rlw/u2AHNmukAxUaNzK5KCJFVrhouwzB8gJ3oRqsE+vSKcoAdcAX9fpIQQog7+PfsvwzbMIwN4RuoVa4WX/X6iqceeAo7w87s0oQoGBTwBzoI4w+gNPAGMBS4161VUVF6PPTll1CjBnz3HfTqpQMybNTlyzBmDCxapCdZn38OgwaBnXwrEcLm5PbL8iN0oGpl9HC+M1AK+A+62eqWJ9UJIUQhcfzycQauHUjDxQ3Ze3YvszrP4uhrRxn44EBptoTIjVT0wcQNgEfQYRhTgUhgFvfWbKWnwyefQJ06sGKFXjp45Aj07m2zzZbFAp99Bj4+utl69VWd5/H889JsCWGrcruksAnwKpB07b/tlFLJwGLDMCqgV07b9kEUQghhgksJl5gUOImFexZiZ9gx4qERDG81nHIlypldmhAFQyx6b9Yc9CE1ddH7swYAxe/jeXfv1t3Knj3Qvr1OmvDzu/9689CePTow8e+/4aGHYP58qF/f7KqEEHeS24bLGbiklLIYhhELVMryd38DY6xemRBCFGAJqQnM/Wsu07ZPIz4lnufqPcf49uOp7lzd7NKEKBhOo9MGP0U3Xe2u/bkLuV+fk5PoaBg1Skf4ubjoydZTT9nsRAvg0iUYPVqXXKWKXvn4zDM2XbIQIovcNlwRgMu1Px8D+qCPEgToig5iFUKIIi/dks6yfct4f8v7nI47TXef7kzrOA3/Kv5mlyZEwXAQvT9rJWABngDeBRrf5/NaLLpTGTZMN11DhsD48VD2bg/myj/p6bB0qe4Pr1yBoUPhgw9sumQhRA5y23BtADoBa4DZwErDMFoCaUAAehW1EEIUWUopfgr+iREbRxB0IYhmbs1Y2WclbdzbmF2aELZPAZvQjdZvQEng/4C3gNpWeP79+/XywR07oGVLWLgQ6tWzwhPnnV279PLBf/6BNm308sEHHjC7KiHEvchtwzUCcAJQSq02DCMZHb5aEj3gX5Q35QkhhO3bdWoX7/3xHlsjt+JdwZtvn/iWPn59MGS9jxC3lwZ8i47m+he9lmYSutmqYIXnj42FceN0t1K+fIGI8rtwAUaM0KVWrQorV0L//rJ8UIiCLFcNl1IqiczADJRS64B1eVWUEEIUBMGXghm1cRTfHfmOKqWqsODRBQxuOJhi9sXMLk0I2xYHfIZeMxOJPuFzCfA0N5/0eS+UgtWr4e234fx5ePllmDIFKliji8sb6ek6t2PMGIiPh3ff1b1imTJmVyaEuF+3bLgMw+gA/K2Uis/HeoQQwuadjz/P+D/Hs/ifxZRwKMH7bd/nnRbvUKa4/MtIiNs6C3yMXhcTA7QG5qMPl7HW0OnIEb0Wb/NmfQLwDz9AkyZWevK8sX07/Oc/jQgNhQ4d9HnLdeuaXZUQwlpuN+H6A2iBTiHEMAw7YAvwolIqJO9LE0II2xKXHMfMnTOZsWMGSWlJvNzoZca1HYdraVezSxPCtgWh92etQC8j7I0OwmhmxXtcvQoTJ8KsWVCqlN6n9fLLYG9vxZtYT3o6/PQTzJkDW7ZA5crF+OYb6NtXlg8KUdjcruG68cvdAFoB8hauEKJISU1PZcneJYz/czxRV6Po49eHKR2n4FPRx+zShLBdCvgT3Wj9jN4J/hLwNuBpzfsoWLcO3nwTTp6E556D6dN1froNio2FL76Ajz+G8HCoWRM+/BACAnbTtWtrs8sTQuSB3IZmCCFEkaOU4rsj3zFq4yhCokNoXbM13/f/nubVm5tdmhC2Kw1Yiw7C2ANUBsYDr5L9FE9rCA3V8e6//qoj/FauhFatrHwT6wgP10sFP/sM4uL0wcXTp0PPnuDgAFu2pJtdohAij0jDJYQQOQg8EciwP4ax6/Qu6lauyw/9f6C7T3dJHhTiVq4Cn6ODMI4D3ui9Ws9yLefYihITdbcybRoUK6aXEb7+uv6zDVEKAgP1ssHvv9erG598Up+nZePbyoQQVnSnhsvNMAyPa3+2z/LYTQcdK6XCc3NDwzBqoL8dP4xeprgBeFMpFZmLj52CPvqwETow9nml1LIcrtsCtM3hKd5SSs3JTZ1CiKLpcNRhRmwcwU/BP1GtTDWWPraUQfUH4WAn708JkaPzwDxgIXAZaAnMAh4j818O1vTLL/DGG3pk1L8/zJwJ1arlwY3uXXKyDkmcMwf27YOKFfXhxa++anOlCiHywZ3+BbEmh8fW3+LaO35bNQyjJPpow2RgEHqF9yRgs2EYDyqlrt7hKd4A9gE/od8zu50DwCs3PBZxpxqFEEXTqdhTvL/5fZbtX0Zpx9JM6TCFoc2HUrJYSbNLE8I2HUU3Vv8FUoCe6CCMlnl0vxMn9D6t9euhTh3YsAE6dsyjm92b8+dh0SL45BP9Z39/WLIEBg4EJ2tP+YQQBcbtGq7n8+B+gwEPoI5SKhTAMIwDQAi6OZp1h48vq5SyGIbhxZ0brjil1F/3W7AQonCLSYph+rbpzNk1h3RLOkOaDmF0m9FUKmntzSZCFAIK2I7en/UDUBx4Dh2EkVcZMikpesnghAn6v6dM0edrFS+eRze8e/v3w9y5sGKFLrdbN90bduwoiYNCiNs0XEqpL/Pgfo8Df11vtq7d57hhGNuBHtyh4VJKWfKgJiFEEZSclszC3QuZtHUS0YnRDHhgAJPaT6J2+dpmlyaE7UlHr2/5CNgFVATGAa8BeRkGuGmTPlPr6FGdLjFnDri75+ENcy89HX7+WZe0eTOULAkvvaQzPOrUMbs6IYQtye9NCf7A9zk8fhh4wsr3amAYxhWgJHAEmKuU+szK9xBCFDAWZWHVwVWM2TyGiJgIOnl0Ynqn6TSs2tDs0oSwPQnAMvTboWHoNSoL0FOtvFxte+YMvPOO3ghVu7Y+sKpbtzy8Ye7FxWXGuoeFQY0aOtb9pZegfHmzqxNC2KL8brgqoLfU3igasOa3qUD08YrBQDn08sOlhmFUVUpNsuJ9hBAFyB9hfzB8w3D+Pfcv9V3r87+n/0dnz85mlyWE7bkAzEc3V5eApsA0oBd5E4RxXVoazJ8P48bptXnjxsGIETaxAer48cxY99hYaNkSpk6FXr10rLsQQtyKoZTKv5sZRgowUyk18obHJwPDlVK5+pZ1bQ9XCLdIKbzFx6wDugCVlVLxOfz9y8DLAC4uLo1Wr16dm6fNc/Hx8ZQuXdrsMsQN5HWxPbd7TULiQlh8fDF7Lu/BpbgLL9Z+kY5VOmJn2OVzlUWPfK3Yntu9Jk6nnKj+bXVcf3PFPsWeiy0vcvLJk1x54IrOFc5DzgcP4jNnDqXDw7nUtCmhQ4aQ6OaWtze9A6XgwIGyfPdddbZvr4RhKNq1u0CfPqfw84uz6r3ka8X2yGtim2zpdWnfvv0/SqnGd7ouv9+TuYyect2oPDlPvqxpFTpD6QFg541/qZRaDCwGaNy4sWrXrl0el5M7W7ZswVZqEZnkdbE9Ob0mETERjNk0hhUHV1DBqQIzO8/ktSavUdzBdjbbF3bytWJ7cnxNdqL3Z60HiqHXhbwDlXwrUcnqpxXfICoKhg+HZcugenX47jsq9upFRRPTJpKT4euv9f6sf/+FChX0oO3VVw3c3FwAF6vfU75WbI+8JrapIL4u+d1wHUbv47pRXSAoj+99/Tt3/o30hBCmuJRwiclbJ7Ng9wLsDDuGPzScEa1GUK5EObNLE8J2WNBJgx8BO9BvfY4CXgdc8+H+6emweLE+oCo+HoYNg7FjwcR3rqOidKz7woU61r1uXV3iwIE6FEMIIe5FfjdcPwAzDMPwuH5QsmEYtYCHgBF5fO8BQCJwMI/vI4QwSWJqInN3zWXatmnEpcQxqN4gJrSfQHXn6maXJoTNsEu2g0+BmejF+bWAucALQH71Onv2wP/9n/69XTtYsEB3Nya5Huu+cqWebj36qI5179RJYt2FEPcvvxuuJej3zr43DGMMeto0ETiJ/vYPgGEY7ug8pAlKqQlZHm8LVCbzvbfGhmHEAyil1ly7pjW6eVuLPui4LPqQ5ceBEbk4XFkIUcCkW9L55ewvPD3vaU7Hnaa7T3emdpxKQJUAs0sTwnacBJZA83nNIQZoBKwG+pB//xqIjobRo+HTT6FKFX1w1VNPmdLV5BTr/uKLEusuhLC+fG24lFJXDcPoAMwGlqOX+W0E3rwhyMJA5yDduKN9PNA2y3+/du3X9Y8BOHvt4yYAlYBU4AAwQCm1ynqfjRDCbGmWNFYeXMnkrZMJvhRMU7emrOi9gra12t75g4UoCtKB/wGLgJ8BBXHN4qg4taL+aZpffY7FAl9+qZcNRkfDG2/og4zLls2nAjLFxentYnPn6lj36tVh+nQYPFhi3YUQeSPfg0yVUpHo99Nud00EOfwYUEq1y8XzhwJd77E8IUQBkJKewvL9y5mybQrhl8N50OVBPqj7AeP6jsOQ9T9CwDngc3QU1Al0xsMIYDAcjDiYvxvODxyAV1+F7duhRQu9Qap+/fy7/zXHj+vE+aVLdax7ixYwZYqOdS9WLN/LEUIUIXJyhBCiwEhOS+aLfV8wbds0Tlw5QaOqjVj/5Hoeq/MYgX8GSrMlijYFbEZPs9YBaUAHdChGD8Dx2nUR+VRPbCy8/74+vKpcOX2A1XPPgV3+HcegFGzbppcNrl+vb/3EEzB0KDRrlm9lCCHukcVi4cyZM4SFhREWFkZoaCgPPvig2WXdNWm4hBA2LzE1kaV7lzJ9+3ROx52mmVszFnZbSFevrtJkCXEJ+BK9EzoYnTY4BH2ypBl7kZSC1avhnXfg3Dl4+WWYPBkqVsy3ElJSMmPd9+7Vse7Dh+tBW3XJ0BHCpqSmpnLixImMhiprcxUeHk5SUlLGtQ4ODkyZMsXEau+NNFxCCJuVkJrAp3s+5cMdH3Iu/hytarbiix5f0MmjkzRaomhT6LOzFgHfAMlAS2AM0BdwMqmuI0fg9ddh0yZo2FCPlZo2zbfbR0XpPI6FC3Wv5+en//vppyXWXQgzJSQkEB4eflNDFRYWxokTJ0hPT8+41snJCU9PT3x8fOjatSteXl54enri6elJzZo12bZtm4mfyb2RhksIYXPiU+JZuHshM3fOJOpqFO1rtWdVn1W0dW8rjZYo2mKBr9CN1kGgDPAi8Apg5iqbq1dh0iSYOVN3NgsWwCuvgL19vtz+wAEdgrFihY5179pVx7o//LDEuguRXy5fvpxjQxUaGsrZs2ezXVu+fHm8vLxo2rQpAwYMyGiovLy8cHV1LXQ/66XhEkLYjCtJV5j/93xm/zWbS4mX6OzZmbFtxtKqZiuzSxPCXP+glwyuBK4CDdCBGE+Rf2dn5UQpPcV6802IjIRBg+DDD3Xkex6zWDJj3Tdt0n3eCy/oWHdf3zy/vRBFjlKKs2fP5rj0LywsjMuXL2e7vlq1anh6etKlS5dsDZWnpyfli1gkqDRcQgjTXU68zMe7PmbOrjnEJMXQzbsbY9uMpVl12dUuirCrwNfoadZu9DLBp4D/AI3Jv0j3WwkL0/Huv/4KAQEQGAitW+f5bePjM2PdQ0MzY91feknv1RJC3Lu0tDQiIyNzbKjCw8NJSEjIuNbe3h53d3e8vLxo0qRJtobKw8ODkrKON4M0XEII01xKuMTsv2Yz7+95xCbH0qNOD8a2GUujao3MLk0I8xxCT7OWA1eAusA84GmgnIl1XZeUpDucqVN1nvrMmbrxyuNs9YiIzFj3K1egeXO9irF3b4l1F+JuJCYmEh4eflNDFRYWRun6ISUAACAASURBVEREBGlpaRnXlihRImM69fDDD2c0VF5eXtSsWZNi8sWXK9JwCSHyXdTVKGbumMmC3QtISE2gT90+jGk9hnqu9cwuTQhzJAHfoadZ29AR7k+gp1kPYf4067pff9XNVVgYPPmkbrbc3PLsdkrp47vmzIF16/R+rOux7s2b59lthSjwYmJicmyoQkNDOX36dLZry5Yti5eXFw0bNqRfv37ZJlVVq1bFLh+PciispOESQuSbs3Fn+WjHRyzas4iktCT6B/RndOvR+FfxN7s0IcwRgt6L9QU63t0TfW7Wc0Al88q6SWSk3qe1bh3UqQN//AGdOuXZ7VJS4JtvdKP1zz9QvjwMGwavvSax7kKA3k91/vz5W+6nunTpUrbrXV1d8fT0pFOnTtkaKk9PTypUqFDoQipsjTRcQog8dyr2FNO3TWfJ3iWkWdIY+OBARrUaRZ1KZhwSJITJUoEf0NOsDYA90BM9zeoA2NKbySkpMGsWTJyox02TJ+vztYoXz5PbXbigY9wXLNCx7r6+sGgRPPOMxLqLoic9PZ2TJ0/m2FCFhYVx9erVjGvt7OyoWbMmXl5e9O3bN1tD5eHhQenSZqbrCGm4hBB55kTMCaZtm8bn+z7Hoiw8++CzjGw9Eq8KXmaXJkT+iwSWAEuBc0ANYCLwAlDNxLpuZfNmfVLw0aPQo4ceN9WqlSe3OnhQh2B89ZWOde/SJTPWXVYzicIsKSmJ48eP5xilHhERQWpqasa1xYsXx8PDA09PTzp06JAt+c/d3R1HR0cTPxNxO9JwCSGsLiw6jKnbpvLl/i8xMHihwQuMaDWCWuVqmV2aEPkrHfgNPc36BX1g8aPoaVZX9HTL1pw9q6dYq1ZB7drw00/QrZvVb2OxwC+/6D5u40ZwcoLnn9ex7n5+Vr+dEKaJjY295dK/U6dOoZTKuNbZ2RlPT0/q169Pnz59si3/c3Nzk/1UBZQ0XEIIqwm+FMzkrZNZcWAFDnYO/KfRfxj20DBqlK1hdmlC5K+zwOfo/VmRgAswEhgMuJtY1+2kpekYwHHj9Jhp3DgYMUJ3QlYUHw9ffqknWiEhek/WtGkweLDEuouCSSnFhQsXbrn078KFC9mur1KlCl5eXrRr1+6m/VSVKlWS/VSFkDRcQoj7FnQhiEmBk/j68NcUty/OkGZDeLflu1QrY4vrpITIIxZgM3qatR5IAzoCM4EegC2nJ2/frpcPHjgAjzwC8+aBt7dVb3HihO7nlizRse7NmsHq1RLrLgqG9PR0Tp06dcvkv/j4+IxrDcOgZs2aeHp60rNnz2xR6h4eHpQpU8bEz0SYQRouIcQ9O3D+AJMCJ7EmaA0li5XknRbv8E6Ld3Ap7WJ2aULkn0vAMvTZWSFABWAo8DLgY15ZuXLhAgwfDl98oUdNa9boDshK77ArBTt26GWDa9fqp+3bV+/Pklh3YWvS09OJjIwkODiYkJAQNm/ezIwZMwgNDeX48eOkpKRkXOvo6Ejt2rXx9PSkTZs22fZT1apVi+J5FCwjCiZpuIQQd23v2b1MDJzI+qPrKeNYhpGtRvJWi7eoVNKWcqyFyEMK2IGeZn0LJKPPyxoH9AVKmFdarqSn61HTqFEQF6cz18eOBSslmaWkwLff6kZrzx4d6/7eezrWvYasMBYmuh6nHhwcnPErJCSE4OBgQkNDszVVTk5O+Pj4EBAQQI8ePbIt/6tevTr29ra4CVPYImm4hBC5tuvULiYGTuTnkJ8pW7ws77d9nyHNhlDBSTZeiCLiCvAVutE6BDgDLwGvAA+YWNddKHPsmO5+9uyBtm1h4UKoW9cqz33xYmas+9mzOtb9k090rHupUla5hRC5EhMTk9FI3dhcxcXFZVzn6OiIl5cXPj4+dO/eHR8fH7y9vfHx8eHIkSO0b9/exM9CFBbScAkh7mh75HYmBE7g97DfqeBUgUntJ/F609cpW6Ks2aUJkT/+QTdZK4EEoBE63r0/UBAaiaQk+PVXWLGChmvXQpUqOoN9wACrLB88dCgz1j0pSW8D+/xz6NxZYt1F3klMTCQ0NDTblOr6r6xBFXZ2dtSqVQtvb28eeughfHx8Mn7VqFHjlpOqo0eP5tenIgo5abiEELf0Z8SfTAicwKbjm6hcsjLTOk7j1SavUqa4bPgVRcBVYBV6b9YeoCTwFDrSvbGJdeVWejr8+SesXKn3Zl25ApUrc7JfP2p++imUvb83TCwW+O03vWzwjz90mOGgQTrW3UoDMyFIS0sjIiIix0lVZGRktmurVq2Kj48PPXv2zJhS+fj44OHhIXuqhKmk4RJCZKOUYuPxjUz4cwJbI7fiUsqFmZ1n8kqjVyjlWBDeyhfiPh1CT7OWA7GAPzAfeBqw9aGuUrB3L6xYoSMAz57V+7J699bTrI4dCd+2jZr30WzFx8N//6snWsHB4OYGU6fqWPeKFa34uYgiQynF6dOnc5xUhYeHk5aWlnFtuXLl8PHxoU2bNhkNlbe3N97e3pL+J2yWNFxCCED/wPst9DcmBE7gr1N/4VbGjY+7fMxLDV/CqZh1z+ERwuYkAWvQjdZ2wBHoh55mtQRs/VickBA9yVq5UndBxYrBo4/qJqt7dyhZ8r5vERmZGeseEwNNm+qzkfv0kVh3kTuXLl3KMawiJCSEhISEjOucnJzw9vbmwQcfpE+fPtmWAFasWFHOqRIFjjRcQhRxSil+DP6RiYET2XNmDzXL1uSTbp/wfP3nKe4gSzBEIReCXjL4BRANeAEzgEGArYdunj0LX3+tm6zdu/VerLZtdSBGnz46GvA+KQU7d2bGuoPEuovbi4+Pz9hXdWNzFR0dnXGdg4MDtWvXxsfHhw4dOmQLq3Bzc8NONv+JQkQaLiGKKIuysO7IOiZtncS+c/uoXa42Sx5bwrP1nsXR3tHs8oTIO6nA9+hp1kb0T8Ke6GlWe8CW/5135YrufFasgM2b9UaqBg1gxgx48kl9lpYVpKTobV9z5uhernx5ePddiXUXWkpKCuHh4TkuATxz5ky2a2vUqIGPjw/9+vXLNqmqVasWxWQ0KooIabiEKGLSLel8G/QtkwIncfjCYbwreLOsxzIGPDCAYvbyw08UYieAJcBnwDmgJjAJeAGoamJdd5KUBL/8opusn3+G5GTw9ITRo+Gpp8DPz2q3ungRFi/Wse5nzkCdOjo1/tlnJda9qLFYLJw8eTLHJYDHjx/HYrFkXFupUiV8fHzo3LlztkmVl5cXJa2wnFWIgk4aLiGKiDRLGqsPrWZS4CSOXTqGXyU/VvRewZP+T2JvJ4c3ikIqHfgVPc365dpj3dDTrC6Arf6vn56uJ1grV8J330FsLLi4wCuv6H1ZTZtaJc79usOHdQjG8uW6v+vcGZYu1fHusrKr8FJKERUVleOkKjQ0lOTk5IxrS5cujbe3N40bN2bAgAHZAivKW2H5qhCFmTRcQhRyqempfHXgK6Zsm0JodCgPVHmAr/t+TR+/PtJoicLrLHqStRg4CbgCo9GHFLubWNftKKUPI165UicMnjsHZcro/VgDBkD79uBgvR/bN8a6lyihJ1lDhoC/v9VuI2zAlStXsjVUWf8cGxubcV2xYsUyDgHu2rVrtiWArq6uElYhxD2ShkuIQiolPYVl+5YxddtUImIiaODagLX91tLDtwd2hrxlLQohC7AJPc36HkgDOgGzgccBW10xe+xYZsJgaCg4OkK3brrJ6tZNH3BlRYmJdixcmBnrXq0aTJkCL78sse4FWVJSEmFhYTmGVZw/fz7jOsMwcHd3x8fHh2effTbbEsCaNWviYMWmXgihyVeVEIVMUloSn//7OdO2TeNk7EmaVGvCvK7z6ObdTd6dFIXTRWAZOm0wFKgIvAm8DHibV9ZtnT6dmTD4zz96eWD79jBihJ5olStn1dulpuozkNetg//+twXx8dCkib59374S615QpKWlceLEiRyXAEZGRqKUyrjW1dUVHx8funfvnm1S5eHhQYkSJUz8LIQoeqThEqKQSEhNYMk/S/hwx4eciTtDyxotWfLYEjp7dpZGSxQ+Cn1e1iLgWyAFaAV8APQBbPHfkzExej/WypV6f5ZS0LgxzJqlEwarVbPq7RIT4fffdajhjz/C5cv6OK7mzaOZNMmF5s2tug1MWIlSirNnz+YYVhEWFkZqamrGtWXLlsXHx4dWrVplm1R5e3vj7Oxs4mchhMhKGi4hCrj4lHgW7VnERzs+IupqFG3d27K813La12ovjZYofGKAr9CN1mHAGT3JegUIMLGuW0lM1MmCK1fq31NSwMsLxo3TCYN16lj1djEx+jZr1+r9WQkJOtL98cehVy8dhrFr1xFatHCx6n3F3UtJSeHYsWMcPnyYoKAgtm7dyltvvUVISAhXr17NuK5EiRJ4eXlRt25devbsmS2sonLlyvJ9XogCQBouIQqo2ORYFvy9gFl/zeJiwkU6eXRibJuxtHFvY3ZpQljfbnSTtQpIBBoDS4H+gK3Flael6QnWihW684mLA1dXePVVvS+rcWOrjpbOnYPvv9fLBTdt0ssHq1WD556D3r2hTRtZMmim1NRUQkNDOXz4MIcOHeLw4cMcPnyY4OBg0tPTAbC3t8fV1ZV69erRtm3bbEsAq1evLocAC1HAScMlRAETkxTDvF3zmP3XbC4nXaarV1fGthlLixotzC5NCOuKRzdYi4C9QElgIHqa1djEunKiFPz9t55kff01nD8Pzs56g9TAgdCuHdhbLxX0+HHdYK1dCzt26Nt7ecFbb+lJVtOmEuee39LT0wkPD8/WVB06dIhjx45lLAM0DANPT0/8/f3p3bs3/v7++Pv7U6dOHXbu3Em7du3M/SSEEHlCGi4hCojoxGjm/DWHubvmEpscy2M+jzG2zViauDUxuzQhrOsguslaDsShlwouQDdbZU2sKydHj2YmDIaFQfHi0L27nmQ9+qjOWrcCpfRZWWvX6kZr3z79eP368MEHepLl7y97svKDxWIhIiIiW1N1+PBhjh49SlJSUsZ1tWrVIiAggG7duuHv709AQAC+vr44WTl1Ughh+6ThEsLGXbh6gVk7ZzF/93ziU+Lp7debMa3H0KBqA7NLE8J6ktDhF4uAHUBxoB/6gOIWgC01EqdO6XOyVq6Ef//Vo6QOHWD0aN35lLVOV2ix6KHZ9UlWaKhuqFq2hJkz9SSrdm2r3ErkQCnFyZMnb1oKGBQUREJCQsZ1NWrUwN/fn44dO2Y0Vn5+fpQuXdrE6oUQtkQaLiFs1Ln4c8zYMYNP9nxCYmoi/fz7Mbr1aB5wecDs0oSwnmB0nPsyIBod4z4TGISOd7cV0dGZCYN//qlHTk2a6FOD+/WDqlWtcpvUVAgM1A3W+vVw5ow+67hjR3j3XejRQ28HE9ZzPRUwa1N1/VdcXFzGdVWrVsXf35/BgwcTEBCAv78/devWpayVGmwhROElDZcQNuZ07Gk+2vERn/7zKSnpKTwV8BSjW4/Gr7Kf2aUJYR0p6IOJF6EPKnYAeqGnWe2xnWlWQgL89JNusn75RXdDPj56Dd9TT4G3dQ75uh7fvm4d/PBDZnx7ly56YNatm9WP5SqyoqKibtpjdfjwYWJiYjKuqVy5Mv7+/gwaNChjj5W/vz8VKlQwsXIhREEmDZcQNiLySiTTt01n6b9LSbek80y9ZxjVahTeFW315FYh7lIEsAT4DDgPuAOTgRcAW5napKXBxo26yVq7FuLj9fTqjTf0vqyGDa2yUerKlcz49l9/1b1duXLZ49tLlrTC51NEXbp06aam6vDhw1y8eDHjmvLlyxMQEED//v0zlgL6+/tTuXJlEysXQhRG0nAJYbLjl48zddtUlu1bBsBz9Z9jRKsReJT3MLcwIawhHfgRPc36FT296oaeZj0CWC+4794pBbt26Rj3b76BqCi9D+vJJ3XCYJs2VkkYPH8+M75940Y9MKtaFQYN0pOstm0lvv1uXbly5aam6vDhw5w7dy7jGmdnZ/z9/enZs2e2xsrV1VXOsBJC5It8b7gMw6gBzAYeRv/o3QC8qZSKzMXHTkGHATcCKgDPK6WW3eLawcA7QG30+6qzlVKLrPApCGEVIZdCmLJtCsv3L8fezp7BDQczvNVwapataXZpQty/o8DX0Hxhc4gCqgJjgJcAW/lfPCgoM2Hw+HGdKPjYY3qS1bWrThy8TxERmaEX27fr3s7TE958U0+ymjWT+PbciI+PJygo6KblgKdPn864plSpUtStW5cuXbpkNFX+/v5Ur15dGishhKnyteEyDKMkesV+MnpLtAImAZsNw3hQKXX1dh8PvAHsA34Cnr3NfQajt2FPRTd0HYGFhmEYSqlP7vsTEeI+HLlwhMlbJ7Pq0Coc7R15venrvNfyPdyc3cwuTYj7cxhYg04bPKwfSmicQIlPSsBjgC1Mb06ezEwY3LdPdzudOsH77+sOyNn5vp5eKd3HXY9v//df/Xi9enrrV69eEBAg8e23kpCQwJEjR25aDnjixImMa0qUKIGfnx8dOnTIaKoCAgKoWbOmHBAshLBJ+T3hGgx4AHWUUqEAhmEcAELQR1nOusPHl1VKWQzD8OIWDZdhGA7oXQHLlVKjrz282TCMasBEwzCWKqVSrfC5CHFXDkUdYlLgJL45/A1OxZx4q/lbvNvyXVxL28rmFSHukgIOoRusNcAR9LqFVsDHQG84EHLA/MNco6NhzRrdZAUG6q6oWTOYO1cvG3Rxua+nt1hg9+7MJiskRDdULVrAjBm6yfKQFcLZJCUlcezYsZuWA4aHh6OUAsDR0RFfX19atmyZLRmwdu3a2FvxEGkhhMhr+d1wPQ78db3ZAlBKHTcMYzvQgzs0XEopSy7u0QKoDHx1w+PLgefR/xTYfDdFC3E/9p3bx8TAiaw9spbSjqUZ/tBw3m7xNpVLycZsUQApYD+ZTVYwYAe0AV5Hpw1mTUgPye8Cr0lI0JF/K1fCb7/pDVO+vjBhgk4Y9PS8r6e/Ht++bp3+dT2+vUMHePttHd9upaT4Ai0lJYWQkJCb9liFhIRgsegf6Q4ODvj4+NCwYUOeeeaZjMbKy8sLBwfZai6EKPjy+zuZPzoM+EaHgSeseA/Q77veeA+AukjDJfLB7tO7mRg4kR+Df8S5uDNj24xlaLOhVCxpS4cLCZELCthLZpMVhm6y2gNvAz2B+xsSWUdqKmzYoJusdevg6lVwc4OhQ/W+rPr172stX2Ii/PGHnmT9+KMenDk5ZY9vL1/eip9PAZKWlkZoaGi2purQoUMEBweTlpYGgJ2dHV5eXvj7+9OvX7+M5YA+Pj44Ojqa/BkIIUTeye+GqwJwOYfHowFr/Zi6flDGjfeJvuHvhcgTO0/uZGLgRH4N/ZXyJcozod0E3mj2BuVKyEE6ogBRwG4ym6wIdKJgR2A4usmyhSGtUrBzp26yvvkGLlzQ+eoDBuiEwdat7yuV4np8+7p1Or796lX99I89ppcKPvJI0YpvT09P5/jx4zftsTp69CgpKSkAGIZB7dq1CQgIoEePHhmNla+vLyVKlDD5MxBCiPxnXF8rnS83M4wUYKZSauQNj08GhiulctUAXtvDFUIOKYWGYYxGB3GUUEolZ3ncAUgFximlJubwnC8DLwO4uLg0Wr169d18ankmPj6e0qVLm12GuEFOr8v+mP0sP7Gcf2L+wdnBmX41+tGzWk9KOZQyqcqiRb5WrMACzkecqbylMpW3VqbE+RJY7C1cbnyZC20ucPGhi6SVTburp8yr16Xk8eO4bNhAlU2bcDp3jnRHRy61bMn5Tp2IbtIEdR8Tk+joYuzYUYmtWyuxd2950tLsqFAhmVatLtK69UXq14/BwSH/fnZaW25eE4vFQlRUFMePHyciIiLj98jISJKTM3604uLiQq1atTJ+1a5dG3d3d2ms7oF8D7M98prYJlt6Xdq3b/+PUqrxna7L7wnXZXKeMJUn58nXvcg6yTqb5fEKN/x9NkqpxcBigMaNGyvTN3lfs2XLFvM3nIubXH9dlFJsjtjMhD8n8OeJP6lSqgofPfwR/2n8H0o72sY3g6JCvlbukQXYgZ5ifQecAhyBzkBfsHvcjorlK1KRe1sKa9XXJTISVq3S06wDB/TZWA8/DAMGYN+zJ1XKlKHKPT719fj2detg2zY9OPPw0PHtvXtDs2bFsbNzAwp+mmjW10QpxenTp2+KWw8KCuLq1czgYDc3N/z9/enevXvGHqu6detSpkwZkz6Lwke+h9keeU1sU0F8XfK74TpM5h6rrOoCQVa8B9fuk7Xhqnvtd2vdRxRhSin+F/o/JgROYMfJHVQtXZU5j8xhcKPBlCxWhNYXiYIpHdhGZpN1FigOdEEfpvEYUNa06rK7eDEzYXDrVv1YixYwbx706wdV7q3Fuh7ffv2MrOvx7Q8+mJkQ/8ADhSe+XSnFqVOnOHr0KN9//z0rV67MaLJiY2MzrnNxccHf358XX3wxYymgv78/5crJkmghhLhX+d1w/QDMMAzDQykVDmAYRi3gIWCEle6xE7gIDESfwXXd0+jp1nYr3UcUQUopfg75mff+fY+jgUep7lyd+V3n82LDFynhIEtohA1LAwLRTdZa4DxQAngU6At0A+7vCCrruXo1e8JgWhrUrQuTJ0P//vecsW6xwJ49mfHtwcH68ZYt4aOPdJN1n+GFpktNTSU0NJSjR49y5MgRjhw5wtGjRzl69Cjx8fEZ11WsWJGAgACefvrpjHOs/P39qVhRQn2EEMLa8rvhWoIODv7eMIwx6G3ZE4GT6IOKATAMwx2dgzVBKTUhy+Nt0du0rx9c1NgwjHgApdSaa7+nGoYxFn3Q8Wl009UBeAF4QymVkrefoiiM0i3prAlaw5RtUzhw/gCuJVz5tPunDKo3iOIOxc0uT4icpQJb0E3WOuACUBLdXPVFN1u2svI1NVVHAK5YAevX61j3GjV0xvqAAXr0dA/jprS07PHtp0/r+Pb27fVywR49oFq1PPh88lhcXFxGI5W1sQoNDc1IBQSoXr06fn5+PP/88/j5+eHn50d0dDS9evXCKCzjOyGEsHH52nAppa4ahtEBmI0+F8sANgJvKqXis1xqoPOwboyWGg+0zfLfr137df1jrt9nkWEYCngHeA+IBF5XSi204qcjioCU9BSW71/O9O3TCYkOoU7FOizrsQy3aDc6NepkdnlC3CwV/V11DbAeuASUQi8T7IteNmgrOS4WC+zYkZkweOkSVKgAzzyjm6xWre4pYTApKTO+/Ycfsse39+oF3bsXjPh2pRTnz5/PaKayNlanTp3KuM7BwQEvLy/8/Pzo3bs3vr6++Pn5UadOnRz3WG3ZskWaLSGEyEf5fqKgUioS6HOHayLI0kBlebzdXdznU7JMzYS4GwmpCSzdu5SPdnzEqdhTNHBtwJon1tDTtyf2dvZs2bLF7BKFyJSCnuV/iz7p8DJQBn3UfF/gEcDJtOpudvCgbrJWrYITJ3Q31LOnbrI6d4Z7SBiMjc2Mb//lF70qsWxZHd/eu7dtx7dfj1rP2lBd/z0mJibjutKlS+Pr60v79u3x8/PLaKw8PT0pVqyYiZ+BEEKI25Ej3IXIIiYphoW7FzL7r9lcTLhI65qtWfLYEh7xfETeERa2JQn4A91k/QBcQQdd9EA3WQ+j92jZioiIzITBQ4d0wuAjj+h9WT16wD1E/EZF6QnW2rWwcSOkpICrqx6Q9eoF7drdU++WZxISEggODr6psQoODs44wwrA1dUVX19fnnrqqWyNlZubm3wfEkKIAkgaLiGAqKtRzP1rLvN3zyc2OZauXl0Z2Wokrd1bm12aEJkSgf+hm6wfgTigHNALeAJ9KLEtbSm8eJFq69fDmDGw/Vpe0UMPwYIF8MQTUPnuT04+cSIzWXD7dr0q0cMD3nhDT7KaN7+vc46t4uLFizctATxy5AgnTpzg+tmXdnZ2eHh44OvrS9euXTMaK19fX8oXhPWOQgghck0aLlGknbxykhk7ZrBk7xKS0pLoU7cPo1qNokHVBmaXJoSWAPyKbrJ+Aq6iTxXsh26y2qPPzbIlx4/D9OnwxRf4pKRAQABMnaoTBmvVuqunUgqOHMlMFty7Vz/+wAMwdqyeZN1jnsZ9sVgsREZG5thYXbx4MeM6Jycn6tSpQ/PmzTOCK3x9ffH29pbDgYUQooiQhksUSSGXQpi+fTr/3f9fFIqnH3ya4Q8Nx7eSr9mlCQHxwC/oJusXdNNVCX3YRV+gHWCLW3aCgmDaNL1s0N4enn+e3U2b0uSFF+7qaZSC3bszJ1nX49tbtIAPP9RNlpdXHtSfg+TkZEJCQm7aW3Xs2DESEhIyrqtYsSJ+fn707NkzIw3Q19cXd3d37MweuQkhhDCVNFyiSNl/bj9Tt03l26BvKWZXjJcbvcx7Ld/DvZy72aWJoi4OPcFag55oJQIuwCB0k9UG2/2O/c8/MGWK7o5KldJ562+/DdWqcTWXATNpafpc47VrdSr8qVM6vr1du/yJb79y5cpNk6ojR44QHh6OxWLJuM7d3R0/Pz/atm2brbGqfA/LI4UQQhQNtvrjWwir2nlyJ5O3TubnkJ8p41iG91q+x5vN38S1tOudP1iIvHIFvRdrDfAbkAxUBV5EN1mt0Adk2KrAQN1o/e9/UK4cjBsHQ4ZALg/PvR7fvm6dDr+4dAlKlNDx7ZMn6/j2ChWsV65SijNnzuTYWJ07dy7jumLFiuHj40P9+vXp379/RmPl4+NDqVK2kqkvhBCioJCGSxRaSik2hG9gyrYpbInYQkWnikxsP5HXmrxGeSfZlC5MchmdKrgG+B0d6e4G/AfdZLXk5hMIbYlSusGaPBm2bYMqVfQywv/7P3B2vuOHx8bq2Pa1a+HXXyE+Xse3d++eGd9+vz1Namoq4eHhOcasx8XFZVzn7OyMn58fXbp0yUgC9PPzo3bt2jg4yI9HIYQQ1iE/UUShNBpiZwAAIABJREFUY1EWfjj2A1O2TmH3md1UK1ONWZ1nMbjRYEo73n30tBD37RL6fKw16POyUoGawOvoJqsZtt1kgY4DXLdOT7T27oUaNWDePHjxRX2O1m1cj29ftw42bNDx7S4uMHCg3o/Vvv29xbfHx8dz7Nixmxqr0NBQUlNTM66rVq0afn5+DBo0KFtj5erqKjHrQggh8pw0XKLQSLOksfrQaqZum0rQhSA8ynuwuPtinq33LMUdbCkrWxQJF4F16CZrE5AG1ALeRDdZTcjheHcblJqqz8+aOhWOHgVvb/j8c90t3aZLOncOvvkGPvusPocO6X6tdm14/fXM+Hb7XCyXVEoRFRV10xLAo0ePcvLkyYzr7O3t8fLywtfXlx49emSLWXfOxeRNCCGEyCvScIkCLyktiWX7lvHh9g85HnOcgCoBrOi9gn7+/XCwk//FRT6KQjdZ3wJbgHTAE3gX3WQ1pGA0WaA3WH3xhY4FjIiAevXg66+hT59bdkrx8XqKtWKF3pulmywHxozRk6x69W4d356enk5ERESOjdXly5czritVqhS+vr60adMmW2iFl5cXjrZ0yrEQQghxjfxrVBRY8SnxfLrnU2bunMnZ+LM0dWvKnC5z6O7THTvD1tdniULjLJlNViBgAXyAEegmqx4Fp8kC3TV9+inMnAlnz+pR1Lx50K1bjt1Saqpurlas0OmCCQn6qK2RI/UQ7Pz5PbRr1y7j+sTERIKDg29qrIKDg0lOTs64rkqVKvj5+dGvX79sjVX16tUlZl0IIUSBIg2XKHCiE6OZt2seH//9MdGJ0XSo3YHlvZbToXYH2Y8h8sdpYC26ydoGKMAPGINusgIoWE0WQHQ0/9/efcdXXd79H399EvYesvcIMyQBAogM0dtZBZXiRlC5nbejbtH+Ohyot1ZqtUNaW1vB2rpqta16VxsFFJSRQNh772WAkITk+v1xnZOTBYTkJOckeT8fj+/jkO845/rmIsl5n+v6fr688gq89JL/93nn+RQ1ZkyxoOUcfPON3/zWW7BnDzRvDpMmwcSJcNZZkJHxHenp6fzjH//go48+yg9WGzduxDkHgJnRrVs3+vbtywUXXFAoWLUIZ3lCERGRCFLgkipjR8YOps+bzq8X/JrD2YcZ13scU0dO5cyOZ0a6aVITbAHexYesrwLr4oEfA1cC/SLUrvLatQtefBF+9Ss/ujVuHDz2GAwbVmzXtWt9yJo50/+7bl0YO9Zx7rk7aN58HitWpPH882ksWbKEDRs25B9Xt25devfuzdChQ5k0aVJ+sIqLi6P+KQpuiIiIVHUKXBL1NhzYwPNfPc/vF/+enLwcrom/hkdHPMqANgMi3TSp7jbiQ9Y7wLzAukTgSfxIVp/INCssNm2C55+H117zZQOvvtrPAxxQ+Odqzx5/6dbMmTB/Ppg54uK2Mnr05xw58if++c95vPPOUQBiYmLo1asXQ4YMYcqUKSQkJJCRkcHVV19NbGkqZIiIiFRDClwStVbsWcEzc57hzaVvEmMx3Jh0Iw+PeJieLXpGumlSna3HB6x3gG8D6wYB0/AhKy5C7QqXVav8fbNmzvRTBSdPhocf9tUHAzIycpkxYyezZhmpqW1wLpbatZcBr+Pcn1m9eht79jQnMTGRW265hYSEBBISEujXrx8NGjQo9HIpKSkKWyIiUqMpcEnUWbh9IdPmTOP9Fe9Tv3Z97hl2D/cPv5+OTTpGumlSXa0hFLIWBdYNAZ7Dh6zuEWpXOKWm+tLub78N9erBnXfCgw+yv2FDlixZwqIP/8Wnnx5nwYLe7Ns3Gn835s2Y/YwePb5m6ND6gWA1g8TERNq3b69rJkVEREpBgUuignOO2Ztn8/Tsp/l03ac0rduUx0c9zj3D7qFVw1aRbp5URysJhay0wLozgReA7+PvmVUdfP01PP00/OMf5DZqxMqxY3m/Sxe+XruW1DOHs317G2AicA3Qjlq1DhMfn86llx5kwoQ29O9/D/XqPRzhkxAREam6FLgkopxz/Gvtv5g2expzt8yldcPWPPtfz3LHkDtoUlc3K5UwW44vevEOkB5YNwKYjg9ZnSLUrjDbs3s3W15/nVYzZtBp3ToOxMby89hYXjp8mEN//zu1asXRsuU9ZGbOADpQu3Ye552XzZQpjksuaUS9eipEIyIiEi4KXBIRuXm5vLfiPabNmUbqzlQ6NenEyxe/zJSBU6hfW1XLJEwcPli9gw9aK/Dl2kcBvwDG42fOVVHZ2dmsWrWKtDRfGXBpWhptvvmGOw4eZBi+ev2PGjcmdcgQuvQbxeUZF5OWFk9qakN27YLRo30Z9wkTYmjevF6kT0dERKRaUuCSSpWdm82sJbN4du6zrN63ml4te/GHy/7AdQOuo05snUg3T6oDh58iGAxZq4EY4GzgLuAKoF3EWldmO3fuZMmSJSxZsiQ/YK1YsYKcnBxigetiY/lF7drEHTvGwZYtWT5pEg3vuJ/4xR1Jm+XvZZyTA/36+Uu5rr0WunSJ9FmJiIhUfwpcUikyczL53aLf8fxXz7Pluy0MbDuQt698myv6XEFsjCqYSTk5aLSqEXyCD1prgVjgHOB+4HKgTQTbdxqysrJYvnx5frgKLrt3787fp0OHDiQkJDD2ggsYd/AgiZ98Qt0tW6BPH3IfeYyFba5m1luxvDMYMjKgfXu49164/npITCx2H2MRERGpQApcUqEOHTvErxf8munzprP7yG5GdBrBq5e+ykU9L1KFMym7PGAZ8EVg+RKSdyf7kPVfwCPAZUAU11txzrF9+/Zio1YrV64kNzcXgHr16hEfH8+ll16aX3o9ISGBlvXqwe9+5++jtW0bbnAyqff9kVnbxvDmo8b27dC4MUyY4EPWmDGgyuwiIiKRocAlFWLv0b28NO8lXv7mZQ5lHeLCHhfy+KjHGdVlVKSbJlVRLrCEQgGL/YFtnYELYWX7lfR5qA+0jFAbTyIzM5Ply5fnh6rgsm/fvvx9OnfuTEJCApdddhmJiYkkJCTQs2dPatUq8Gv60CH45S9h+nTYu5fNw67kzQufZub8niy736hVC773PR+yxo6F+rocUkREJOIUuCSstn63lZ999TNmLJpBZk4m4/uOZ+rIqQxuPzjSTZOq5DiwmFDAmg0cCmzrjh+9OjuwdPWrd6bspE/LPpXc0MKcc2zZsqXYqNXq1avJy8sDoEGDBgwYMIDx48cXGrVq1qzZiZ94zx74+c/hlVc48F0M78T/lJkdJ/Pl/KYwH0aMgF/9Cq68Es44o5JOVkREREpFgUvCYu3+tTw35zn+mPZH8lweExMm8siIR+jbqm+kmyZVQQ6wgFDAmgtkBLb1Aq4iFLCi5P7XR44cYdmyZcVGrQ4ePJi/T7du3UhISOCqq67KD1bdu3cntrTz+7ZuhRdeIOvV1/nHsf9iZodP+UfmELLTY+jdG558Eq67DrpXhxszi4iIVFMKXFIuS3ct5Zk5z/CXZX+hdkxtbhl0Cw+NeIiuzbpGumkSzbKAbwgFrK+Ao4Ft/fD34T0bGE3EKwo659i4cWOhUJWWlsbatWtxzgHQqFEjEhISuOaaa/KD1YABA2jSpIz3klu7lrznnmf2H9YyM+9a3qm9jYM0pM1xuPN/fCn3QYNU/EJERKQqUOCSMpm3dR7TZk/jw9Uf0qhOIx4c/iD3Db+Pto3aRrppEo0ygXn4cJUS+HcW/p5YA4AphAJWBAtdZGRkkJ6eXmzUKiPDD7eZGT169CAhIYGJEyfmh6uuXbsSExNT/gakp5P+yBvM/GcL3uSHbKETDRvkMf77MUycCOeeC7X0W1tERKRK0Z9uKTXnHJ9v+Jxpc6bx+YbPaVG/BT8d81PuHno3zes3j3TzJJocwY9aBUewvgGy8ffDSgLuxAesUUCLym9eXl4e69evLzZqtX79+vx9mjZtSkJCApMmTcoPVvHx8TRq1Cjs7dn6USp/fiSVWcuTSOM5Yi2XC8/N4bkpMG5cDA0bhv0lRUREpJIocMkp5bk8Plz1IdPmTOObbd/QrlE7fnbBz7h18K00qhP+N59SBX2Hv+4qGLAW4AtfxAKDgXvxAWsk0LRym3bo0CGWLl1aqIjF0qVLOXLkCAAxMTHExcUxePBgbr755vxw1blz5wq9dcGhg473nlnFzN9m8p8DiTiSGNZhKy/ffYSrbmpI69aq4y4iIlIdKHDJCR3PO85fl/2VZ+Y8Q/rudLo3786rl77K5MTJ1K1VN9LNk0g6AMwhFLAW4e+NVRsYAjyED1hnAY0rp0m5ubmsXr260HTAtLQ0Nm3alL9P8+bNSUxMZMqUKfnBqn///jRo0KBS2pidDR//yzHzhR38fW5Lslwfesau58fnf811zyUSNzBKKoKIiIhI2ChwSTFZx7P4Y9ofeW7uc6w/sJ7+rfoz84qZXB1/NbVi9F+mRtqLL80evAZrCeCAusAw4HF8wBoOVEJ2OX78OCtXrmThwoUsWLCABQsWsHjxYrKysgCIjY2ld+/eDB8+nNtvvz0/XHXo0KHSb7jtHHz1Fcx8I4+/zsph/+G6tKIWtzZ+k4m3N2bITy/F6qvMoIiISHWld8+S70j2EWYsnMELX7/A9oztDGk/hBcveJGxvccSY2EoCCBVxy78zYWDI1jpgfX18aHqJ/iANQyoV7FNCY5cBYPVwoULWbx4MUeP+rKGjRo1YtCgQYwdO5ZLLrmEhIQE+vXrR716FdywU1ixAmbNglmzHBs3GvUtiyvce1zf4QvO/+lIak+aCLVrR7SNIiIiUvEUuIQDmQd45ZtXeGn+S+zL3Mc5Xc/hT5f/iXO7nVvpowESIdsJhasvgJWB9Q2BEcC1+IA1BKhTcc3Iy8tjzZo1+cFqwYIFLFq0KP96qwYNGjBo0CBuueUWkpOTSU5OJi4ujtjYWFJSUhgzZkzFNa4UduyAt96CmTNh0SKIsTzOr/slT/Aal8evp/GP7oMrfg2lvQ+XiIiIVHkKXDXYrsO7mD5vOr/69ldkZGcwttdYpo6cyvBOwyPdNKlomykcsNYG1jfBF7a4CR+wBuGvy6oAeXl5rFu3rli4CpZgr1+/PklJSdx8880kJyczePBg+vTpU/qbBleSjAx4/30fsj77DPLyILnjDqY3+hXXHP4tbQf3hMcfh4su0o2zREREaiAFrhpo08FNPP/V87y2+DWyc7O5qv9VTB05lYQ2CZFumlQEB2wgFK5SgGAdieb40ux34ANWEr6yYLib4Bzr168vdM3VokWLOHToEAB169YlKSmJSZMmMXjwYJKTk+nbty+1ovSmUzk58Omnfsrg3/4GmZnQrUsuj42Yw/WpD9Fn67dwwQXw2F9g9GgFLRERkRosOt/NSIVYuXclz855lllLZ2EYkxMn8/CIh4lrGRfppkk4OWANhUewtga2nYG/ufD9+IA1AH9vrHC+vHNs3LgxP1wtXLiQhQsXcuDAAQDq1KlDYmIi1157bf60wH79+lE7yq9ncg7mz/ch6623YO9eaNkSbrzqCBOzfs/wv0/FNh2BK66Aqb+EIUMi3WQRERGJAgpcNcCiHYt4Zs4zvLv8XerVqsddQ+7igbMeoGMTlaCuFhywnMJFLnYGtrXBB6vg0g8I42CLc44tW7YUKmixYMEC9u/fD0Dt2rVJSEjgyiuvzJ8WGB8fT506FXghWJitWeND1syZsG4d1KsH48bBxPN3ceG3T1Hnj7/1Q17XXgtTp0L//pFusoiIiEQRBa5qbM7mOTw9+2k+XvsxTes25bFRj3HvsHtp1bBVpJsm5ZEHLCUUrr7El20H6ACcSyhg9SJsAcs5x7Zt2woFqwULFrB3r3/xWrVqER8fz/jx4/PD1YABA6hbt+rds233bj+KNWsWfPONnxF47rnwwx/C+P6raPLKNLh9li9+ceON8PDD0KNHpJstIiIiUajSA5eZdQKmA+fj3wr+G/iBc25zKY6tBzwJTASaAanAI865L4vstxHoUsJTXOGc+1u5TiDKOef4ZN0nTJs9jdmbZ9OqQSue+a9nuCP5DprWaxrp5klZ5AJpFA5YBwLbugDfIxSwuhO2gLV9+/ZC4WrhwoXs2rUL8Pe56t+/P+PGjcu/5iohISHipdjL48gR+OADP5L16aeQmwtJSfDCC3DNNdBh1yKYNg1ufg/q14d77oEHHoAOHSLddBEREYlilRq4zKwB8DmQBUzGT4Z6CviPmSU4546c4ileAy4BHgLWA/8DfGJmw51zqUX2/QR/t6CCVpXvDKJXnsvjvRXvMW32NBbvXEynJp34xUW/YMqgKTSoXQl3opXwOQ4sIhSw5gCHAtt6AFcQClglfaxQBjt37iw0arVw4UJ27NgBQExMDP369ePiiy/OD1eJiYnUr18/PC8eQceP+8qCM2f6SoNHjkDnzn7A6vrrA7MD58yB/34aPv4YmjaFxx6De++FVhopFhERkVOr7BGuW/Cfwfd2zq0FMLMl+Ev8bwNePNGBZpYIXAfc7Jz7Q2DdF8Ay4AlgXJFD9jrn5oX9DKJMTm4Oby59k2fnPsvKvSvp1bIXvx/3e65PuJ46sVXnOpkaLRv4ltA1WHOBw4FtvYGrCQWsMAym7N69u9Co1YIFC9i2bRsAZkbfvn0577zz8gtaJCYm0rBhw/K/cJRwDhYu9CHrrbdg1y5o1swHrOuvh5EjIcacH+a642mYPduHq2nT4M47fegSERERKaXKDlzjgHnBsAXgnNtgZnOByzhJ4AocmwP8pcCxx83sLeBRM6vrnMuqoHZHncycTH6/+Pf871f/y+ZDm0lsk8hfJvyF7/f9PrEx0XWfIiniGDCf0AjW10BmYFt/YBI+XI0G2pbvpfbu3VssXG3ZsgXw4apXr16MGTMm/5qrgQMH0qhRo/K9aJRavz5U/GL1aqhTB8aO9SHre9+DunXxN9H62998uFq4EDp2hJdegv/+b2igkWIRERE5fZUduPoDH5SwfhlwZSmO3eCcO1rCsXWAnoF/B401s6P4uwotBp6tDtdvfZf1Hb9Z8Bte/PpFdh3ZxVmdzuLXl/yai3tejOleP9HpKDCPUMCah59Ua0ACftw3GLDOKPvL7N+/n0WLFuVPC1ywYAGbNm3K3x4XF8fIkSPzpwUOHDiQJk2alP0Fq4C9e+Gvf/Uh6+uv/boxY+Chh2DCBD+yBfi5hW/8GZ55BlasgJ494Xe/gxtu8MlMREREpIzMOVd5L2aWDbzonHu0yPqngEedcycMgGb2KdDEOXdmkfXnAf8HjHbOzQ6sexk/SWsDvjD2Xfi3tDc452ae4PlvBW4FaNOmzeC33nqrbCcZZocPH6ZRo0YcyjnEu1vf5f3t73P4+GGGNB/C9Z2vJ6FpgoJWBAT7pSSxmbE0SW9Cs7RmNEtrRuOVjYk5HoOLcRzueZiDiQc5mHiQQwmHON74eJlff/Xq1axatYpVq1axZs0atm/fnr+9ffv29OrVi969e9O7d2/i4uKq7chVULBPsrJimDu3JZ991ob581uQmxtDt26HOf/8XZx77m7atAkNhMdkZ9Pm44/p/NZb1N+xg8PdurH5+uvZM2YMLlYjxeFwsp8ViQz1SXRSv0Qf9Ul0iqZ+OeeccxY655JPtV8kysKXlPBKkxistMc65+4utIPZ+/hxhWeAEgOXc24GMAMgOTnZjRkzphRNqnhvf/I2n2d9zqsLX+VozlHG9x3P1JFTSW5/yr6VCpSSkkL+/5FD+MIWwWuwFuArC8YCyeTfZNhGGI2bNqYxjelEp1K/1nfffZc/chWcFrh2bf6sXLp168ZZZ52Vf83VoEGDaN68eXhOtIrIzoaXX04jPT2Rd9+FjAxfPPD++2HiREhIaAQ0wlcdAQ4fhhkzfAnCHTtg6FD4zW9odOml9IsJ852ga7hCPysSFdQn0Un9En3UJ9GpKvZLZQeuA0CLEtY3J1To+kT2A51PcGxwe4mcc7lm9jbwnJm1c87tKE1jI+21Ra9xx/w7yCOP6wZcx6MjH6Vfq36Rbpbsg5ZzW8KHQAr+5gR5QG1gKPAIfjz1LPx7/NOQkZHB4sWLC1UMXL16df72zp07k5yczM0338zgwYMZPHgwLVu2DMtpVRXZ2bB0qb/EauFCWLQIliyB7OxEmjSBK6/0IWv0aH+brEIOHIBXXvHXZe3bB+ecA2+84W+ypZFiERERqQCVHbiW4a/FKqofsLwUx15hZg2KXMfVD1/nbW3Jh+ULvpuqvDmU5TS4/WAubncxP5/wc7o17xbp5tQ8h/H/K9OLLDtgAAOgLnAm8EN8wDoTOI26CkeOHCkWrlatWkVwmm/Hjh1JTk7mhhtuyC9q0aqGlSLPyiocrhYu9F/n5PjtzZrBoEG+Snvjxuk8+GA8JVar37ULpk+HX/3KD39deqkv7z58eKWej4iIiNQ8lR24/g68YGbdnXPrAcysKzACePQkxwWP/Sm+uMYfA8fWwhfN/vRkFQoD+10JbHbO7SznOVSapLZJ3Bd3n8JWRcsCVuLD1DJCwWpDgX3q46P9BUB/WFxnMQNvGwilvM/v0aNHSUtLK3SfqxUrVpCXlwf4a66Sk5O59tpr88NVmzZtwnaKVcGxY8XDVXp6KFw1b+7D1X33weDBfunePTQwlZKyt3jY2rwZnn/eF8DIyoKrroKpUyExsVLPTURERGquyg5cv8UXsPjAzH6IH216EtgCvBrcycy6AOuAJ5xzTwA451LN7C/Az82sNv7t8B1AN+D6Asdeiy8x/8/A87bB3yB5MHBtRZ+gRLHj+P9VRUes1uCvuQL/E9EHGAZMAeLxY7Ld8NdkBRxKOXTCsJWZmcmSJUsKXXO1fPlycnP9i7Rp04bk5GQmTJiQH67atWsX7rONapmZfhpgwXC1bJkvFgjQooUPVA884B8HDYJu3U5j1t/q1fDcc/CnP/mvJ02CRx6BXr0q5HxERERETqRSA5dz7oiZnQtMB97AT/P7DPiBc+5wgV0N//a26NXrNwFPA08BzYA04CLn3KIC+2wAWgPP468XO4qvWHiRc+6TsJ+URJ88YDOhQBUctVqBH80C/z+sBz5QTQg8xgNx+JsMlFJWVlaxcJWenp4frlq1akVycjKXX355fjn29u3b16jKkpmZkJZWPFwFvkW0bOlD1fe+Fxq56tKljJdULVni76H19tu+nPvtt/sa8J1LuvxTREREpOJVepVC59xm4Pun2GcjJVcfzMTXfLv/JMfOA84tXyulSnDALoqPWC3DX38V1Akfps4nFKz6cFrXW4G/5io9PZ3U1FQ+/PBD7r//ftLT08kJzHlr2bIlycnJXHLJJfkVAzt27FijwtXRo8XD1fLloXB1xhk+UF16aShcde5cznoVu3fDF18QP326v9lW48Y+ZN13H9SwaZkiIiISfSJRFl7k9B2geKhKB/YV2KcVPkzdRChY9Qeant5LOefYsWMHqamppKWl5T+uXr06v6BF48aNOfPMM3nggQfypwV26dKlRoWrI0cgNbVwuFqxAgKXpdG6tQ9Ul13mpwQOHgydOoWhGODOnfDFF35JSfEvCjRt0gSeeALuustf8CUiIiISBRS4JLocoeTKgNsL7NMEH6a+T+Fg1fr0Xy4nJ4dVq1YVClepqans3bs3f59u3bqRmJjItddeS2JiIomJiWzcuJFzzjmnbOdYBR0+XDxcrVwZCldt2vhANX58aOSqQ4cwVVrfvj0Urr74Alat8usbNYJRo2DyZBgzhq8yMjj7vPPC8IIiIiIi4aPAJZGRBayieLAqWBmwHr4y4HmEglU80JHS3Sq7iIMHD5KWllZo1Co9PZ3s7GwA6tatS3x8POPGjSMpKYmkpCQSEhJo2rT4ENmmTZtOvwFVREZGyeEqMLhH27Y+UE2YEApX7duH8TZWW7cWDlhr1vj1TZr4gDVlCowZAwMHQq3QrzCXkhKmBoiIiIiEjwKXVKxcSq4MuJrClQF7428afDOhEavuFKoMWFrOOTZu3FhsSuDGjRvz92nVqhVJSUnce++9JCYmkpSURO/evalVq2b9SHz3HSxeXDhcrV4dClft2/tAdfXVoXAV9oKKmzcXDljr1vn1zZr5gHXbbT5gJSWVcCdjERERkehWs95dSsVxFK4MGFyKVgbsjg9U4wmNWPXitCoDFnTs2DGWLVuWPxUwOIL13Xff+Zc0o3fv3gwbNozbbrstP1y1bdu2Rl1vBXDoUMnhKqhDBx+orrsuFK7atq2AhmzcWDhgbQgMazZvDqNH+2uwzj4bEhIUsERERKTKU+CS0xOsDFjwBsHBIhYZBfbriA9TwemA/YG+QMOyv/Tu3buLjVqtXLkyvwR7w4YNSUxMZOLEifnBKj4+ngYNTrMcYTVw8CAsWuRDVfAxODMPfPGKwYPhhhtCBS0qpKCfcz5QFQxYwemYLVv6gPWDH/iANWAAxBS9E4SIiIhI1abAJSd2gOLBqmhlwJbAAGAyhQtYNCv7y+bm5rJmzZpCo1apqans3Lkzf59OnTqRmJjIFVdckR+uunfvTkwNfMN+4EAoVAWX4Kw88GXXBw/2tSWCNxFuXYYCI6XinH/xggFryxa/7YwzfLB68EH/2L+/ApaIiIhUewpcEqoMWDRcbSuwT2OKTwUMVgYsx8y8jIwMlixZUmjUaunSpWRmZgJQu3Zt+vXrxwUXXFCokEXLli3L/qJV2P79xcPV+vWh7V26+FB1882hcNWqVQU2yDk/dFYwYG0L/Mdp3doHq0cf9Y/9+oWxsoaIiIhI1aDAVZNkc+LKgIEiCdTFVwY8l8KVATtRrmDlnGPr1q3Fyq+vKzAU06JFCxITE7n99tvzR6369u1LnTplvMCritu3LxSqgiFrQ4Eqjt26+VB1yy2hcFXhOdQ5X5Y9GK6++AJ27PDb2rb1xS3OPts/9u6tgCUiIiI1ngJXdVSwMmDBUavVwPHAPrH4yoDJwI340ap4oAdlqgyZiMxPAAAcX0lEQVRYUHZ2NsuXLy80apWamsqBAwfy9+nZsydJSUnceOONJCUlkZiYSMeOHWtcIYugvXsLj1otXBi61Amge3dITvYF+4LhqkWLSmiYc/7GwgUD1q5dflv79nDOOaGAFRengCUiIiJShAJXVeaALZRcGfBYgf2ClQEvp3BlwLrlb8K+ffuK3dtq+fLl5OTkAFC/fn0GDBjAlVdemT9qNWDAABo3blz+F6+i9uwpHq42bw5t79EDhg2DO+8MhavmzSupcXl5sHx54YC1Z4/f1rEjnH9+KGD16KGAJSIiInIKClxVgQN2U7giYPDfBSsDdsCHqeB0wP746YHlqAwYlJeXx7p164qNWm3dujV/n3bt2pGYmMjFF1+cH67i4uKIrcGlvXftKh6uCnzLiIuDs86Cu+/24WrgQH/7qUqTlwfp6YUD1r5AVZTOneHii0MBq1s3BSwRERGR06TAFc0+hMQfJcJWYG+B9S3wlQEnUbiARZhGQY4ePcrSpUsLhaslS5Zw+PBhAGJjY+nTpw+jR4/OL2SRmJhI6worfVc17NxZPFxtK1B4pFcvfx/f4D2uBg6Epk0ruZF5ebBkSShgffmlr8QB0LUrjB0bClhdu1Zy40RERESqHwWuaJYDMdkxfipg8BqreKAN5SpgEeScY+fOncXKr69Zs4a8vDwAmjRpQmJiIjfddFP+qFX//v2pV69e+RtQhe3bV4ePPiocrrZv99vMfL2IMWNC97gaOBCaNIlAQ3NzITU1NHr15Zf+Jl3gLwy7/HIfsM4+25c4FBEREZGwUuCKZuNhcYvFjBkzptxPlZOTw6pVq4pNCdwTvD4H6Nq1K4mJiVxzzTX54apr1641tpBFUHDW3ezZfpkzB7ZtOwvw4apPHzj33NDIVVISROwStePHYfHiUJn2OXPg0CG/LS4OJkwIVRLs2DFCjRQRERGpORS4qqFDhw4VC1bLli0jKysLgDp16hAfH8/YsWPzg1VCQgLNKvXioeiVne1HrGbP9gNCc+eGBoU6doTRo6FFizVcc00cSUnQqFEEG5uT42vGFwxYGYEL+3r3hquvDgWs9u0j2FARERGRmkmBqwpzzrFx48Zi4Wrjxo35+5xxxhkkJSVx991354er3r17U7t27cg1PMocPgxffx0awZo/HwL3XaZ3bz8oNGqUD1pduvhRrZSUbYwcGVf5jc3JgQULQgFr7lx/AgB9+8L11/uANXo0tGtX+e0TERERkUIUuKqIY8eOsWzZskI3DV6yZAmHAtPFzIxevXoxdOhQbr311vxCFu3atavxUwKL2rvXDwR9+aUPWIsX+0udYmL8tVa33eYD1siREPE6INnZ8O23oYD11Vdw5Ijf1r8/TJoUClht2kSypSIiIiJSAgWuKJaSksLTTz/NXXfdxcqVK8nNzQWgYcOGJCQkcN111+WPWsXHx9OwYRjqv1dDmzaFRq9mz/b38QWoW9ff7+rRR33AGj48QoUtCsrKgm++KRywgsNtAwbATTeFAlarVpFsqYiIiIiUggJXFNu8eTNpaWkMHTqUyy+/PD9c9ejRg5iYmEg3Lyo55wNVcPRq9mzYssVva9LEj1pNmuQDVnKyD10RdeyYn8MYLNP+9dd+nRkkJMAtt/iANWoUnHFGhBsrIiIiIqdLgSuK3XDDDXTu3DksVQqrq5wcPyWwYAXB4H1727b1OeWhh/zjgAEQ8XswZ2bCvHmhgDVvnh/VMvPlDe+4wxe4GDUKWrSIcGNFREREpLwUuKKYrr0q7uhRPyAUHMGaNy90SVPPnjBunM8qo0ZBjx4+x0TU0aN+1CoYsObP99dlBS8Yu+suH7BGjoTmYbpztYiIiIhEDQUuiWr79/tCfMERrIUL/ahWcMbdTTeFAlZUFOU7csRfdxUMWN984xscG+vvgnzvvaGA1bRppFsrIiIiIhVMgUuiytathQtcpKf79bVrw9Ch8MADPlyddRZExW3DDh/2iTAYsL791t98ODbWXyR2//0+YI0YEQUVOURERESksilwScQ4B6tXFw5YGzb4bY0a+VB19dU+YA0dCvXrR7Cxx47Brl2wcyds20b3t9/25Q0XLPA15WvVgiFD/AVjZ5/tG9+4cQQbLCIiIiLRQIFLKs3x45CWVrjAxe7dflurVj5Y3XOPf0xM9BmmQuXl+QobO3f6ZceO0L+Lrjt4sNChHWvVgjPP9KFrzBhfU15l+UVERESkCAUuqTDHjvlLmIIB66uvICPDb+vaFS68MHT9Ve/eYSxwcfRo8fBUUpjatcunwKIaNPAXhLVtC/HxcN55/t8Fljl79jD6oovC1GARERERqa4UuCRsDh0qXODi2299QT6A/v1h4sRQwOrY8TSfPDcX9uwpOTwV/TqY6gqKiYE2bUKhKSEhFKoKLu3a+fmMp5CXknKaJyAiIiIiNZECl5TZzp2Fr79KS/PXZdWqBYMHh6YHjhgBLVuW8ATO+XB0svAU/HrPHj8FsKgmTUJBadCgwsGpYJA644wouAmXiIiIiNQ0ClxSKs7BunWFA9batX5bgwb+cqYf/9gHrGGDcmh4eFcoNL1/kml9R48Wf7FatUJBqVMnXzGjpJGoNm38i4uIiIiIRCkFLilRbq4vyR4KWI4dO/xFVi0a5zAybhe3XbqOUU2XMIhF1N61Fd7ZCa/shL17S37S5s1DI09nnlnySFTbttCihZ8CKCIiIiJSxSlw1XSBcudZm3exYG4Ws+fXZvayFszd1JFD2X70qGPsds5xXzCKLxjFbPpmrCBmkYNFQN26oaDUs6e/oW/Rkai2bf1oVN26kT1XEREREZFKpsBVHRUtd17C9VEZ277j622dmX1kILMZxXyGcQx/o6s+rOCqeu8wquNKRnXdQpeuhrVvB217Q9uzCweppk3DWF5QRERERKR6UeCqSo4ePfX9ok5Q7nwPZzC7znnMrnc+s3PPIvVoHLkulhjLY2DnfdyetIPRIx0jL2hAq749oXbfCJ2kiIiIiEj1ocAVzf72N5J+/GPIzDx5ufPWrQuVO3dt2rKpThyz9/Vj9qbOzF7ekpXr60A21IuBYcNgaqA8+/DhMTRu3ApoVemnJyIiIiJS3SlwRTPn/OPAgScuMNGqFXkWy/LlBQpczIStW/2hTZv6suw33uoD1uDBupRKRERERKSyKHBFsyuuILV5c8aMGVNodU4OLFrkg9Xs2TBnDuzf77e1axe6ufCoURAfr9tPiYiIiIhESqUHLjPrBEwHzgcM+DfwA+fc5lIcWw94EpgINANSgUecc18W2S8GeAS4DWgLrAKecM69G8ZTqTRHjsC8eaERrHnzQrev6tkTLrsMRo/2Aat7d9WwEBERERGJFpUauMysAfA5kAVMBhzwFPAfM0twzh05xVO8BlwCPASsB/4H+MTMhjvnUgvs9yTwIPA4sBC4BnjbzC51zv0znOdUkT74AKZOHcSaNb4GhhkkJsKUKT5cjRzpR7RERERERCQ6VfYI1y1Ad6C3c24tgJktAdbgR6NePNGBZpYIXAfc7Jz7Q2DdF8Ay4AlgXGBda3zYetY590Lg8P+YWU/gWaDKBC7nIDbW8eCDfgTrrLP8NVkiIiIiIlI1VHbgGgfMC4YtAOfcBjObC1zGSQJX4Ngc4C8Fjj1uZm8Bj5pZXedcFnAhUAeYWeT4mcDvzaybc25DeE6nYl1+OTRrtrjYNVwiIiIiIlI1xFTy6/UH0ktYvwzoV4pjNzjnjpZwbB2gZ4H9soC1JexHKV5HREREREQkLCo7cLUADpSwfj/QvBzHBrcHHw86F6ypfsL9REREREREKlQkysIXDULgqxWeipXy2NLuV3ij2a3ArQBt2rQhJSWlFE2qeIcPH46atkiI+iX6qE+ik/ol+qhPopP6JfqoT6JTVeyXyg5cByh5hKk5JY9eFbQf6HyCY4Pbg4/NzcyKjHIV3a8Q59wMYAZAcnKyi5brplJSUnQNVxRSv0Qf9Ul0Ur9EH/VJdFK/RB/1SXSqiv1S2VMKl+GvsSqqH7C8FMd2C5SWL3psNqFrtpYBdYEeJexHKV5HREREREQkLCo7cP0dONPMugdXmFlXYERg26mOrQ1cWeDYWsDVwKeBCoUAH+MD2PVFjp8IpFeVCoUiIiIiIlL1VfaUwt8CdwEfmNkP8ddaPQlsAV4N7mRmXYB1wBPOuScAnHOpZvYX4OdmVhvYANwBdKNAuHLO7Taz6cBUM8sAFuFD2bn40vMiIiIiIiKVolIDl3PuiJmdC0wH3sAXsvgM+IFz7nCBXQ2IpfgI3E3A08BTQDMgDbjIObeoyH6PA4eBe4G2wCrgKufch+E9IxERERERkROr9CqFzrnNwPdPsc9GSqgq6JzLBO4PLCc7Phcfyp4qc0NFRERERETKqbKv4RIREREREakxFLhEREREREQqiAKXiIiIiIhIBVHgEhERERERqSAKXCIiIiIiIhVEgUtERERERKSCKHCJiIiIiIhUEAUuERERERGRCqLAJSIiIiIiUkHMORfpNkQdM9sDbIp0OwLOAPZGuhFSjPol+qhPopP6JfqoT6KT+iX6qE+iUzT1SxfnXKtT7aTAFeXMbIFzLjnS7ZDC1C/RR30SndQv0Ud9Ep3UL9FHfRKdqmK/aEqhiIiIiIhIBVHgEhERERERqSAKXNFvRqQbICVSv0Qf9Ul0Ur9EH/VJdFK/RB/1SXSqcv2ia7hEREREREQqiEa4REREREREKogCV4SYWScze8fMDpnZd2b2npl1LuWx08zsUzPbZ2bOzG6s4ObWCGXtEzNLNrMZZrbSzI6a2WYzm2Vm3Sqj3dVdOfqli5l9YGabzCzTzPaaWYqZXVwZ7a7OyvP7q8jzTA38DptTEe2sScr5N8WdYEmq6HZXd+X9WTGzvmb2duD3V6aZrTKzeyuyzdVdOf6m/OQkPyvHKqPt1Vk5f4d1NrM/Bt5/HTWz1Wb2lJk1rOh2l5amFEaAmTUA0oAs4IeAA54CGgAJzrkjpzg+A0gF1gOTgJucc69XZJuru/L0iZm9AAwHZgHLgA7A/wNaA0nOuS0V2/rqq5z90h+4H0gBtgJNgFuAS4DvO+feq9DGV1Pl/f1V4Hm6A0uAI8Aa59zIimlx9ReGvykOeB14tcimJc65o2FvcA0Rhn5JBj7H/w77PXAIiAMaOederLiWV1/l/JvSEehYZHVD4GPgfefcVRXS6BqgnP3SEFgM1AZ+AmwGhgA/Bf7unLu6QhtfWs45LZW8APcCuUDPAuu6AceB+0txfEzgsSf+P+WNkT6nqr6Up0+AViWs6wLkAU9E+tyq8lLen5USnq8WsAX4MNLnVlWXcPUJ8An+DX4KMCfS51WVlzD8TXHAU5E+j+q2lPPvSgz+A7z3I30e1WmpgL8pNwR+fi6J9LlV5aWcPysXBPrggiLrnw0c3yDS5+ec05TCCBkHzHPOrQ2ucM5tAOYCl53qYOdcXgW2raYqc5845/aUsG4TsAc/2iVlV66flaKcc8fxnxLnhK2FNU+5+8TMrgMGAVMrpIU1T1h/TiRsytMvY4B+gEaywivcPyuTgV34D5Ck7MrTL3UCj98VWX8Q/8GFhauR5aHAFRn9gfQS1i/D/4KVyhfWPjGzvvgphSvK2a6artz9YmYxZlbLzNqa2f8DegG/DGMba5py9YmZNQemAw875/aHuW01VTh+f91hZlmB6x8+N7NR4WtejVWefglOsa1nZvPMLMfMdpvZL8ysflhbWbOE7W99YIrhOcCswId5Unbl6Zd/A2uA58ysn5k1MrNz8aNmv3GlnOZe0RS4IqMFcKCE9fuB5pXcFvHC1idmVgv4DX6E67XyN61GC0e//C9+RGsH8DBwjXPus/A0r0Yqb588D6zGXzMk4VHePpkJ3AmcB9wKtAQ+N7Mx4WpgDVWefmkfePwL8ClwPv532X8Db4argTVQON9/3YB/H/3H8jZKyt4vzrlj+A8ogtNwM4DPgI+Au8LbzLKrFekG1GAlVSuJimHPGixcffIKcBZ+TndJv0Dk9JS3X34OvAW0xReZedPMJjjnPgpH42qoMvVJYNRkEjDIBSbZS9iU+efEOXdDgS9nm9kH+E+bnyI00iJlU9Z+CX4gPtM596PAv1PMLBZ41sz6OeeWh6WFNU+4/tZPAhY755aUsz3ilfXvSj38BxOt8SF4MzAU+BH+Gq47wtjGMlPgiowD+DRfVHNKTvhS8cLSJ2b2DP4T4snOuU/D1LaarNz94pzbiq9SCPCRmaUAL+A//ZLTV54+eRU/6rvVzJoF1tUCYgNfZzrnssLW0pojrH9TnHMZZvYPYEp5G1bDladf9gUe/6/I+k/xxQCSAAWu0xeuv/VDgT7AD8LUrpquPP0yBX/NY0/n3LrAui/N7BAww8x+45xLC1tLy0hTCiNjGX6+alH90C/QSCl3n5jZ48CjwL3OuTfC2LaarCJ+VhbgK3xK2ZSnT/oCt+P/gAaXEcCZgX9HxSeRVVBF/JwYJX/iLKVXnn5ZFngs2gfBT/xVPKtswvWzMhk/eqLpneFRnn4ZABwoELaCvgk89i1n28JCgSsy/g6cGbgPDQBm1hX/xuPvEWpTTVeuPjGze/DTbx53zr1cQW2sicL6s2JmMfgpUkV/MUvpladPzilhScNPXzsHeCf8za0Rwv1z0gR/v7r5YWpfTVWefvkX/p5EFxVZf2HgcUF4mljjlPtnxczqANcA/yypSrGUSXn6ZSfQ3MyKfpA6LPC4LUxtLJ9I16WviQv+RnlrgaX4cpfj8G861uNvaBjcrwv+E5QfFTn+bGAC/mJAh79maAIwIdLnVlWX8vQJ/hdvHv4P5JlFln6RPreqvJSzX34C/AK4OvAzczV+Ok4evnBGxM+vKi7l/f1VwvOloPtwRaxPgAeB3wLX4aflTA48TzYwKtLnVpWXMPyt/3Fg/TR8QZNHgUzg9UifW1VdwvH7CxgfeO81PtLnU12Wcv4O64ovCb868PvrHOChwLoFBO5dG+lF13BFgHPuSKBk5XTgDfwUgc+AHzjnDhfY1YBYio9E/hT/BjLofwJL8Bg5TeXsk4sC6y+i+KeRX+DfxEgZlLNfFuHn118DNMV/CpaGfxM5txKaXy2F4feXhFk5+2QVcEVgaYp/kzIXmOKc+wYpszD8rDyBr7h2Jz4Y78BX+XyygptebYXp99dkfPU8XQccJuXpF+fcRjM7E/8h61PAGcAWYAbwtIuSe9daIB2KiIiIiIhImOmTRxERERERkQqiwCUiIiIiIlJBFLhEREREREQqiAKXiIiIiIhIBVHgEhERERERqSAKXCIiIiIiIhVEgUtERE6Lmf3OzJyZvRjptpwOM/tJ4F4vNZqZdQ18L7pHui0iIjWBApeIiJSamdUHrgx8eb2Z1Ypke07Tj4EaH7iArvjvhQKXiEglUOASEZHTcQXQBPgn0Bq4KLLNEQAzqxvpNoiISMkUuERE5HRMBg4ANwKZwKSSdjKzRDN738z2mVmmma0ys6lF9rnCzOaa2WEz+87MvjGzcQW21zKzqWa20syyzGy7mf3MzOoV2KdrYHrjnWb2opntNrOjZvaRmXUtsJ8L/PPxwP7OzH4S2DbEzN4xs60F2jotMJpXsL0pZjbHzM4zs0WB10k3s8vLeP7jzWxe4HkOmtnbZtb5VB1QoB1jzWyxmWUBdwa23WVmX5vZ/sBzzjOzSwocOwb4T+DL/yvwvRhTYJ9bzCzNzI6Z2V4ze83MWpyqXSIiUrKqNBVEREQiyMzaA+cBM5xze8zsb8B4M2vunDtQYL+hQAqwFrgP2ArEAQkF9rkb+AXwN3yIOwwMwk93C5oJjAWeA74C+gJPBvb5fpHmTQVSgZvwI2/TgE/NrL9zLgcYDnwNvA68Gjhma+Cxc+DY14EMoD/wI/yUu2uKvE4P4CXgGWAv8ADwjpn1cc6tPY3zvx34NfAH4AmgMfAT4AszS3DOZXByvfDfvyeB9cD+wPquwO+Ajfi/8WOBj8zse865fwGLgP8BfgncA3wbOG55oF3PBs7pF8BDQAfgKSDezM5yzuWeol0iIlKUc06LFi1atGg55QI8AjhgeODrCwNf315kvy+BLUCDEzxPE3ywee8krzUq8NyTiqy/PrA+KfB118DXy4GYAvuNCKyfUmCdA546xTkaPqhMBPKAlgW2pQA5QFyBda2BXOCx0zj/RsAh4PdF1ncFsoEfnKKNKYG2JZ1iv5jAuXwKfFBg/ZjA9+K8El4/F/hRkfXB7+Xlkf4/qEWLFi1VcdGUQhERKa1JwBrn3NeBr/8NbKfAtEIza4B/gz7LOXf0BM9zFj50zDjJa12EDx/vBqYW1goU6Pg0sH10kf3fcc7lBb9wzs3FjywNP9VJmVkTM3vOzNYBWfhQ9QY+fMUV2X2Nc25NgdfZDezGj5KV9vyH40PnrCLnthVYWcK5lWSjcy61hHMZHJhOuQs4HjiX84HepXjO8/EhrWi75gPflbJdIiJShKYUiojIKZnZEKAf8JyZNSuw6T3gLjPr5ZxbDTTHv2nfWsLTBLUMPJ5sn9ZAHfxUw5M9R9CuEvbZhZ8Sdyp/wE+V/BF+auERYCh+2l29Ivvup7isAvuV5vxbBx7/fYLtB06wvqAdRVeYWSfgM/xo393AZnzoehI/HfNUgu1ae4LtRb/nIiJSCgpcIiJSGpMDj48ElqImAT/Eh4U8Th509gYeOwDpJ9hnH3AMP7WwJNuLfN2mhH3a4APUCQUKcFwG/MQ591KB9QNOdtxJlOb89wUebwSWlbD9VNdvgZ/iV9RFQFPgKudcfuALjLqVRrBdF1By6NtXwjoRETkFBS4RETkpM6uDLx4xH3i0hF2mAzeY2f9zzh01sznARDN7wjmXWcL+X+FHrm4FPjnBy36MD3ZNnXOflaKZE8zsJ8FphWY2AuiIL5QRlA3UL3JcXSAWP/WuoBtL8ZrFnMb5ZwA9nXN/LMvrnEAwWOWfi5n1wk9xLDjilhV4LPq9+D98WOzsnPu/MLZLRKRGU+ASEZFTuRQ/newB51xK0Y1m9iq+4t4YfMnxB4EvgK/N7Gf4N/vd8UUe7nbOZQRKpL9sZu8Cs/ABJAk45px72TmXYmZ/xlcAfBH4Bh8GugLfAx4JTGEMagz8LdCWVvgqgmuAPxXYZzlwiZl9jB/B2e6c225m84AHzGwHfvTtZko3FfFETnX+35nZQ8AvzawV8C98EY0OwNlAinPuzTK87r/xUwj/FHjddsBP8VMLC16zvTqw381mth8fwFY559aZ2XPAK2bWO3AOx4BO+Ou7fuec+w8iInJaVDRDREROZTI+EL19gu1/xt+TazKAc+5b/KjKFuBl/E2SH6LAKItz7hXgSvwo1CzgXWACsKHA807El0qfAHwAvAPchQ9SRa/ZegZ/7dHrwK/w5c8vdL4kfNBd+OuzPsSXQ781sP5aYCH+mq3XgZ3AvSf8bpxCKc//VWAcvpjFG/jQ9VP8B6EnnQZ5ktddhq/i2AX4O/AwfkTyyyL77cN/LxLxoepbYHBg22P478to4K/47/sj+IC6BhEROW3mXEnTwEVERKJf4ObGG4BbnHO/i2xrREREitMIl4iIiIiISAVR4BIREREREakgmlIoIiIiIiJSQTTCJSIiIiIiUkEUuERERERERCqIApeIiIiIiEgFUeASERERERGpIApcIiIiIiIiFUSBS0REREREpIL8f8GcKyJ426PNAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAH/CAYAAABD8tytAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VMX6wPHvm5CeEEqAUKSHIB2MGqSFGkBBEEWkib8LIleUIhdUFEJREA1NBUSqgFQLCAqKEhAIIlJUmiDSFESkBUjP/P44mzVlQxJIQ97P8+yDO2fOnPec2b1338ycOWKMQSmllFJKKaVUznPK7wCUUkoppZRS6t9KEy6llFJKKaWUyiWacCmllFJKKaVULtGESymllFJKKaVyiSZcSimllFJKKZVLNOFSSimllFJKqVyiCZdSSmVCRMaLiBGRxinKWtnKXsnP2JRSSilVsGnCpZT6VxCRirYEKKPXpfyO8d/iTk42RWSD7dz35ncsOelO7tOcICJbRSQhv+NQShVMhfI7AKWUymGHgWUOymNuoc2pwGLgxC20oW5zIlIOaAUYoK6I1DfG7MnnsJRSShVwmnAppf5tDhljwnKyQWPMeeB8Trapbkt9sGaGhAMvAP8HPJefASmllCr4dEqhUuqOIyJuIjJIRDaKyO8iEicif4jIYhGp4qB+unu4Mmi3qq3enKxuE5HTInJURIqLyGwROSMiSWnuFwsQkYUpYj0lIu+IiF8Wz7eQ7dgbRaSCiCwTkb9sZeVsdbqIyAoROSYiMSJyUUS+EpEWaa8F8JXt7bgUUzYT0tQrbYvxNxGJFZGzIvKBiFTIQrwiIidsMbpkUOdXW4yutvceIvKiiPwsIldF5LKIHBKReSJSOivXKQv6ABeBkcAxoLuIuN3gPFqJyDrbecSIyHERWSQiNdPUKyIir4nIARGJFpELIvKdiAzNoM0vbHVibPsMF5FCaer1tfVLTxHpJiJ7bW3/LiJviohnirqZ9qmI3CsiM2zHixKRayLyg4g84yDGlJ+30rbv1d8icl1EvhGRehlcr2oiMl9ETto+M2dEZL2IPJimnpOIPCMiO219fVVEtonIwxn1hYNj2b/TItJfRH60Xc85tu3lRGSciHwvIudt8RwRkUki4p32XIFGgLOknsb8SppjdhWRzbbPZrSI7BaRvlmNWSl1+9IRLqXUnagE1ijFZmANcAWoDnQD2olIA2NMXk4fdAcisP4IthJwAaIAxEq8PgfcgNXAceBu4L9AGxG5zxiT1fvTSgCRwGlgEVAUiLdtmwhcxbomfwKlgU7AVyLyiDFmta3eN0B5oBewCdhiK09KPoiIBNrOpySwDlhl2+cJIFREgo0xv2UUpDHGiMiHwItAG1sbdiISDFQG3jfGxNmKP7TF+y2wwVZWEegCzAbOZHZxbkREmgFVgPeMMbEishgYBTwMrHBQfzjwBnAZ+NR2/LuwpiR+B+y31Stti7mKrfxtwAOobTv/ySnaHGx7f87W5kWgqe049wKPOQj9CaAl1jTb9UAoMAyoJyKhxpgkstCnQH/bvluAz4DCtvczRaSqMWaYg2MXA7bZ4l2I1R+dgW9EpLox5lyKc2tua9cdWAscBPyAhsBT2D4DIuKEdb27AD8DC7C+Nw8Cn4rIc8aYdxzEkpGRwAO2Y38B/GErDwEGAV/bzsEAwcD/gCYi0sQYk2C7RmOwRjvLAWNTtJ18HRGRKcBg4DesvogBWgPvi0igMeZ/2YhZKXW7McboS1/60tdt/8L6MWeAQ0CYg1f1FHXdgdIO2mgBJAKz0pSPt7XdOEVZ8r08r6Qoq2orm+OgbYfbsJIfg/UD2jXNNjfgFPA3EJhm2xO2/aZm4doUstU1wDuAOKhTyUFZaawfoIfSlKc79zTbd2L9oGyUprwxkAB8moWYa9mO8aGDbW/btjW1vS9ue7/CQV0PwCsHPl8LbMdoZHsfYHv/hYO6QVg/xI8C/mm2uQAlU7xfY2vnfw7aKZfiv+vYrt02oHCKcgFm2trolKK8r60sKc3n1gkruTBA72z0aQXAycHn6itbXOXSlCd/3ian/LwB49Ker62PzgJxaT8ztu1lU/z3s7b9p6WMB/AGdtk+d/6OziFNm8nf6YtANQfbSwKeDsrDbPt1S1O+FUjI4FgP2vZZBbilKHdN0Rf1b/Uzqi996avgvnRKoVLq3yYQGO3gVT25gjEmxhiTbsTDGPMN1qIbrfIm1FRGmH9Ga5I9jPVX83HGmMMpNxhjlgL7sEblsioa6we1SbvBOBhxsl2jT4FAsU09zIyI3Ic12jLLGLMtTXtbsUYvHko5LcsRY8zPwI9ARxHxStF+IeBx4CTWyBBYP1iTzy9tO9HGmGtZiT0jIuIDPAr8lnxOxpgjWCNSbUSkbJpd+mMlQi8aY86miSfe2EZ2bNe0A/AT1ohr2thPp3j7DOAMPGuMuZKijgFetr119Fn43Hbdk+snYY3qAPS80XmnieWEbd+UZQnA+7a4QhzsFkX6z9sC279BKcoeAUoBs9N+ZmzH+T3F22ex7qccljIeY8xVrCTKDWukM6tmGWN+cXDMc8aY6w7qz7D9m53/jXgWK/Htb4yJTXGMOOBV29vHs9GeUuo2o1MKlVL/NquNMZn+4BKRe7GmBzXC+mt2yv89dPRDKzddTZtQ2dxv+7eOiIQ52O4GlBKRIiZr0wp/zaiebWrby1jTxO7CGgVMqTTWaFxmkmMun0HMpbB+oFcFMltafTEwCesH9BJbWWusqZETk3/IG2MuiMhGoLdY94itxkrG9hhjErMQc2a6Al62eFJahHW+TwKvpyi/1/bvl5m0m5x0bEybzDhwP9boa2cRcfT5jiHFHxVS2Jq2wBjzo4hcAepmckw7EXHHmmLXFaiGNaKUkqP75A47SFqSk6ciKcqydL1EpDDWdNrfgJEikrZKKdu/jq5DRnbd4HiPA08D9WzxpvwjdXbuC7wfa2rpcw5iTr4HMDsxK6VuM5pwKaXuOLb7cZKnQm3Amvp1HWuk5P+AMnkc0rkMyovZ/n0qk/29gKwkXA6PIyIlgO+xznsL1r0sl7H+Kt8CaMI/PwwzkxxzZ9srI1432JZsKda9Zd35J+HqYfs3bfLTGeueqif4576nv0RkMvCGo1G9bEi+/mmPuRyYgrWYRsqEyxe4lnIkKgO+tn//uGEtSzGsRHXUDeo4uqZ/ZVD3HNboaVZ9ipWMH8C6X+4vrO9PZax7vxx9Pi47KEteiMM5RVlWr0NR27+VsEatM5KVz1ayjL4TL2H16Z9Y91CeBmKxkq5Xyfr3Aay4hZyLWSl1m9GESyl1J3oZ616axsaYnSk3iEgPx7tkSfIohbODbYVvsF9GyUDyD/bmxpiImw0qC8fpC5QFhhtj3ky5wTZdrkk2jpEc81PGmAXZjjAFY8xpEdmCNW3PDysp7gTsM8bsT1P3KjAcGG5btKMl8DwwAbiGdd9XtolINaxRUIDDDkYoAAJsiygkT3G8BFQUkcKZJF3JSXJWEvwrWAuceBlj4jOrnEKJDMpL8k9f3ZCINMRKttYCD6ccjbN9X3plIx5HsnodkuPdbIwJucVjJkv3nRBr5cuXse6frGeMuZBiW1n+mQaYVVHARWNMxVuIUyl1G9N7uJRSd6IqwJ8Okq0yWItv3KzkH45p7+kBqH8T7SXHF3xz4WRZ8lL4n6UsFCu7aOigfvI0PUeJZU7HvATrj4NdsZItR1P7UjHGHDbGzADa2oo63sLxk0e3vgHmOnh9lqYeWKOFYK2weCO7sH7wt7StvncjO7H+SHBP1sK2S/coAxGpg/UHgH0pim/Up8mfj3UOpj42Slv5JmTpehljLmKNRteWFMva54KSWFMmt6dMtmwyOt9EbE80cLBtJ9YU27weOVdKFRCacCml7kQngRK20QvAejYX1gp+Nz3yb/txdhxoJimeNyUipfhnYYPs+BhrmtXLIhKUdqOIeIrI/el3y7aTtn/T/pgcBtQkveQfoY4Sy+3AbqCviLRPu1FEXCST55mlsRJrKlcP2ysJa6phyjZLiYijRCT5np7oFHU9RaS6iNyV2YFFxBnojTUN7gljTN+0L6yl2C8Cj6VYCOQ9W5wTRcQ/TZuFRKQk2BeD+AxrBUJHz9xKeX1n2NqckbZNW11/EXF0H1B7Sf1MNyfgNdvblInrjfrU4edDRBoB/3FQP7s+wZq697SIPJB2Y5pE5W2s6ZXviINnoIlILcni8+luIHnFxHts966ljOO1DPa5gPWbytG9XW9jTSmca7sPLW3MlSULz6dTSt2+dEqhUupO9A7QHIgUkeVYP2RbYf1g+gmocQttT7W9dojIKqwlrztiLeJQOTsNGWOiReQxrHtIvhORL7HuoXHBuo+lGdY9Vw/dQrxgPSPpf1jPVGqJleQlrzb4OZA2cTqAde9LDxGJsdVPMsZMMsYYEemG9TyndbYpgXuxrnEFrOmJf2It+54pY8xlEVmHdY9WEhCRZtU6sBb5+F5E9tqOdQZrelpnrGRpeoq6D2Ddv/c1ma80F2prZ7VJ8cyoNPHFishSrOeiPQbMN8b8ICIvY91/dkhEPsb6EV/WdswJWJ9BsFYfrAW8KSJdsD4nbliJbm1sSaMxZo+IDMJaDv0XEfkcK7kvhrVEfROs53YdShPiF1jPUltui6EN1mjrRlInXBn2KVYSvQfoaUs6fsAa9eqItaz9I5lcxxuyfc6fwJqyuEVE1triKY41UnoEa5VIsK7bA1gjii1EZBPW56kMVuJaF+tze/4W4kkQkfeA54A9tmtdDGtFyQisBV/S2oQ1ArtSRDZgJWxbjDHbjTFrRORNrO/YUdv3+DTWSNrdWItqdAXy8tl/Sqm8lF/r0etLX/rSV06++Oc5XJk+48lW/wmsH+fXsX6IzsP6AZTueTpk8TlcKba9ABzD+tH1C9a9RMnPbXL0HK6jmcRaAWuE4xjWaM8FrCXTpwFBWTjX5OcibbxBnXuwkpBLttcXtrJ0526r39h2ra7Ztqe9ZiWwHsh7EGuE6Yrtv+dg3ZOWnb59hH+e6/SUg+1FsZ6P9K2tL2OxRmVWAfemqZvcbxleixR1V5Lm+VYZ1Auy1fs2TXlbrEVZLmKtIvgb8AFwd5p6xWzX6ogt9r+BHcAgB8dqBHzEP6MwZ7EeZv0KqZ+Flfwcrp5Yy8XvtcXwB/AWjp8xlWGfAv622M9gfWd22dp19Dy6DD9vmWy7G2vlxzO2c/sDK+Fvl6aeYN03FmH7rMZgJSvrsZbkT3duDo7l8HOdYrub7TN11Nb+UawFSzwcxY/1TK0pWN/nhLTXxFbnQazv1Xnb+f1uO4ehQPHsfCf0pS993V4vMeZWFm5SSimlVEEjIn2xnpHVyxhzw3velFJK5S69h0sppZRSSimlcokmXEoppZRSSimVSzThUkoppZRSSqlcovdwKaWUUkoppVQu0REupZRSSimllMol+hwuB/z8/EzFihXzOwwArl27hpeXV36HodLQfil4tE8KJu2Xgkf7pGDSfil4tE8KpoLULz/88MN5Y0yJzOppwuVAxYoV2bVrV36HAUBERAQhISH5HYZKQ/ul4NE+KZi0Xwoe7ZOCSful4NE+KZgKUr+ISJYeWK5TCpVSSimllFIql2jCpZRSSimllFK5RBMupZRSSimllMolmnAppZRSSimlVC7RhEsppZRSSimlcokmXEoppZRSSimVS3RZ+Jt05coVzp07R3x8fK4ex9fXl4MHD+bqMVT2ab9kjYuLCyVLlqRw4cL5HYpSSimlVL7QhOsmXLlyhT///JOyZcvi4eGBiOTasaKiovDx8cm19tXN0X7JnDGG6Ohofv/9dwBNupRSSil1R9IphTfh3LlzlC1bFk9Pz1xNtpS6nYkInp6elC1blnPnzuV3OEoppZRS+UITrpsQHx+Ph4dHfoeh1G3Bw8Mj16feKqWUUkoVVJpw3SQd2VIqa/S7opRSSqk7mSZcSimllFJKKZVLNOFSSimllFJKqVyiCdcdTkQyfVWsWDG/wwTgxRdfzDDG4ODgXDnmoUOHEBGWLVuWK+0DrFq1iunTp6crX79+PSLCjh07cu3YSimllFIqd+my8He4yMjIVO87d+5M3bp1CQsLs5e5ubnlcVQZc3Z2ZuvWrenKb+cl2letWsWuXbt4/vnnU5U3bNiQyMhIatWqlU+RKaWUUkqpW6UJ1x0u7ciQm5sbfn5+WR4xio2NzfOELLdGswoaX1/fO+ZclVJKKaX+rfJ8SqGI3CUiq0TksohcEZGPRaT8TbTzkogYEUk33CEiTrbtx0UkRkT2iUiXnDmDO1e3bt2oWrUqW7ZsITg4GA8PD0aNGkVMTAwiwsSJE1PVz2g63saNGwkJCcHb2xtvb28efPBBDh48mCMxfvDBB4gIv/zyS7ptzZs3T5XATJkyheDgYIoWLUrRokVp1KgRX375ZabHCA4OpnPnzunK/f39eeaZZ+zvz5w5Q79+/QgICMDT05Py5cvTu3dvzp49a6/TrVs3li9fzq+//mqfHlm9enXA8ZTCpKQkJk2aREBAAK6urpQtW5ZBgwZx7do1e53k/hg/fjzh4eFUqFABHx8fWrZsyeHDhzM9P6WUUkqpguj4peMYY/I7jGzL04RLRDyBb4DqwJNALyAA2CQiXtlopzIwEsjoaarjgDDgHaAdsANYKSLtbzp4BcD58+fp1asXvXv35osvvuDRRx/N1v4ff/wxoaGh+Pn58eGHH7Jo0SL++usvmjZtypkzZ7LURkJCQrpXUlISAF26dMHLy4vFixen2ufUqVNs2bKFXr162ctOnDhB//79+eijj1i6dCm1atWibdu2bNq0KVvnlJHz58/j4+PDG2+8wfr165k4cSI//fQTTZs2tT+Xavz48bRq1Ypy5coRGRlJZGQky5cvz7DNYcOGMWLECB566CHWrl3LkCFDeP/99+nYsWO6/wGaM2cO33zzDe+88w5z5szhl19+oXPnzvZrpZRSSilV0Blj2HpyK52Xd6bytMrsvbQ3v0PKtryeUtgPqAwEGmOOAojIj8ARoD8wOYvtzASWAIGkOQcRKQkMAyYaY96yFW8SkarARODzWz0JRwavH8zeszn/AUhMTMTZ2TlLdev512Nq26k5HkNKly9fZvny5YSGhtrLYmJisrRvUlISgwYNIjQ0lFWrVtnLmzVrRuXKlZk2bVq6UbK0EhMTcXFxSVf+wgsv8NZbb+Hl5UXnzp1ZvHgxY8aMsT8DasmSJTg7O/P444/b95k69Z9rlZSURKtWrTh48CCzZs2iefPmWTqnG6lduzaTJ//zkU5ISODee++lWrVqbNy4kXbt2lG1alWKFy+Om5tbptMHz549y9tvv03//v2ZMmUKAG3atKFIkSL069ePr776ijZt2tjre3l5sWbNGvvnJz4+nl69erF3714aNGhwy+enlFJKKZVbEpIS+Pjgx4RHhrPz950U8yjGy01epkJChfwOLdvyekphR2BHcrIFYIz5DdgGPJyVBkSkO9AAeCmDKqGAK7A4TflioLaIVMpu0Oofnp6eqZKt7Ni/fz+nT5+mZ8+eqUanChcuzL333suWLVsybcPZ2Znvv/8+3Wvw4MH2Or169eK3335j27Zt9rLFixfTvn17/Pz87GXfffcd7dq1o2TJkjg7O+Pi4sK3336bY9PujDFMnz6d2rVr4+3tjYuLC9WqVQO4qWNs376dhIQEevbsmaq8R48eiAibN29OVR4aGpoqWa9duzYAJ0+ezPaxlVJKKaXyQlRsFFN3TCXg7QAeX/U4F6Iv8G77dzk5+CTjW4ynmGux/A4x2/J6hKsmsNpB+X7gscx2FpGiwBRguDHmQvLohYNjxAJH05Tvt/1bA/gtqwFnVW6NLEVFRRWoFfj8/f1vet9z56wZoD169KBHjx7pticnI5kJCgq64fZWrVpRpkwZFi1aROPGjdm9ezf79+9nzJgx9jrHjh2jVatWNGjQgBkzZlCuXDkKFSrEiBEj+P3337NxVhl76623GDFiBMOHD6dly5YUKVKE6OhomjVrluVRwZQuXLgAQOnSpVOVe3h4ULhwYfv2ZMWKpf4fpOTFTW7m2EoppZRSuen0ldNM/246s3+YzeXYyzQu35gpoVPoUK0Dzk5Zm+1VUOV1wlUMuOig/AJQNAv7vwn8AizI5BiXTPo76i6k2J6OiDwNPA1QqlQpIiIiMjyAr68vUVFRWQj31iUmJubZscAalYmPj3d4zPj4eIwx6bYlT3uMiopKte3UqVMAREdHExUVhbu7OwCvv/46DzzwQLr23d3db3iucXFxAFm6Ho8++igffPABr732GvPmzaNIkSI0a9bMvu9HH33E1atXWbhwIcWLF7fvd/nyZZKSkuz1khejSD4HABcXF+Li4lLFkZSUxKVLl1Jduw8//JA2bdowcuRIe73kka3Y2Fh7vfj4+FTHTHb9+nV7DFFRUXh4eABWsliyZEl7vejoaK5cuYK3tzdRUVH2hCrlMTI6l7wSExNzw+9UTrh69WquH0Nln/ZLwaN9UjBpvxQ82id540jUEVacXsGmvzZhjKFpiaZ0LdeVuwvfDWfh27Pfpqp/O/ZLfiwL72hpEYdDVakqiDQBegMNHCRTadvK9jGMMbOB2QBBQUEmJCQkw7oHDx7Ms1GnvB7hEhFcXFwcHtPFxQUnJyeH28qWLcuRI0dSbUtefMLDwwMfHx+Cg4MpU6YMx44d46WXMpoRmjFXV1cga8/c6tu3L9OnT+ebb77ho48+4vHHH081nTB54YgiRYrY2/v555/Zs2cPAQEB9jIvL69U5wBQuXJlvvzySzw9Pe1T9r788ktiY2NTXbuYmJhU+wGsWLECsEabksu9vb2JjY1Nd16enp72GJJXGSxUqBBr1qyhdevWqdo0xtCmTRt8fHzs97ilPEZG55JX3N3dqV+/fq4eIyIight9b1X+0H4peLRPCibtl4JH+yT3JJkkvjjyBeGR4Ww6vglvV2+eu+85BgUPomKRijfc93bsl7xOuC7ieISpKI5HvlJ6D5gLnBaRIrayQoCz7X20MSYW22iZiEiaxCx5BC31vCuVI7p168bkyZN54403CAoKYtOmTaxcuTJVHWdnZ9555x0ee+wxrl+/TpcuXShevDhnz55l27ZtVKtWjYEDB2Z6rJTLpCdzcXHhnnvusb+vXbs2devWZejQoZw9ezbV6oRgLTbx8ssv07NnTwYNGsTp06cZPXo05ctn/oSCbt268cEHH9C3b1969OjB0aNHmT59uj2hSda2bVvefvttJk2aRIMGDdiwYQOffvppuvZq1KjBBx98wNy5c6lTpw6enp7UrFkzXT1/f3+ee+45pk6diru7O23atOHHH39k1KhRtGjRglatWmUau1JKKaVUfolJiGHRvkVM2TGFg+cPUtanLJNaTaLfPf0o4l4k8wZuU3mdcO3HuscqrRrAgUz2vdv2esbBtovAEGCq7RhuQBVS38dVw/ZvZsdRN2H06NFERUUxZcoUrl+/TocOHViwYAGNGzdOVa9z585s2rSJ119/nf/85z9ER0dTunRpGjZsmG4xCEcSExNp2LBhuvLixYtz/vz5VGW9evVi2LBhVK5cmUaNGqXaVr9+fRYuXMjYsWPp0KEDAQEBTJkyhZUrV7J3741Xm2zXrh2TJk1i1qxZLFu2jKCgIJYuXZpuMZFx48Zx9epV3nzzTWJjY2nRogXr1q0jMDAwVb0BAwawa9cuXnjhBS5fvkxgYCCHDh1yeOy33noLf39/3n//faZNm4afnx99+/bl9ddfJ4N7GpVSSiml8tVf1/5i5q6ZvLPzHf66/hf1/euzuPNiutbsiotz+tWn/20kLx8eJiKDgbeAasaYY7ayiljLwr9ojAm/wb4hDoqnAs7Ac8BRY8xp27Lwp4DXjTFjUuy/EShljKmdWZxBQUFm165dGW4/ePAgd999d2bN5IiCtmiGsmi/ZE9efGduxykGdwLtl4JH+6Rg0n4peLRPbt3h84eZsmMKC/ctJCYhhvYB7Xmh4Qs0r9j8pv9QXJD6RUR+MMbceDU38n6E631gILBaRF7ButdqHFaC9F5yJRGpAPwKjDXGjAUwxkSkbUxELgGFUm4zxpwTkSnASyISBewGHgdakMWl55VSSimllFLZZ4xhy4kthEeG89kvn+Hm7EavOr0Y2nAod5fImwGLgiZPEy5jzDURaYG1tPsirIUsvgYGG2OupqgqWCNXN/ucsJHAVWAQ4A8cBroaYz672diVUkoppZRSjsUnxrPqwCrCI8P54cwP+Hn6MarpKP57738p5V0qv8PLV3m+SqEx5iTQJZM6x8nCyoXGmJAMyhOB8baXUkoppZRSKhdcjrnMnN1zmPbdNE5dOUW14tWY9eAsetftjYeLR36HVyDkx7LwSimllFJKqdvYycsnmbZjGu/vfp+ouCiaVWjGu+3f5cFqD+IkNztJ7d9JEy6llFJKKaVUluz6YxfhkeGs3G89/qdrza4MbTiUoDKZrh1xx9KESymllFJKKZWhJJPE2l/WEh4ZzpYTW/Bx9WFw8GCev/95yvtm/gzTO50mXEoppZRSSql0ouOj+WDfB0zeMZlf/v6FuwrfxVut36Jvg774uvvmd3i3DU24lFJKKaWUUnbnrp3j3Z3vMmPXDM5fP09QmSCWdllKl7u73BEPKs5pmnAppZRSSimlOPDXAaZETmHRj4uITYylQ7UODHtgGE3KN7npBxUrTbiUUkoppZS6Yxlj2HR8E+GR4Xx+5HPcC7nTp14fhgQPIdAvML/D+1fQNRsVCxYsQEQ4evToLbcVEhJC48aNcyAqS58+fahYsWKOtRcWFpYvf6EJCwvjm2++yfPjKqWUUko5Ep8Yz+IfF9NgdgNaftCS73//njEhYzg5+CSzHpqlyVYO0oRLqTwwZswYTbiUUkople8uxVxi0rZJVJpWiV6f9CI2IZb3O7zPySEnGdVsFCW8SuR3iP86OqVQKaWUUkqpf7njl44zdcdU5u6Zy9W4q7So1ILZHWbTtmpbfVBxLtOrq7Lk+++/59FHH6VcuXJ4eHgQGBjIyy+/THR0tMP6q1evplatWrgc9FVTAAAgAElEQVS5uVG9enVWrFiRrs6+ffvo2LEjRYsWxcPDg0aNGvHtt99mGsv169cZMWIElSpVwtXVlUqVKvHaa6+RlJSUqt6ePXto0qQJ7u7ulC1blnHjxmGMydL5xsfH88orr1CxYkVcXV2pWLEir7zyCvHx8fY6ERERiAgRERGp9k2eonn8+HEA+xTG1157DRFBRAgLC7PX37x5M61bt8bX1xcvLy/q1q3L3LlzsxXL8ePHERFmzZrFSy+9hL+/Pz4+PvTs2ZPr169z9OhRQkND8fb2pmrVqixcuDDdOWelP77//ntat25N8eLF8fT0pHLlyvz3v//N0jVVSimlVN777vR3dF3ZlSrTq/Du9+/SqXondj+9m697f037gPaabOUBHeFSWXLy5Enq1atHnz598PHxYf/+/YwdO5Zjx46xbNmyVHWPHj3K888/T1hYGCVLlmTmzJl069aNEiVK0Lx5cwB2795NkyZNqF+/Pu+//z6enp7MmjWLVq1asX37du655x6HcSQkJBAaGsqBAwd49dVXqV27Njt27GDcuHFcuHCB8PBwAM6fP0+LFi3w9/dn4cKFuLm58eabb3Ly5Mksne+TTz7JihUrePnll2ncuDGRkZGMHz+eY8eO8eGHH2br2kVGRtKwYUP69OlD//79AShXrhxgJaZdunShUaNGvPfee/j5+bF//35OnDhxU7FMmDCBkJAQFi5cyIEDBxg+fDhOTk7s2bOHfv36MWzYMGbOnMlTTz1FUFAQNWvWzHJ/XL16ldDQUO677z4WLFiAj48Px48fZ/v27dm6HkoppZTKXYlJiaw5vIbwyHC2ndqGr5svwxoO47n7n6Nc4XL5Hd4dRxOuHDJ48GD27t2b4+0mJibi7Oycpbr16tVj6tSpOR4DQJcuXez/bYyhUaNGFC5cmN69e/Puu+9SvHhx+/Y///yTyMhIgoODAWjbti01a9Zk1KhR9hGT//3vf5QvX55vvvkGV1dXAEJDQ6lVqxbjxo3j008/dRjH0qVL2bp1K5s3b6Zp06YAtGzZErDukxoxYgQlS5ZkypQpXLt2jQ0bNlC+vPUE9NatW1OhQoVMz/Xnn39m6dKljB492j4S1aZNG5ydnXn11Vd58cUXqVSpUpavXfJ1KFu2rP2/k6/joEGDqFevHps2bcLJyfoLU6tWrbIVS506dez1q1SpYh+9Cg0N5dtvv2XRokUsWrSInj17AhAUFMSaNWtYtWqVPeHKSn8cOnSIixcvMmnSpFTH7NOnT5avhVJKKaVyz7W4ayzYu4Cp303l6IWjVPCtwNTQqfxf/f/Dx80nv8O7Y+kYosqSK1euMGLECKpUqYKbmxsuLi706tULYwxHjhxJVfeuu+5KlVg4Ozvz2GOPsXPnTpKSkoiOjmbz5s089thjODk5kZCQQEJCAsYYWrVqxZYtWzKMY/369VSoUIEHHnjAvl9CQgJt2rQhPj6eHTt2ANgTvuRkC8DLy4sOHTpkeq7Jx09OUJIlv9+8eXOmbWTF4cOHOXHiBH379rUnW7caS7t27VK9r169OmAlT8mKFi1KyZIlOXXqFECW+yMgIIAiRYrQv39/Fi9ebN9fKaWUUvnrTNQZRn49kvJTyzPwi4EU8yjG8keXc/T5owwKHqTJVj7TEa4cklsjS1FRUfj45P+X5KmnnmLjxo2MHTuWevXq4eXlxc6dO3n22WeJiYlJVbdUqVLp9i9VqhRxcXH89ddfJCQkkJiYyLhx4xg3bpzD4yUlJTlMQs6dO8eJEydwcXH8lPO///4bgDNnzlCrVi2HcWTmwoULAJQuXTpVub+/f6rttyo51uTphTkRS9GiRVO9Tx6tclSe3G8XLlzIUn/4+vqyadMmxo0bx3//+1+ioqKoWbMmY8aMSTUCqpRSSqm88fO5n5kcOZklPy0hPjGeh6s/zAsNX6DRXY30QcUFiCZcKlMxMTGsXr2asLAwBg0aZC//6aefHNb/888/HZa5urpSokQJoqOjcXJy4tlnn6V3794O28hoxKd48eJUqlTJ4SIcgP2ZXaVLl84wjswUK1YMgLNnz1KlShV7+dmzZ+0xALi7uwMQFxeXav/kRCozfn5+APz++++3HMutKFKkSJb7o169enz00UckJCSwa9cuJkyYQNeuXdm3b5/DBFcppZRSOcsYw8ZjGwmPDGfDrxvwKORB3/p9GRw8mIDiAfkdnnJAEy6VqdjYWBITE9ONKi1YsMBh/VOnTrFjxw77tMLExERWrlzJfffdh5OTE15eXjRp0oR9+/bRoEGDDJMrR9q2bctHH32Et7e3fbqcIw0bNuTNN9/k1KlT3HXXXQBcu3aNzz77LNNjNGvWDIBly5YxcuRIe/mSJUsA7PeOJd8P9vPPP9OmTRt7vc8//zxdm66urulWdKxWrRoVK1Zkzpw5PP300w7/EpXVWG7FzfRHoUKFCA4OZty4caxZs4aDBw9qwqWUUkrlorjEOJb+tJTJOybz458/UsqrFOObj+eZoGco7nnrf4BVuUcTLmW3fv16+1S1ZL6+vrRu3Zrg4GDCw8MpXbo0fn5+zJs3L8ORmVKlSvH4448zZswYSpQowcyZM/nll1+YOXOmvc7kyZNp2rQpoaGh/Oc//6F06dKcP3+e3bt3k5iYyMSJEx223aNHD+bPn0/Lli154YUXqFu3LnFxcfz666+sWbOGTz/9FE9PT4YMGcKMGTNo06YNYWFh9lUKPTw8Mr0ONWvW5IknniAsLIyEhAQeeOABIiMjGTduHE888QR16tQhKiqK0qVL06xZMyZMmICfnx8lS5Zk8eLF/Prrr+narFGjBuvWraNt27YULVqUMmXKUKZMGaZOncojjzxCixYteOaZZyhRogQHDx7k3LlzjBkzJkux5ISs9MfatWuZPXs2nTp1olKlSly7do3p06fj4+NDw4YNcyQOpZRSSqV2IfoC7+16j7d3vs2Zq2eoWaIm8zrOo3vt7rgVcsvv8FRWGGP0leZ1zz33mBs5cODADbfnpCtXruT6MebPn28Ah6+aNWsaY4z57bffTNu2bY23t7cpUaKEefbZZ83atWsNYDZt2mRvq1mzZqZRo0Zm9erVpmbNmsbV1dVUq1bNLFu2LN1xDxw4YB5//HFTokQJ4+rqasqWLWs6dOhg1q1bZ6/z5JNPmgoVKqTaLzo62owePdoEBgYaV1dXU7RoURMUFGRGjx5t4uPj7fV++OEH07hxY+Pm5mbKlCljxo4da0aNGmWsj/2NxcXFmZEjR5ry5cubQoUKmfLly5uRI0eauLg4Y8w//XLq1Cnz0EMPGV9fX1OqVCnz0ksvmffff98A5rfffrO3t3XrVtOgQQPj5uZmADN69Gj7tq+//tqEhIQYLy8v4+XlZerUqWPmzZuX5ViS+wcw77//fqrzGD16tAFSXRdjjKlQoYLp0aNHtvrj0KFDpmvXrqZixYrGzc3N+Pn5mXbt2pkdO3Zkej3z4juT8nOoCg7tl4JH+6Rg0n4pePK7T47+fdQMXDfQeL7maQjDtP6gtVl/ZL1JSkrK17jyW373S0rALpOF3EJMFh8EeycJCgoyu3btynD7wYMHufvuu/MkloKyaIZKTfsle/LiOxMREUFISEiuHkNln/ZLwaN9UjBpvxQ8+dUn209tJzwynE8OfkIhp0J0r92doQ2HUqdUzsxqud0VpO+KiPxgjAnKrJ5OKVRKKaWUUiofJSYl8smhTwiPDGfH6R0UcS/Ci41fZOB9AynjUya/w1O3SBMupZRSSiml8sHVuKvM2zOPqTum8tul36hctDLT207nqfpP4e3qnd/hqRyiCZdSSimllFJ56Pcrv/P2zrd574f3uBRziYblGvJm6zfpVL0Tzk7O+R2eymGacCmllFJKKZUH9p3dR3hkOMt+XkaiSaRz9c680PAFGt6lq/3+m2nCpZRSSimlVC4xxrDh1w2ER4az8dhGvFy8eCboGQYHD6Zy0cr5HZ7KA5pwKaWUUkoplcNiE2JZ8tMSJkdOZv9f+yntXZoJLSfQ/57+FPUomt/hqTykCZdSSimllFI55O/rfzNz10ze2fkOf177kzql6rCw00K61eqGq7Nrfoen8oEmXEoppZRSSt2iI38fYcqOKSzYu4DohGjaVm3LCw1foGWllohIfoen8pEmXEoppZRSSt0EYwxbT24lPDKcNYfX4OLsQo/aPRjacCi1StbK7/BUAaEJl1JKKaWUUtmQkJTARwc+IjwynO//+J5iHsV4ucnLDLxvIP7e/vkdnipgnPI7AJX/FixYgIhw9OjRdNsSEhIQEcLCwvI+sH+x3L6mERERhIWFkZSUlKr8+PHjiAgLFizItWMrpZRS/1ZRsVFMiZxC1elV6fZRNy7GXOTd9u9ycvBJxrcYr8mWckhHuJT6F4qIiGDMmDG88sorODn983eV0qVLExkZSZUqVfIxOqWUUur2curyKaZ/N53Zu2dzJfYKjcs3ZmrbqXSo1kEfVKwypQmXUncQNzc3goOD8zsMpZRS6raw58wewiPDWb5/OUkmiUdrPMoLDV/gvrL35Xdo6jaiUwpVtoWFhTlcbadPnz5UrFjR/j55+tqsWbN46aWX8Pf3x8fHh549e3L9+nWOHj1KaGgo3t7eVK1alYULF6Zq7+jRo/Tq1YtKlSrh4eFB5cqVGTBgABcvXkx33HLlyrFnzx6aNGmCp6cnAQEBzJo1K0vnc/78eQYMGEDZsmVxc3OjevXqzJ492759586diAifffZZun0HDBhAiRIliI+PB2DZsmW0aNGCEiVK4O3tTf369dOdlyNpr12ykJAQQkJC7O9jYmIYMmQItWrVwtvbG39/fzp06MChQ4fsdcLCwhgzZgwALi4uiIi9vzKaUrh48WLq1q2Lu7s7fn5+9OrVizNnzqSqU7FiRXr27MmyZcu4++678fLyIigoiK1bt2Z6fkoppdTtwhjD50c+Z+i+oTSY3YDVh1cz8N6B/Pr8ryx/dLkmWyrbdIRL2SUmJpKQkJCu7FZNmDCBkJAQFi5cyIEDBxg+fDhOTk7s2bOHfv36MWzYMGbOnMlTTz1FUFAQNWvWBOCPP/6gXLlyTJ06laJFi3Ls2DFef/112rdvT2RkZKpjXLlyhe7duzN48GBGjRrF/PnzGTBgAIGBgTRv3jzD2K5cuUKjRo2Ijo4mLCyMSpUqsWHDBgYMGEBsbCzPPfcc9913H4GBgSxatIgOHTrY942Li2PFihV0794dFxcXAI4dO8ajjz7Kiy++iJOTE1u2bKFv375ER0fzzDPP3PK1jI2NJSoqildeeYXSpUtz4cIFZsyYQXBwMIcOHcLf35++ffty+vRp5s6dy9atW3F2vvFUh9mzZ9O/f38ef/xxJkyYwB9//MHLL7/Md999x+7du/H29rbX/fbbbzl8+DDjxo3D3d2dV199lYceeojjx49TpEiRWz4/pZRSKr/EJ8azfP9yJm2bxE/nfsLP1Y9JrSbR755+FHHX/49TN08TrpwyeDDs3ZvjzXokJkImP5jt6tWDqVNv+ljVq1e/6X1vpEqVKvZRntDQUL799lsWLVrEokWL6NmzJwBBQUGsWbOGVatW2ROupk2b0rRpU3s7DzzwAFWrVqVJkybs2bOH+vXr27dFRUUxY8YMe3LVtGlTvvzyS5YuXXrDhGvatGmcOHGCn376iYCAAABatWrFpUuXGDNmDAMGDKBQoUL06tWL8ePHc/nyZXx9fQH4/PPPuXDhAr169bK39/LLL9v/OykpiZCQEM6cOcPMmTNzJOHy9fVlzpw59veJiYmEhoZSqlQpli5dypAhQyhXrhzlypUD4P7776dQoYy/5omJibz66quEhISwbNkye3n16tVp0qQJ8+bN4/nnn7eXX7lyhb1791K0aFEA/P39uffee/n888/p3r37LZ+fUkopldeuxV1jzu45TN4xmZOXT1KjRA0WPLyAMhfK0LpR6/wOT/0L5PmUQhG5S0RWichlEbkiIh+LSPks7FdBRFaLyAkRiRaR8yISISLtHNQ1Gbzq5c5Z/Tt88sknfP/996leO3bsuOV227VL3UXJiV1oaKi9rGjRopQsWZJTp07Zy+Li4nj99depXr06Hh4euLi40KRJEwAOHz6cqk1PT89UiZWbmxsBAQGcPHnyhrGtX7+e+++/n0qVKpGQkGB/hYaG8vfff3PgwAEAevbsSWxsLCtXrrTvu2jRIgIDA7nvvn+mFhw5coQnnniCsmXL4uLigouLC3PmzEkX761YsWIF999/P0WKFKFQoUJ4eXlx9erVmzrG4cOHOXfuHD169EhV3rhxYypUqMDmzZtTlTds2NCebAHUrl0bINPrrJRSShU056+fZ/Sm0ZSfWp7BGwZzV+G7WNNtDT8N+Ikn6z2Ji5NLfoeo/iXydIRLRDyBb4BY4EnAAOOBTSJSxxhz7Qa7ewPngVeA00BhoB/wuYh0McZ8nKb+AuC9NGW/3PJJZOQWRpZuJDoqCh8fn1xpO61atWpRtWrVVGVppxjejJQ/0AFcXV0zLI+JibG/f+mll3j77bcZNWoUDzzwAD4+Ppw+fZpHHnkkVT1HbYGVdKWtl9a5c+c4evSofUpgWn///TcAFSpUoGnTpixatIi+ffty6dIl1q1bx6uvvmqve/XqVVq3bo2npycTJ06kSpUquLq6MnPmTObNm3fDOLLqs88+4/HHH+fJJ59k9OjR+Pn54eTkRPv27TM9V0cuXLgAWKsXpuXv72/fnqxYsWKp3ru5uQHc1LGVUkqp/HD80nHCt4czd89cohOi6RjYkeEPDKdR+Ub5HZr6l8rrKYX9gMpAoDHmKICI/AgcAfoDkzPa0RizH/hPyjIRWQf8BjwFpE24fjfG3PrwjErH3d0dsEagkpMn+Cc5ySnLli2jd+/evPLKK/ayq1ev5ugxihcvTsmSJZk2bZrD7YGBgfb/7tWrF/369ePEiROsXr2auLi4VCNDkZGRnDhxgm+//ZbGjRvby7OStLq7uxMXF5eu/O+//6Z48eL298uWLaNq1aqpFr2Ij49PlxhlVXICdfbs2XTbzp49S1BQ0E21q5RSShU0+87uY9L2SSz/eTkiQo/aPRjeaDg1StTI79DUv1xeTynsCOxITrYAjDG/AduAh7PbmDEmAbgMxOdYhCpTFSpUAODnn3+2l126dInt27fn6HGuX7+ebuRp/vz5OXqMtm3bcujQIcqXL09QUFC6V8rRxcceewx3d3eWLFnCsmXLaNq0aaqVBa9fvw6QKuaLFy+yevXqTOOoUKECf/75J+fPn7eX/frrr+mmCV6/fj3dPVmLFi1Kt7hJ8shTdHT0DY8bGBhIqVKlUt2/BbB9+3ZOnDhBs2bNMo1dKaWUKqiMMUQcj6DdknbUe68eqw+t5vn7n+fY88dY0GmBJlsqT+R1wlUT+NlB+X4gS594EXESkUIi4i8irwLVgHcdVB0gIrEicl1EvhGRJjcftkqpXbt2+Pr60q9fP9auXctHH31kX949J7Vt25aFCxcyY8YMvvzyS5555pkcT+qGDBlCyZIladKkCbNmzWLTpk2sXbuWt956i4cfTv03gMKFC9OxY0feffddduzYkWqxDLAW9ShcuDDPPvss69atY8WKFTRr1gw/P79M43jsscesv7b16MGGDRtYsmQJDz/8cLp9kxPEIUOG8PXXXzNp0iRGjRqVboXAGjWsr1N4eDjfffcdu3btcnhcZ2dnxo4dy8aNG+nZsyfr169n7ty5PPLIIwQEBPDUU09lGrtSSilV0CSZJD4++DHBc4NpvrA5P/zxA+Oaj+PkkJNMDp3MXb535XeI6g6S11MKiwEXHZRfANLfhOPYJOAF239fBboZY75OU2cxsBb4A6gA/A/4RkRaG2MiHDUqIk8DTwOUKlWKiAiH1QBrpbioqKgshntrEhMTc/1YyfffXL16Nd2xkqfDJS9HDtaP9BUrVvDiiy/StWtXypQpw4gRI4iIiGDr1q32esnT/2JiYlK1GxsbC1grC6YcrTHGEB8fb687YcIE4uLiGDlyJACtW7dmzpw5NG/ePFWb8fHxGGPSxZ486nOj6+fk5MSGDRt44403mDhxIn/88Qe+vr4EBATQsWPHdPt26dKF5cuX4+7uTmhoaKrtyaNfI0eO5NFHH8Xf39/+3LCJEyemayvlNS1VqhSLFi1i3LhxdOrUiapVqzJ+/HjCw8NTfQa6devG0aNHWbx4Me+99x4NGjRg2bJl9OjRI9W1a9asGX379uXdd99l7NixGGO4cuWKwz554oknEBGmT5/OypUr8fLyok2bNowbNy7VdU3bPxmdiyMxMTE3/E7lhKtXr+b6MVT2ab8UPNonBZP2S86IS4rjqz+/Yvmp5ZyKPkUZ9zIMDhhM21JtcUty48fvfsxyW9onBdPt2C9ijMm7g4nEAeHGmJfSlL8GjDDGZJoAikg5wN/26o01TfFRY8zaG+zjgzWydsoY0zijesmCgoJMRiMCAAcPHuTuu+/OrJkcEZWHi2aorNN+yZ68+M5ERESkeki0Khi0Xwoe7ZOCSfvl1lyOucx7P7zH1B1TOXP1DPX96zOi0Qi61OhCIaebG1/QPimYClK/iMgPxphMb3jP6xGui1ijXGkVxfHIVzrGmNNYqxQCrBWRCOAtrBGtjPaJsi2w8Z+M6iillFJKqdvLmagzTPtuGjN3zeRK7BVaVmrJwk4LaVW5FSKS3+EpBeR9wrUf6z6utGoAB26yzV3A4CzUE6xl6JVSSiml1G3sl79/4a3tb7Fw30ISkhLocncXhjcaTlAZXV1XFTx5nXCtAd4SkcrGmGMAIlIRaAS8mN3GRMQJaAz8mkm9wsCDwHfZPYZSSimllCoYvv/9e97Y9gYfH/wYV2dXnqr3FMMeGEbVYlUz31mpfJLXCdf7wEBgtYi8gjXiNA44RYqHFItIBawkaqwxZqytLAxrOuI24CzWPVz/Ae4DuqfYdxgQCGzin0Uzhtnq//PQJKWUUkopVeAZY9jw6wbe2PYGEccj8HXz5cXGL/L8/c/j7+2f3+Eplak8TbiMMddEpAUwBViENc3va2CwMSblE20FcCb1svW7saYOdgN8sZKufUATY8y2FPUOA51tL1/gClaS9h9jzM7cOC+llFJKKZWzEpISWLl/JW9se4N9f+6jjE8Z3mz9Jk/f8zSF3Qrnd3hKZVlej3BhjDkJdMmkznGspCtl2RqsKYmZtf8Z8NkthKiUUkoppfLJ9fjrzN8zn/DIcH679BvV/aozt+NcetTugVsht/wOT6lsy/OESymllFJKqbT+vv43M76fwfSd0zl//TzB5YKZHDqZjoEdcRKnzBtQqoDShEsppZRSSuWbk5dPMjlyMnN2z+Fa/DXaB7RnRKMRNCnfRJd2V/8KmnAppZRSSqk89/O5n5m0bRJLf16KMYYnaj/B8AeGU7tU7fwOTakcpQmXUkoppZTKE8YYtp7cyhvb3mDdkXV4unjy7L3PMiR4CBWKVMjv8JTKFTohVtlFRkbStWtXypQpg6urK8WLF6d169YsXLiQxMTEXDlmREQEYWFhJCUl5Ur7mZk6dSoff/xxuvKwsLACM40hJCSEkJCQ/A5DKaWUumlJJonVh1bTaF4jmi5oyo7TOxgTMoaTg08yte1UTbZU1kRF5XcEN0UTLgVYiUejRo24cOECb7zxBhs3bmTevHlUq1aNAQMGsHbt2lw5bkREBGPGjClwCVffvn2JjIzMh4iUUkqpf4+4xDjm75lPrRm16LS8E2eunuHtdm9zcshJRjUbRXHP4vkdorpdrFsHFSvi++OP+R1JtumUQsWWLVsYOnQoAwcOZPr06am2PfzwwwwdOpRr167lU3T/iI+Pp1ChQnky8lSuXDnKlSuX68dRSiml/o2iYqOY/cNspuyYwu9Rv1OnVB2WPLKErjW7UshJf36qbJo5EwYOhHr1iC5bNr+jyTYd4VJMnDiRYsWKMWnSJIfbq1SpQp06dezvd+7cSatWrfD29sbLy4uWLVuyc2fqZ0r36dOHcuXKsWfPHpo0aYKnpycBAQHMmjXLXicsLIwxY8YA4OLigojYk6njx48jIsyYMYPhw4dTpkwZ3NzcuHTpEn/99Rf9+/enWrVqeHp6ctddd9G9e3d+//33dLHv27ePzp07U7x4cTw8PAgMDGTChAkAVKxYkRMnTrBkyRL7sfv06WOPLW1id+XKFQYOHEiZMmXw8/MjMDCQKVOmYIyx14mIiEBEWLNmDQMHDsTPz48SJUrQs2dPLl26lNUuydThw4fp3LkzRYoUwcPDg+DgYNavX5+u3tKlS6levTru7u7Url2bNWvW6BRFpZRSuebPq38y8uuRlJ9anmFfDSOgeABf9PiCvf330r12d022VPYkJcH//gf//S+0awebNxNX/PYbFdVP/R0uMTGRiIgIOnXqhLu7e6b1f/zxR5o1a0aNGjVYsGABIsLEiRNp1qwZO3bsoG7duva6V65coXv37gwePJhRo0Yxf/58BgwYQGBgIM2bN6dv376cPn2auXPnsnXrVpydndMd77XXXuPee+9l9uzZJCYm4u7uzsmTJ3F3d2fChAmUKFGCP/74g/DwcBo1asShQ4fs57Fz505CQkKoWrUqU6ZMoVy5chw5coQfbUPRn3zyCe3bt6du3bqEhYUBUKJECYfnnZSUxIMPPsju3bsZO3YsVapUYdOmTQwdOpS//vqL119/PVX9QYMG8dBDD/Hhhx9y+PBhhg8fjrOzMwsXLsxSv9zIH3/8QePGjfHx8eGdd97B19eXd999lwcffJC1a9fSrl07AL766it69OhBx44dCQ8P5/z58wwePJiYmBiqVat2y3EopZRSyX698CtvbX+L+XvnE5cYR+e7OzOi0QjuK3tffoemblfR0fDkk7BypZVwTZsGhW7P1OX2jLoAGjwY9u7N+d3R7UAAACAASURBVHYTEz1wkIc4VK8eTJ2avfbPnz9PdHQ0FSpk7WbVsWPH4ubmxtdff02RIkUAaN26NRUrVmTMmDGp7oeKiopixowZNG/eHICmTZvy5ZdfsnTpUpo3b55q2t79999PIQdfolKlSvHJJ5+kGm0KDAxk2rRp9veJiYk0atSI8uXL88UXX9C5c2cAhg0bRvHixdmxYweenp4AtGjRwr5f/fr1cXNzw8/Pj+Dg4Bue9+eff87WrVuZP38+ffr0ISoqik6dOnHt2jXCw8MZOnQofn5+9vpNmzbl7bffBqBNmzYcPnyYOXPm2JPUWzF58mQuXrxIZGQkVatWBaB9+/bUqFGDkSNH2hOu0aNHU6NGjVTXr3bt2txzzz2acCmllMoRu8/s5o1tb7DqwCoKORWid53eDHtgGIF+gfkdmrqdnT8PDz8M27fDm2/CCy9AAVnM7GbolEKVLVu2bOGhhx6yJ1sAhQsXpmPHjmzevDlVXU9PT3uyBeDm5kZAQAAnT57M8vE6derkMEGZOXMmdevWxdvbm0KFClG+fHnAmmoHcP36dbZt20aPHj3sydat+H/27ju+5ut/4PjrZErEipUYiarxrao9Ys/WpqiWGtHao9RWqyRWEPtn76A2NavUSMQqKf3aVbOIkgQhicjN+f3xIV+r3GiSm/F+Ph4eTT733HPe1yfR+77nnPfx9/fHysqKVq1avXC9TZs2REdHv1Jgo0GDBi98/9FHH/H48WNu376dILF4eHjEJVsA1tbWtGrVihMnTvDgwQNMJhPHjh2jefPmL/z9lSpVivfee+9fxyCEECLt0lqz+9JuPvb7mNLzSvPTxZ/oX6E/V3pfYX7j+ZJsiX/n4kWoUAGOH4c1a6B/f1AKkwkWL4ZEKpydqGSGK4HEd2bJXOHhkWTIkCFxOoe4vU1Xr141q31oaCiurq6vXHdxcSEsLOyFa1myZHmlnb29PVFRUWbH97qxZsyYQa9evejbty8TJ04kS5YsxMbG4uHhEdd3WFgYsbGxCVb4IjQ0FGdnZ+zt7V+47uLiEvf485ydnV/4/tnz4vPa3xRLyZIlX7nu4uKC1pqwsDAiIyN58uQJOXLkeKVdzpw5/3UMQggh0h5TrIn1Z9fjE+hD0K0gXJxcGF9rPF3LdCVTukyWDk+kBgcPQuPGxtd79kDFigCEhUHr1rBjB4wcmY1atSwY4zuQhCuNs7GxoXr16uzatYvHjx+/klC8zNnZmeDg4FeuBwcHv5JkJITXzW6tWrWKWrVq4evrG3ft8uXLL7TJkiULVlZWry2k8S6cnZ0JDQ0lOjoaOzu7uOvP/i6yJuEGzjfdA6UUzs7OODo6Ymtry99///1Ku9u3b8fNCAohhBBvE/kkkiUnljDp0CQuhV2ioHNB5jWcR9vibUln8/b930KYZe1aaNsW8uY1MqunK3lOnYJPP4Vr14xihYUL37VwoPEnSwoFgwcPJiQkhAEDBrz28cuXL8cVmqhWrRrbtm0j/LmD58LDw9myZQvVqlWL99jPErzIyEiznxMREYGtre0L1xYvXvzC946OjlSuXJnly5e/sW97e3uzxq5WrRqxsbGsXbv2hesrVqzAzs7urXvAEtKzAiVXrlyJu2YymVi9ejUlS5YkQ4YMWFtbU6ZMGdavX/9CFcXjx4+/kpwKIYQQrxMWGcbYgLHkm5aP7tu7k9UhK+tarONsj7N0Kt1Jki2RMLSGSZPg88+hdGk4dCgu2Vq7Fjw84NEj2LcPunZNmVu5JOESVK1alcmTJzNz5kw+/vhjVqxYQUBAAJs3b6Z3794ULVo07k368OHDiYyMpFatWqxfv54NGzZQu3ZtIiIiGDFiRLzHLlKkCAC+vr4cOXKEY8eOvfU5devWZefOnYwdO5bdu3czZMgQVq1a9Uq7SZMmERISQoUKFfDz82Pv3r0sXLiQb7755oXxAwIC2Lp1K8eOHXshiXlevXr1qFy5Ml27dmXq1Kns2bOHPn36sGDBAvr16/dCwQxztW/f/p0KaPTp04fMmTPz8ccfs3LlSrZu3UqjRo24cOECY8aMiWs3atQoTp8+TdOmTdm+fTvLli2jRYsWuLi4YGX14q++jY0NHTp0iHcsQgghUp8bD27Q/+f+uE11Y+ieoZRyLcWedns40vEIzYs0x9rKzGpeQrxNTAz06GGUfm/RAnbvhmzZMJngu++MHKxYMWM719PVhSmSLCkUAHz77beUK1eOKVOm0L9/f+7evUuGDBkoU6YMc+fOpVGjRgAUK1aMffv2MXToUDw9PdFa4+Hhwf79+18oCW+uhg0b0r17d2bNmoWXlxda6xdmZF5nxIgR3Lt3jylTphAVFUW1atXYuXMn+fPnf6Fd2bJlCQwMZMSIEXzzzTc8fvwYd3d3vvrqq7g248aNo1OnTnz++edERkbi6enJkiVLXhnTysqKbdu2MWTIEHx8fAgJCSFfvnxMnjyZb7/9Nt6vG+DRo0fvtJ8qV65cHDhwgEGDBtGtWzceP35MiRIl2LZtG3Xr1o1r9yx5HjVqFE2bNqVAgQL4+vri5eVFpkwvrrU3mUyYUuIuVCGEEAnm7J2zTDw4keW/LydWx/JF0S8YWHEgxV3i//93Id7q4UNo2RK2bTMSrvHjwcqK0FBo1Qp+/hm6dDGqwb9lx0vy9+wNrvz535/SpUvrNzlz5swbH09IDx48SLKxhPkS4r7kypVL+/j4JEA05rt+/bq2t7fXXl5eSTpuUvzO7N27N9HHEPEn9yX5kXuSPFnyvgReC9SNf2isGYl2GO2ge27rqS+FXrJYPMmF/K4kops3tS5VSmsrK61nzYq7fPKk1u+9p7Wdndbz5r3+qcnpvgDHtBm5hcxwCWEBf/zxB1FRUXTv3j3RxoiMjKRv377Url2bbNmycenSJSZMmICjoyMdO3ZMtHGFEEIkf7E6lu1/bMcn0IcD1w7g7ODMiKoj6FmuJ9nTZ7d0eCI1O30a6teHkBDYvBmeHqWzahV06ACZM8P+/cberdRCEi4hLKBgwYKEhIQk6hjW1tYEBwfTs2dPQkJCSJ8+PVWqVGHt2rWvLbcvhBAi9XtiesIPp35gQuAETt85Td6MeZlaZyodSnXAyc7J0uGJ1G7PHmjWDBwcwN8fSpUiJsbYrzVpElSqBOvWwdNTd1INSbiESKXs7OzYuHGjpcMQQgiRDDyMfsiCoAVMPjSZ6w+uUzRHUZZ9uoyWRVtia2379g6E+LeWLYOOHaFQIdi+HdzcCAkxtnHt3g3du8OUKfDc6TuphiRcQgghhBCp1J1Hd5hxdAYzj84kLCqMKm5VmN1gNvUL1n+nSrlCxJvW4OUFI0dCzZqwfj1kzsyJE9C0Kdy8CQsXwtdfWzrQxCMJlxBCCCFEKnM57DK+h3xZ9NsiImMiaVK4CYMqDaJC3gqWDk2kJdHR0LkzLF0Knp4wbx7Y2bFypTHZ5ewMAQFQrpylA01cknAJIYQQQqQSJ4NP4hPow5rTa7BSVrQp1oYBFQfwQfYPLB2aSGvu3YPmzY19WyNHwogRxJgUA/saSwerVoU1a+AdTshJcSThEkIIIYRIwbTW7LuyD59AH3b+uRMnOye+9fiWbz2+JU/GPJYOT6RF164ZlQjPn4clS8DTkzt34IsvYO9e+OYb8PUF2zSyfVASLiGEEEKIFMgUa2LTuU34BPrw681fyZE+B2NqjqFbmW5kcchi6fBEWhUUZJR6j4yEnTuhZk2Cgoz9Wrdvx+VfaYokXEIIIYQQKUhUTBR+J/2YeHAif4T+wftZ3md2g9l4FvfEwdbB0uGJtGzbNmMaK2tWo/Tghx/i52ds48qeHQIDoXRpSweZ9CThEkIIIYRIAe5H3WfOsTlMPTKV4IfBlHYtzZrP1tDsg2ZYW1lbOjyR1s2eDT17QokSsHUrT7K50r83TJ8O1asb+7Wyp9Ezta0sHYBIPg4dOsTnn39Orly5sLOzI2vWrHz88ccsXboUk8lk6fDe6MqVKyilWLJkSYL1OXbsWNzc3LCxsaFEiRIABAcH07hxY9zc3FBKMXXq1AQbD2Dq1Kls2LAhQfsUQgiRst0Mv8nAXQPJOyUvg38ZzEc5PmJ329382ulXWnzYQpItYVmxsTBggHGQVr16sH8/f1u7Uru2kWz16QO7dqXdZAtkhks8NXXqVPr27UvNmjXx8fHB3d2dsLAwfv75Z7p160bmzJlp0qSJpcNMMkePHmXo0KEMGDCATz/9lAwZMgDg5eXF/v37mT17Nvnz5ydfvnwJOu7UqVOpXLkyzZo1S9B+hRBCpDzn755n4sGJ+P3uR0xsDC2KtGBgpYGUci1l6dCEMERFQbt2sHYtdOsG06fz6282NGsGd+/C8uXQurWlg7Q8SbgE/v7+9O3bl549ezJ9+vQXHmvSpAl9+/bl0aNHForOMs6ePQtA165dyZ8//wvXixcvTqNGjeKSMCGEECIhHfnrCD6BPmw6twl7G3s6lOxAvwr9eN/5fUuHJsT/3L0LTZrAwYMwcSL068eSpYquXcHFxbhcsqSlg0weZEmhYPz48Tg7OzNhwoTXPv7+++9TrFgxAO7cuUOXLl0oVKgQjo6O5M2bly+//JIbN2688Jz27du/dvanevXqVK9ePe77hw8f8s033+Dm5oa9vT05c+akdu3anDt3Lq7NzJkzqVChAs7OzmTOnBkPDw+2bdv2zq/35MmTNG7cmCxZsuDg4EClSpUICAh4Icb27dvHvXalFO3bt0cpxb59+wgICCBjxowopbhy5QoAly9fpnXr1mTPnh17e3tKlCjBxo0bXzt206ZNyZo1Kw4ODhQuXJhx48YBkC9fPq5evcqKFStQSsWNK4QQIvXTWrPjjx3UWFoDj4Ue7L2ylyFVhnD126vMajBLki2RvFy8CBUqwPHjsGYN0b360/MbxVdfQeXKcOyYJFvPkxmuNM5kMrFv3z4+/fRT0qVL99b2oaGhpEuXjnHjxpE9e3Zu3ryJr68vlSpV4ty5c2b18bw+ffqwefNmxo4dS8GCBQkJCSEwMJB79+7Ftbly5QodO3YkX758xMTEsGXLFho2bMj27dupV69evMYLCgqiSpUqlCxZkvnz5+Po6MicOXOoXbs2Bw8epHTp0syaNYvly5czbtw4NmzYgKurK66urnTt2pUuXbpgbW3NxIkTSZ8+Pa6urly/fp3y5cuTI0cOpkyZQvbs2Vm9ejXNmzdn06ZNNG7cGDCWKVavXp0CBQowZcoU8uTJwx9//MHvv/8OwMaNG6lfvz7Fixdn5MiRAGRPywuehRAiDYiJjWHN6TUMPz6cS/6XyJ0hN76f+NKpVCcy2MtKCpEMHTwIT9/bsGcPwfkr0qIWHDgA/fvDuHFgIxnGC+SvI6F8C5xI+G4dTA5g7l7YEkA8azjcvXuXyMhI3N3dzWpfuHBhpk2bFve9yWSiUqVKuLm5sWPHDpo2bRqv8Q8dOkTr1q3p0KFD3LWX+5g0aVLc17GxsdSqVYsLFy4wZ86ceCdcAwYMwM3NjT179mBnZwdAnTp1KFq0KN7e3mzatIkiRYrELSMsWbJk3Eydu7s7GTJkwMbGhnLlysUtKRw5ciRaa/bv30/WrFnj+rx+/TojRoyIS7j69+9P1qxZOXz4MI6OjgDUrFkzLraSJUtib29PtmzZ8PDwiNfrEkIIkbI8MT1h+e/LGXtgLBdDL+Lu6M7iJov58qMvsbO2s3R4QrzeunXQpg3kzQvbt3MktCDNSkNYGPzwA7RsaekAkydZUijibfbs2RQvXhwnJydsbGxwc3MD4Pz58/Huq2zZsixZsoSxY8dy7Nix11ZDPH78OA0bNiRnzpzY2Nhga2vLrl274j1eZGQk+/fvp0WLFlhZWRETE0NMTAxaa2rXro2/v3+84wf46aefqF+/PpkyZYrrMyYmhjp16nDy5EkePHhAREQEgYGBtG7dOi7ZEkIIkfZEm6KZf3w+hWYW4uvNX5PBLgMbPt/AojKLaF+ivSRbInnSGiZNghYtjIO0Dh1ioX9BqlYFe3s4dEiSrTeRGa6EkrDVweNEhkcmanGGZ3uJrl69alb7GTNm0KtXL/r27cvEiRPJkiULsbGxeHh4EBUVFe/xZ8yYgYuLC4sWLWLo0KE4OzvTrl07xowZg6OjI9evX6dWrVoUKVKEGTNmxJVpHz58eFxhC3OFhoZiMpnw9vbG29v7tW1iY2Oxsorf5xB///03y5YtY9myZa99PCQkBDs7O2JjY8mTJ0+8+hZCCJE6RMVEsei3RYw/MJ7rD65TLnc5ZtSbQYOCDYw9wrf3WTpEIV4vJgZ694ZZs6BFC6LnL6X3YAfmzIFPPjFmtpydLR1k8iYJVxpnY2ND9erV2bVrF48fP8be3v6N7VetWkWtWrXw9fWNu3b58uVX2qVLl47o6OhXroeEhMQtuwNwcnJi3LhxjBs3jqtXr7Ju3ToGDx6MnZ0dPj4+/PTTT9y/f581a9a8kKxERETE+7VmzpwZKysrevToQbt27V7bJr7JFhhJa5UqVRg0aNBrH8+VKxcmkwkrK6tXiosIIYRI3SKeRDD/+HwmHJzAzfCbVMxbkfmN5vPJ+5+glLJ0eEK82cOHxtTVtm0wYAA3e42nRX0rDh6EwYNh9GiwlmPg3irJEy6lVF5gCvAxoIDdwLda62tveZ47MB1jp1IO4BFwCvDRWu94qW06wBtoA2TG2F01SGv9bmvGUrnBgwdTvXp1BgwY8EpZeDASqvDwcIoVK0ZERAQZM2Z84fHFixe/8hx3d3du377N3bt3yZYtGwB//vkn58+fp2LFiq+Nw93dnX79+rFixQpOnToF/C+xsrW1jWt34cIFAgMD4z1blD59eqpUqcLJkycpVarUOyVXr1O3bl0OHTrEhx9+iIODwz+2q1y5MsuXL2fEiBH/2M7e3p7IyMgEiUsIIYTlPIp+xOxjs5l0cBK3H92mmns1/Jr6USNfDUm0RMpw6xY0bAgnTsD//R8HS3SneVkID4c1a4zVhcI8SZpwKaUcgT3AY8AT0MBoYK9SqpjW+k2HPTkBd4FhwF9ARqATsF0p1VxrveG5tguBBsAA4BLQA9iplKqgtU6E0hYpW9WqVZk8eTJ9+/bl7NmztG/fHjc3N8LCwvjll19YsGABK1eupFixYtStWxcfHx/Gjh1LuXLl2LNnD+vWrXulzxYtWjB8+HBat25N3759uXv3LuPGjYtLvp6pUKECjRs35qOPPsLJyYn9+/dz8uRJPD09AahduzY2Nja0a9eOfv36cevWLb7//nvc3NyIjY2N92udPHkyVatWpU6dOnTo0AFXV1fu3r1LUFAQJpOJ8ePHx7tPLy8vypUrR9WqVenZsyf58uUjLCyMU6dOcenSJRYtWgQYxT+qVatGhQoV6NevH3ny5OHSpUucOHGCGTNmAFCkSBECAgLYunUrLi4uZMuWLcEPVxZCCJF4wh+H83+//h++h3y5G3GX2vlrs6bqGqq6V7V0aEKY7/RpqF8fQkLQP25m3o0GfFMd3Nxg1y4oWtTSAaYwWusk+wP0BkxAgeeuvQfEAH3foT8b4Dqw5blrxTESua9eance2GxOv6VLl9ZvcubMmTc+npAePHiQZGMFBgbqzz77TLu4uGgbGxudJUsW/fHHH2s/Pz9tMpm01lpHRETorl276mzZsmknJyfdoEEDfenSJQ3o77///oX+Nm7cqD/88EOdLl06XaxYMb1z505drVo1Xa1atbg2AwcO1CVKlNAZM2bUjo6OumjRonratGkv9LN69WpduHBhbW9vr4sUKaJ/+OEH7enpqd3d3ePaXL58WQN68eLFb32dZ86c0V988YXOnj27trOz07lz59aNGjXS27Zti2szf/58DejLly+/8NxKlSrpatWqvXJfrl+/rjt06KBz5cqlbW1ttYuLi65du7b28/N7oV1QUJBu2LChzpQpk06XLp0uXLiwHj9+fNzjZ8+e1ZUrV9YODg4a0J6enm99PSlBUvzO7N27N9HHEPEn9yX5kXuSOMIiw7TXPi+dZXwWzUh0veX19MFrB81+vtyX5CfN3pNfftE6UyatXVx01MHjumNHrUHrevW0Dg21dHDJ674Ax7QZuYUy2iYNpdQvQDqtdaWXru8H0FpXe4c+TwEXtNbNnn4/HBgOZNZaRzzXbhQwGMiotX78pj7LlCmjjx079o+Pnz17lg8++CC+ob6T8PDwRC2aId6N3Jf4SYrfmX379r1wqLZIHuS+JD9yTxJWaGQoUw9PZdqRaTx4/IBGhRoxvOpwyuYuG69+5L4kP2nynixbBh07QqFC3Fj4E8175+HIERg6FEaNSh77tZLTfVFKHddal3lbu6Tew/Uh8ONrrp8GzFoJqpSywihnnw1jSWEhjJmz58e4/Hyy9dwYdkCBp18LIYQQQryTO4/uMPnQZGb+OpOH0Q9p9kEzhlUZRknXkpYOTYj40xq8vGDkSKhZk4B+m2jRJAOPHsH69dCsmaUDTNmSeoYrGpistR780vXRwGCt9VsTQKXUJKDf028fAp76uf1bSqmfMWaxPF56Xm1gF1BVax3wmn47A50BcubMWXrVqlX/GEOmTJkoUKDA20JNECaTCevk8HGCeIHcl/i5ePEi9+/fT9QxHj58iJOTU6KOIeJP7kvyI/fk3wmNDmX19dVsvrmZx7GPqZ69Om3c2pDfKf+/6lfuS/KTVu6JevKEQpMn4/rTT9z6pA4+haYwc3ZhXF2j8PY+Rb588a8MnZiS032pUaNGspzhAmN/1cviU65nKrAKcAHaASuVUp9prbc+11e8x9BazwPmgbGk8E1TlWfPnk2y5WSydC15kvsSP+nSpaNkycT91Dc5LTEQ/yP3JfmRe/JubobfZELgBOYen0u0KZpWRVsxtMpQPsieMMul5b4kP2ninty7B599Br/8QtRQb4beGMrimYqGDcHPz5HMmctZOsJXpMT7ktQJVxjwuqPRsjx97K201n9hVCkE2KqU2gdMAp4lXKGA2z+M8exxIYQQQoi3unb/Gj4HfFj420JiYmNoW7wtQyoPoWDWgpYOTYh/59o1oxLh+fNc911Dsx9acOwYjBgB338PCXR6jiDpE67TGHusXlYEOPOOfR4Dvn1pjKZKKceX9nEVAaKBi+84jhBCCCHSiMthlxl/YDyLTxhnTbYv0Z7BlQeTP8u/WzooRLIQFAQNGkBkJPt9DtNifGmiomDTJmjSxNLBpT5JnbtuBjyUUnH/Wiml8gGVnj4WL08LaFQG/nxpDFueK8KhlLIBvgB+fluFQnMl5d43IVIy+V0RQqQkF0Mv8vWPX1NwRkGWnFxCp1KduNjrIvMazZNkS6QO27ZB1apoWzumdztLrYGlcXaGo0cl2UosST3DNR/oCfyolBqGsdfKG+MsrbnPGiml3DGSKC+ttdfTayMxliMGAsEYe7g6AOWAL589V2t9Qim1GpiqlLIFLgPdMM77ap0QL8LW1pbIyEgcHR0TojshUrXIyEhsbW0tHYYQQrzRubvnGBMwhpX/XYmdtR09yvZgYKWB5M6Y29KhCZFwZs+Gnj2JLFaeLgV24zfekcaNwc8PMma0dHCpV5ImXFrrR0qpmsAUwA+jkMUvwLda64fPNVWANS/OwAVhLB1sCWTCSLpOAlW01oEvDfUVMAYYDWR+2q6u1jooIV5Hjhw5uHHjBrlz58bBwQGl4lPzQ4i0QWtNZGQkN27cIGfOnJYORwghXuvU36cY7T+aNafX4GDrQB+PPvSv2B8XJxdLhyZEwomNhcGDYeJErtZoT7OwBQSts2bUKBg2TPZrJbYkr1Kotb4GNH9Lmyu8VFVQa70ZM5cdaq0jgb5P/yS4jE8/Arh58yZPnjxJjCHiREVFkS5dukQdQ8Sf3Bfz2NrakjNnzrjfGSGESC5OBJ9gtP9o1p9dj5OdE4MqDaJvhb5kT5/d0qEJkbCioqBdO1i7lr2Np/D5wd5ERyu2bIGGDS0dXNpgibLwqULGjBmT5E3kvn37Er2ctog/uS9CCJEyHbt5DG9/bzaf30xG+4wMrzqc3uV7k9Uxq6VDEyLh3b0LTZqgDx5kaqM9DNhWnUKFFJs2QaFClg4u7ZCESwghhBCp3qHrh/D292bHxR1kSZeFUdVH0at8LzKny2zp0IRIHBcvQv36RFy9Q6fKV1i5xZ1mzWDJEpCjRJOWJFxCCCGESLUCrgbg5e/F7ku7yeqQlbE1x9KjXA8y2stSZ5GKHTwIjRtz2eRGM/cgTgY6MWYMfPcdSOmBpCcJlxBCCCFSFa01e6/sxdvfm31X9pEjfQ4mfjyRrmW64mTnZOnwhEhc69ZBmzbszvoFX0QsIvaONdu2Qb16lg4s7ZKESwghhBCpgtaaXZd24bXfi8Drgbg6uTKlzhQ6l+6Mo60c5SJSOa3B1xc9YAC+7tMZdL0nRYooNm6EAgUsHVzaJgmXEEIIIVI0rTXb/9iOl78XR28cJU/GPMysN5MOpTqQzkYqyoo0ICYGevfm0awldMh7gNVXK9GiBSxaBE4yqWtxknAJIYQQIkWK1bFsPr8Zb39vgm4F4Z7JnbkN5+JZ3BN7G3tLhydE0nj4EFq14tLW03ya7SKnb7jg4wMDBsh+reRCEi4hhBBCpCixOpb1Z9YzOmA0v9/+nfezvM+ixotoU6wNtta2lg5PiKRz6xY0bMjO33LQyvEMmNKxYwd88omlAxPPk4RLCCGEECmCKdbEmtNrGB0wmjN3zlA4a2H8mvrRsmhLbKzkLY1IY06fRterz4TgdgxRXhQtYOzXyp/f0oGJl8m/TkIIIYRI1mJiY1j535WMCRjDhZALfJj9Q35o/gMtirTA2sra0uEJkfT27OFh07Z89XgO6540omVLWLAA0qe3dGCJJAJYDcwD+94pb7mwJFxCCCGESJaiTdH4nfRj7IGxXAq7RPGcxVnXYh1NP2iK+7Ec9wAAIABJREFUlbKydHhCWMayZVzsMI5Prfdx9kkBJk2Cvn1T6X6ts8BcYClwD/gA7O9KwiWEEEII8a88jnnM4hOLGX9gPFfvX6W0a2l+bPkjjQo1QqXKd5VCmEFr8PZmx/eH+NLmKNbp07NztaJ2bUsHlsCigY3AHGAfYAs0B7oCVeHB/geWi+0dScIlhBBCiGQh8kkkC4IW4BPow43wG5TPXZ5ZDWZRr0A9SbRE2hYdje7chbFLczGcbRT/EDZusiJfPksHloCuAPOBhcBtIB8wDvgKyGmxqBKEJFxCCCGEsKiIJxHMPTaXCQcnEPwwmMpulVncZDG189eWREuI+/cJb9KG9vvbs4HmtG6tmTdP4ZgazvI2ATswZrO2AwpoAHQDPgFSyRZNSbiEEEIIYREPox8y69dZ+B7y5e9Hf1MjXw1+aP4D1dyrSaIlBMC1a5yv1Z2mFydwweo/TPGF3r1Vyt+vFYwxkzUPuAa4AEOBToCbBeNKJJJwCSGEECJJ3Y+6z8yjM5lyeAohkSF88v4nDK86nMpulS0dmhDJR1AQW2pNpc29FdhlcmDXRitq1LB0UP+CBvZizGZtBGKAWoAv0ARjr1YqJQmXEEIIIZJEWGQY049MZ+qRqdyLukeDgg0YXnU45fOUt3RoQiQrsVu24d38BCOfLKPUB5Fs/MkOt5Q68xOKUWVwDnAByAL0AroAhSwYVxKShEsIIYQQiSokIoQph6cw4+gMHjx+QJPCTRhedTilc5W2dGhCJDv3Jy+kXb/sbGYo7VpEMGepIw4Olo4qnjRwFJiNcX5WFOCBkXi1AFLa6/mXJOESQgghRKL4+9Hf+B705f9+/T8inkTQvEhzhlUZRnGX4pYOTYjkJzaWc518+XRRIy6qgkyf8Jie/RxT1n6th8BKjNms34D0gCdGSfcSFozLwiThEkIIIUSCuhV+i4kHJzLn2ByiYqJoWbQlQ6sM5cMcH1o6NCGSp6goNtWaQbuDXXBwgF+2aqrVTEEH/P4XI8nyA8KBj4BZQGsgowXjSiYk4RJCCCFEgvjrwV9MCJzAvOPziImNoXWx1gypPITC2QpbOjQhkq3Yv+8ysvQWvP8aQNm8t9gQ6EKevClgWisKWIeRaAUC9sDnGLNZFTBKvAtAEi4hhBBC/EtX711l/IHxLDqxiFgdS7ti7fiuyncUcC5g6dCESNbuBV2iTZWrbIv4iq+qX2bWjvdIl87SUb3FRWAusBgIAQoAkzCWDmazYFzJmCRcQgghhHgnf4b+ybgD41h6cikKxdclv2Zw5cHky5zP0qEJkeydWXmCT9tm4HJsZWb1+5OuE99Pvvu1YoAtGEUwdmEcSNwE44DimoCV5UJLCSThEkIIIUS8XAi5wJiAMaz4fQU2VjZ0Ld2VgZUGkjdTXkuHJkSKsGHAQTwnfUR66yj2rgymcqv3LR3S6/0FLADmAzeBPMAooCOQy4JxpTCScAkhhBDCLGfunGG0/2hWn16NvbU9vcr3on/F/uTKIO+8hDCHKUYzou4Rxv5SEQ+nU6wLdCV3sWT2QUUsxizWHIxZrVigDkYRjAZI9vAO5K9MCCGEEG/0++3fGe0/mnVn1uFo60i/Cv3oV6EfOZ1yWjo0IVKMsDsxfFnmPD9d86DTe7uZEVQJ+8zJ6ECqOxj7suYClzD2Y/UHOgP5LRhXKiAJlxBCCCFeK+hWEN7+3mw6t4kMdhn4rvJ39KnQh2yOsjNeiPg4dTSCT2vc41pEQeZ+sp7OO5qCVTLY+KQxKgzOxqg4GA1UAUYDzTAqD4p/TRIuIYQQQrzgyF9H8Pb3Ztsf28hkn4nvq31Pr/K9cHZwtnRoQqQ4a+eF8VU3ezLGwv5+W6gwqbmlQ4L7wHKMZYOnMM7K6oxR0l2Oy0twknAJIYQQAoDAa4F4+3uz88+dODs4M7rGaHqW60mmdJksHZoQKY7JBEO73MFnYXYqWh1i3dKHuLazcLIVhJFkrQQeAaUwCmK0AtJbMK5UThIuIYQQIo3bf2U/Xv5e7Lm8h+yO2Rlfazzdy3Yng30GS4cmRIoUGgqt6oTw87HsdHNYwtQ9xbDzqGCZYCKA1RiJ1lHAASPB6gaUsUxIaY0kXEIIIUQapLXml8u/4LXfi4BrAeRMnxPfT3zpUroL6e3ko24h3tXJk9D043Bu3HFigetwOhzqCO7uSR/IOYwkaylwD/gAmAa0AzInfThpmSRcQgghRBqitWbHHzvw8vfi8F+HyZUhF9PrTqdjqY442CajimlCpECrftB87RmD85P7+JcaS/lfxkLmJMxuooGNGInWPsAWo/hFN6AqkFwPVk7lJOESQggh0gCtNVsubGHgbwM5738et0xuzKo/i69KfkU6m3SWDk+IFC0mBr4baGLSFGsqc5i1Ldbisnwq2NklTQBXMPZiLQRuA+7AWOBrQE5vsDhJuIQQQohULFbHsvHsRkYHjOZE8Alc07kyv9F82hVvh511Er0ZFCIVu3sXWn4Wwy/7bejJDHyH3cPOaxqoRJ5OMgE7MGaztmPMXjXAqDRYB7BO3OGF+SThEkIIIVIhU6yJtWfWMtp/NKfvnKagc0GWNFlC7tDc1C5V29LhCZEq/PYbNG0cQ/ANE4ututB+UVXw/CZxBw3GmMmaB1wDXIChQCfALXGHFu8myU9cU0rlVUqtU0rdV0o9UEptUEq99cdDKVVGKTVPKXVOKRWhlLqmlFqhlHrvNW2vKKX0a/58mjivSgghhEgeYmJj8Dvpx4ezPqTV+lbE6lhWNFvB2R5n8SzhiY2VfNYqREJYsQIqVojFdPNvDjjWof3PX4KnZ+IMpoG9wOdAXmAYUBBYi5F0eSPJVjKWpP/qKqUcgT3AY8AT48dnNLBXKVVMa/3oDU9viXEU23TgNJAbGA4cU0qV0Fpff6n9TmDkS9fO/+sXIYQQQiRDT0xP8Pvdj7EBY/kz7E+K5SzGms/W0LxIc6xUkn++KkSqFRMDAwbA1KlQzSqQNS69yLHTD4oWTfjBQoFlGMsGzwNZgF4YhxQXTvjhROJI6o+5OgH5gcJa64sASqnfgT+ALsDkNzzXR2t95/kLSqlA4PLTfke81P6u1vpwQgUuhBBCJEePYx6z+MRixh8Yz9X7VynlWoqNX2ykceHGkmgJkcDu3IHPP4d9+6A305hYfCW2W7dBrlwJN4jGOC9rNsb5WVGAB0Z59xYY52iJFCWpE67GwOFnyRaA1vry08SpCW9IuF5Otp5eu6qUuoMx2yWEEEKkGZFPIlkQtACfQB9uhN+gfO7yzGowi3oF6qESe7O+EGnQ8ePQtKnmzq0Y/PiKNvXDYPUv4OSUMAM8BFZizGb9BqTHWA/WFSiRMEMIy0jqhOtD4MfXXD+NkbPHi1LqAyAHcPY1DzdSSkVg1Gj5DRivtd4U3zGEEEKI5ORR9CPmHp/LxIMTCX4YTGW3yixuspja+WtLoiVEIlm2DDp31rhY3yEwpi6lupaHGUvAJgHeSv8XI8nyA8KBj4BZQGsg47/vXlheUidczkDYa66HYqxKNZtSygbjx/MORq2W520BfsVYbpgT6AlsVEq11Vovj2/QQgghhKWFPw5n1q+z8D3ky52IO9TIV4Mfmv9ANfdqkmgJkUiePIF+/WDGDKiZ6Tir79cl24RB0L//vyv7HgWsx1g2GAjYY0w9dAMqIAcUpzJKa510gykVDfhqrb976foYYJDW2uwEUCk1B+gANNBa//yWttbAYcBFa533H9p0xtiCSM6cOUuvWrXK3FAS1cOHD3FKqKlqkWDkviQ/ck+SJ7kv/97DmIdsvLGRdX+t40HMA8pmKUtb97Z8lOmjd+tP7kmyJPcl+bl+PZpJk8rx+++Z6eU0l4lR3/LHkIHcqVHjnft0uOGA6xZXXHe4YvvAlojcEdxsfJPbdW7zJNOTBIw+9UpOvys1atQ4rrUu87Z2ST3DFYYxy/WyLLx+5uu1lFLjMJIjz7clWwBaa5NSai3go5Ry1Vrfek2beRgnGlCmTBldvXp1c8NJVPv27SO5xCL+R+5L8iP3JHmS+/LuQiNDmXZ4GtOOTeP+4/s0LNSQ4VWHUy53uX/Vr9yT5EnuS/Jy5Aj06xfFwwe2rMzQmVZ2G+Cn3XxYqVL8O4vBWHs1G9iFsdmlCdANHGs6UsCqAAUokJDhp2op8XclqROu0xj7uF5WBDhjTgdKqaHAYKCX1tovHmM/m5xNuik9IYQQIp7uPLrDlMNTmHl0JuHR4TT9T1OGVR1GKddSlg5NiFTPZIIJE2DECMjpFMnB2KqUyBEKOw5BwYLx6+wvYAEwH7iJUeJtFNARSMCihiL5i88SvmIYx6xVxZil8tBaBymlRgP+5sw0AZuBSUqp/FrrS0/7zQdUwkii3hZDL4xzu4ZqrWfEI3YbjJWx17TWweY+TwghhEgqwQ+DmXRwErOPzSbySSQtPmzBsCrD+Cjnuy0dFELEz/Xr0LYt7N8PXxQ9xexTVchS4QP48RBkz25eJ7EYs1hzMGa1YoE6GEUwGpD0Ux0iWTDrtiulKgK/YJxlvQHjzKxnrDAKVpqTcM3HKGDxo1JqGMZskzdwHZj73HjuwJ+Al9ba6+m1lsBU4Cdgj1LK47l+H2itzzxt1wpjonb7035zAj2A0kArc16vEEIIkVRuPLjBhMAJzAuaR7QpmlZFWzG0ylA+yP6BpUMTIs1Yswa6dIGYaBNL84yg7amx/F2rFmzZAg5mHHx1B1iM8W72EpAN6Ifxjjl/IgYuUgRz82wfjISrMf9LsJ45hlG48q201o+UUjWBKRjFL9XTfr/VWj98rqnCWOH6/ImNdZ9er/v0z/P2A9Wffn0Zo1T8RIyZuAiMioV1tdY7zYlTCCGESGzX7l9j/IHxLPxtIaZYE22Lt2VI5SEUzBrPZUtCiHcWHg69esGSJeDhcpnl9z7m/SxRsGkTZzNlIuebki2NUWFwDrAWiAaqYEwlNMeoPCgE5idcpYHmWutY9Wrt2bsYs0hm0Vpfw/gxfFObK7xUEFNr3R5ob0b/h4Ga5sYjhBBCJKVLYZcYFzCOpSeXAtC+RHsGVx5M/izyMbgQSenIEWjdGi5f1gzPOI3hwQOx7dEZxo6FjBlh377XP/E+sBwj0TqFcVZWZ4zZrKJJE7tIWcxNuB4D/5Tiu2D86AkhhBDiH1wIucDYgLEs/3051lbWdC7dmYGVBuKWyc3SoQmRpphMMH48fP+9Jrf9XfbHNqVynjCYvw8qVvznJwZhJFkrgUdAKYzNMi2B5FGlXCRT5iZcB4BeSqlNz117Vu3va2BvgkYlhBBCpBJn7pxhTMAYVp1ahZ21Hd+U+4YBlQaQK4OUKRMiqV27Bm3aaAICFK1s1zPrSXcye30DgwaBnd2rT4gAVmMkWkcxph9aYWyuKZuEgYsUzdyEawRG0vUbxipVDbRRSk0APIB/dyiIEEIIkcr8fvt3RvuPZt2ZdTjaOtKvQj/6VehHTiezV+ELIRLQ6tXQpZOJ2Igo/OhC6/LXUPP94T//ebXxBSgws4BRaeAe8B9gGtAW4/RYIeLBrIRLa/2bUqo6MAkYibG/6lvgIFBDa302sQIUQgghUpLjN4/j7e/Nj+d/JINdBr6r/B19KvQhm2M2S4cmRJoUHg49u8eybLkVFdRRljt1Jf+kHtCxI1g9V59NY5RhmwxsgVw2uYyqA90wDkV6uYqBEGYy+zQArfWvQDWllCNGscswrXV4okUmhBBCpCCH/zqMt7832//YTuZ0mfm+2vf0Lt+bLA7ycbgQlnL4MLT+LIorN2z5npEMa3oWm5k/gavr/xo9AdZgJFpBGO9yR8Dh4oep2OwNe7qEMJPV25uAUmre0wOK0VpHaK2vPUu2lFJuSql5iReiEEIIkXwFXA3gE79PqLCwAof/OsyYmmO40vsKI6uPlGRLCAsxmcB72GMqVzRhuhGMf7bmjPyxFDbrV/8v2boHTADeA9pgFMKYi3Hq7CiIdo62UPQitTF3hqsjsAC48prHsgMdMApiCiGEEKme1pp9V/bh5e/Fviv7yJE+BxNqT6Bb2W442Um5MiEs6epVaFM/hANnsvIlK5jV8Tcy+S4zSr2DcTDxNGAhRpJVAyPRqoeZUxFCxI/ZSwrfICcQmQD9CCGEEMma1pqf//wZb39vAq8H4urkypQ6U+hcujOOto6WDk+ING/VnHt07WVL7BNbluceROs1TaBia+PBgxjLBjdiJFYtgb5ASUtFK9KKf0y4lFJNgCbPXRqulLrzUjMHoBrGilchhBAiVdJas+2PbXj7e3P0xlHyZMzDzHoz6VCqA+ls0lk6PCHSvAf3NT3rXcTvUEEqqoMs73Oc98Z7g5WdUV97MnAYyAwMAL4BclsyYpGWvGmGKz/w8dOvNUbp95cXsz4GjgGDEj40IYQQwrJidSw/nvsRb39vfgv+jXyZ8zG34Vw8i3tib2Nv6fCEEMCh1ddo3d6Gq1H5Gem2iKHbKmLj/g3Mwlg6eAXjXe0MoD1ySLFIcv+YcGmtpwBTAJRS14GGWuuTSRWYEEIIYSmmWBPrz67H29+bU3+fooBzARY1XkSbYm2wtba1dHhCCCAmIpqxjQ7htacSbuovAgZtpWK39jDTCuYBD4BKGLNbjQFrS0Yr0jJzz+HKm9iBCCGEEJYWExvD6lOrGR0wmnN3z/GfbP9hedPlfFH0C2ysEmLbsxAiIVzZ+Btt2mgCI6rRxs2f2ZOL4LS+CbyPsS7rM4z9WeUtG6cQEM+iGUqpjEAB4JUF61rrgwkVlBBCCJGUnpiesOK/KxgTMIaLoRcpmqMoqz9bTfMPmmNtJR+LC5FshIez8rMNdPv5UxSKfY0vUu1eVSPBygD0xtiflc+iUQrxArMSLqWUPTAfaMU/F8yU/yMJIYRIUaJN0Sw5sYRxB8Zx5d4VSriUYMPnG2jynyZYKakPLURycn/1T/T8OoINEZ54ZbxDryxZsd2cEdwAX4xDijJZOEghXsPcGa5hGAU0OgKLgV4YBTPaY5zD1TcxghNCCCESQ1RMFAuDFuIT6MP1B9cpm6ssM+rNoEHBBiilLB2eEOJ5wcEcbP1/fLunE03Jw1x7E44PskNhwAdoTsIcdCREIjH3x7MF4AUsx0i4Dmqtg4D5SqkNQC1ga+KEKIQQQiSMiCcRzDs+jwmBE7j18BYV81ZkfqP5fPL+J5JoCZHcaE3M/MXM76lxfDKKAyhsFaj6VsZH/ZUA+bUVKYC5CZcbcFprbVJKPQHSP/fYAmAR0CehgxNCCCESwsPoh8z+dTaTDk3i70d/Uz1fdZY3W06NfDUk0RIiOTp/geDGG7h2oSvdyMxjaw0dFGoARjUBIVIQcxOuEP53asFfQDEg4On3WTAOQBZCCCGSlQePHzDz6EwmH5pMSGQIH+f/mOFVh1PFvYqlQxNCvM6DaPDcxb1NJXBhMLFoTnweS4nZVuBs6eCEeDfmJlxHgOLAdmAD4K2UcgRigIFAYOKEJ4QQQsRfWGQY049MZ+qRqdyLukf9gvUZXnU4Hnk8LB2aEOJ17gBD/iJ2sSNWpgZcAbbmj6HtTzaUKCiz0CJlMzfhmgC4P/16NFAIGIdRsfAY0D3hQxNCCCHi527EXaYcmsLMX2fy4PEDmhRuwvCqwymdq7SlQxNCvM5ZYEI0+Ckw5WEfkYxTsVQbZcV3Q2ywlhrYIhUw9+Djo8DRp1/fB5oopRyAdFrrsESMTwghhHir2w9v43vIl1m/ziLiSQTNizRnWJVhFHcpbunQhBAv08BejFLu20ETy3FO40lJovLZs3KVFeXlwGKRirw14VJK2QEHgKFa613PrmutI4HIRIxNCCGEeKOb4TeZGDiRucfn8tj0mJZFWzK0ylCKZC9i6dCEEC+LBlYBk4GTgP19QllE63S1+SmqNJ6eMGMGZMhg2TCFSGhvTbi01tFKqUKAKQniEUIIId7q+v3r+AT6sCBoATGxMbQp1oYhVYZQKGshS4cmhHhZKDAXmAHcAlzD0A4jWPk4im72M7Gyt2PVEvjiC4tGKUSiMXcP126gNrAnEWMRQggh3uhy2GXGHxjP4hOL0WjaF2/Pd1W+I3+W/JYOTQjxsovAVIwTXCOASo8g2yju/Xce3bKvZ1VkLaqUg+XLwc3NsqEKkZjMTbgmAyuVUlbAJozPJ/TzDbTW1xI4NiGEEAKAi6EXGRswlmUnl2FtZU3HUh0ZVGkQ7pnd3/5kIUTS0Ri1q32BHzHeabY0QaZFMP8bDthUp03W6/wV6sSYMTBoEFIYQ6R65iZcB57+dyAw4B/ayK+LEEKIBHXu7jnGBIxh5X9XYmdtR4+yPRhYaSC5M+a2dGhCiOfFAOsxEq1fMc7MGgJUCILBnjw5dQ6v//zA2AvNec9FcXA7lCtnyYCFSDrmJlydeWlGSwghhEgsp/4+xWj/0aw5vQYHWwf6evSlX8V+uDi5WDo0IcTz7gMLgOnANaAgMAtoGg5jh0KjmfyZsyKtC93myDln2reH6dOlMIZIW8wtC78gsQMRQgghfrv1G97+3mw8txEnOycGVx5MH48+ZE+f3dKhCSGedxWYhpFshQNVMYpiNAS2bYGy3dF/3WBZraX0PNIGmyjF6tXw+ecWjFkICzF3hksIIYRINEdvHMXb35utF7aSyT4TI6qOoLdHb5wdnC0dmhDieUcxlg2uf/r9F0AfoAwQHAwte8HatYT9pwLdav3G6l+yUbUq+PlJYQyRdknCJYQQwmICrwXi7e/Nzj934uzgjHcNb3qW60nmdJktHZoQ4hkTsBkj0QoEMmIkWb2AvIDWsGAhDBgAERH4d1hKm5/bcmu/YuxYGDhQCmOItE0SLiGEEElu/5X9ePl7sefyHrI7Zmd8rfF0L9udDPaysUOIZOMhsASjtPufQL6nX38NPPtVvXABOneG/ft5UrkGo4quZdy8rOTPDwcPQtmylghciORFEi4hhBBJQmvN7ku78fb3JuBaAC5OLvh+4kuX0l1Ib5fe0uEJIZ65gbEfay5wD/AAxgOf8r93jtHRMHEieHuDgwMXx6ym9Y8tODpH8fXXMG0aODlZJnwhkhtJuIQQQiQqrTU7Lu7A29+bw38dJneG3EyvO52OpTriYOtg6fCEEM+cwFg2uAqIBZoC/YAKL7U7fBg6dYJTp9CftWBp5fl8MywTNjawdi189lkSxy1EMhfvhEsp5YBxusJtrXVMwockhBAiNdBac+DuAfrP78/xW8dxz+TO7Aaz+arEV9jb2Fs6PCEEGInVDoxEay+QHuiBsT8r/0ttw8NhyBD4v/+D3LkJW7mDLhvrsvZbqF4dli2DvHmTNHohUgSzEy6lVD1gFFDq6aVyQJBSai6wV2u9KhHiE0IIkcJordlyYQsj9o7g5O2T5M+Sn4WNF9K2WFtsrW0tHZ4QAiAS8AOmAOeAPMAEoBPwupo1W7ZA9+5w4wb06MH+euNp0yU9wcEwbpxRL0MKYwjxelbmNFJKNQK2Ypy0MOyl510H2id4ZEIIIVIUrTW7/tyFx0IPmqxqwqMnjxhceDDne57n65JfS7IlRHJwG/gecAO6AI7ACuASMIBXk63gYOPwrMaNIVMmnvgfYkiGGdRomB4HBzh0CAYPlmRLiDcxK+ECRgLLtNa1gEkvPfZfoKi5Ayql8iql1iml7iulHiilNiil3noyg1KqjFJqnlLqnFIqQil1TSm1Qin13mvaWimlvlNKXVFKRSmlTiqlmpsboxBCiPgJvBZIjaU1+GT5J9wKv8WCRgs40/0MdVzqYGMl24WFsLjTQAeMRMsLY1/WPuAY8CXw8uchWsOCBfDBB/Djj+DtzR+rg6jUtzzjxkGHDhAUBGXKJOWLECJlMvf/gkWAwU+/1i89FgZkM6cTpZQjsAd4DHg+7Ws0sFcpVUxr/egNT28JfAhMx/hnIzcwHDimlCqhtb7+XFtvoD8wFDj+9LlrlVINtdbbzYlVCCHE2x2/eZxhe4fx08WfcHFyYUa9GXQq1Un2aAmRHGhgN8b+rJ2AA0bS9S1Q6A3Pe67UO9WqoefMZfHBwvQqD3Z2sG4dNJePsYUwm7kJVziQ9R8ecwfumNlPJ4wtmIW11hcBlFK/A39gTGxPfsNzfbTWL4yjlAoELj/td8TTazkwkq3xWutns3F7lVIFMIqaSsIlhBD/0qm/TzFi7wg2ntuIs4MzE2pPoEe5HjjaOlo6NCHEY+AHjHdV/wVyYny83YU3f0T+Uql35s8n9NOv6dLNinXroEYNozBGnjyJ/xKESE3MTbh+AQYrpbYDz2ahtFLKDqOWzU4z+2kMHH6WbAForS8/TZya8IaE6+Vk6+m1q0qpOxizXc/UAeyA5S81Xw4sUkq9p7W+bGa8QgghnnMx9CLf7/ueH/77A052ToysNpI+FfqQ0T6jpUMTQoQAc4CZQDDwEbAYaPX/7N13XNXVH8fx1xcFFVEUB24MJyiQSo5yzyzNbeWo1NJfptky++UoR2WWKZZbc5VaObJdpmK/ypETBFQUJyoqyJR9z++PIyRDQb2Xe8HP8/HgoVy+955zH1eEz/2c8z5AXk3nm6LeGTAA5s3D/2gVhjbR27g+/BBef132aglxN/JbcL0N7EXn2PyIblKPB3zQna/8nrjQCNiSy+1BwIB8PkYmwzA8gMpASLYxkoET2S4PuvGnJ7orJoQQIp/Oxpxl+s7prDi0AodiDrz5yJuMf3g8FRxvtfhBCFFgjgNzgZXo9MFHgdeAzoCRx32zRb3z3XekdOvJlCkwaxbUq6drsWbNLPoMhCjS8lVw3ehC+aK3Wfa8cXMX4BdgklLqfD7Hc0Hv+couCiifz8cAwDCM4uj3ca4Ay7ONEa2Uyr7XLOqmrwshhMiHS/GXeP9/77N4/2IAXnroJf7b5r9Ucapi5ZkJcZ9TwB/o/Vk/oEMvhgKvot96zo+bo97HjIH33uP4xTIMehj279cNrzlzoHTYLfknAAAgAElEQVRpyzwFIe4XRs66JJeLDKM0kKKUSr2nwQwjBZitlPpvttvfAyYope7kXLBF6K2fjyulfrvp9qVAD6VU1WzX10O/B/SMUmpNLo83EhgJ4Orq2mz9ets4Viw+Ph4nJydrT0NkI6+L7ZHXxLxiUmNYf249m8M3k2pKpXuV7gx1G4prSdc7ehx5XWyPvCa2Kb+vi5FmUMm/EjW/rkmZ0DKkOKdwodcFwnuFk+qSv1/THKKiqDtvHpV37iT+gQc4/sYbxHh48tNPVfjss3o4OJh4441jtGlz9V6fVqEm3yu2yZZelw4dOuxXSuWd1amUuu0H+j2TNOCJvK7Nx2NFAItzuX0BcOUOHucD9NnoQ3P52odAEjeKyZtub45+P+jxvB6/WbNmylbs2LHD2lMQuZDXxfbIa2IeMUkx6t0d76qyH5RVxruGGrxxsAqNDL3rx5PXxfbIa2Kb8nxdrimlZimlaij920oDpdRipdT1OxgkPV2pJUuUKldOqRIllJoxQ6nkZBUZqVS/fkqBUh07KnX+/N09h6JGvldsky29LsA+lY/aJc+OklIq1TCMyzeKrnsVRO6Nbk8gOD8PYBjGRHRE/csql07VjTFKAHXIuo/L88af+RpHCCHuJwkpCcz/Zz4f/vUhUYlR9PXoy9T2U2lcOd/HLAohLOEU4IfePBEPdEBvqOhO/k9TBTh2TEe9//EHtGsHS5ZA/fps3w7PPAOXL+s9W6+/DnZ38rhCiDzl91tqLTDMDON9B7Q0DMM94wbDMGoDj9z42m0ZhvEyOth0olLq01tc9guQAgzOdvsQ4IiShEIhhMiUnJbMp3s+pc68Okz4fQItqrdg3wv72DhwoxRbQljTLnScWF1gPtAHOIA+zfRx8v8bXEoKzJgBPj4QEABLl8L27aTUrs+ECdC5Mzg56WCM8eOl2BLCEvK7Z+o48KRhGLvQKYMXyXYAslJqdT4eZykwBthiGMakG48xHTgHLM64yDAMN+AkME0pNe3GbU+hM3h+AbYbhtHypseNVUoF35jHZcMw5gD/NQwjDv3f05NAR3T0vBBC3PdS01NZdXgV03ZO41zsOdq5tWPDwA20rtXa2lMT4v6VBnyLDsLYDZQD3kT/5lT9Nve7lZuj3gcOBD8/qFKFY8dg8GAdjDFqFMyeLcEYQlhSfguuRTf+rA60yOXrCsiz4FJKJRiG0RGYA6xBh5VuA15RSsXfdKkBFCPr+zeP3rj90RsfN9sJtL/p84noxvs4oApwDBiolPo+rzkKIURRlm5K56ugr3jH/x1ORJ2gefXmfN7rczo90AnDyCs/WghhEXFQfUN1vZboNOAOfAo8B9xNNkAuUe/07IlSsGwpvPKKPtd482bo3dt8T0MIkbv8Flz1zDWgUuos0C+Pa06T7eQIpdRz6P968jNGOnrp4Yy7maMQQhQ1Sim+Pfotk3dMJuhKEN6u3mx5ags96/eUQksIazmLLqyWQr2YetAa+AR4Av22893IJeqdMmWIjNTNrs2boVMnWL0aqlUz1xMRQtxOfs/hOmnpiQghhDA/pRS/nvyVSdsnsf/ifupXqM/6fusZ0GgAdoZs1hDCKnaj1/psvPF5P9jffj/NXryH04UvXoRx4+Cbb6BxY/1nS737Yts2HYxx5Qp8/DG8+qrs1RKiIMm3mxBCFFE7T++k7cq2dP+yO5GJkazotYKg0UE82fhJKbaEKGhpwDfAw0Ar4Ff0IcVhwFcQ5xF3d49rMukgDA8PvXRwxgy9OatlS1JS4M03oUsXKFsW9uyRFEIhrCFfHS7DMELJFpKRnVKqvllmJIQQ4p7sDd/LpO2T2Bq2lWplqrHgsQWMaDoCh2IO1p6aEPefGGAZeungGfT+rHnoTRJl7vGxbxH1DnD0KAwaBAcPwn/+o4MxHB3vcTwhxF3J7x6uPeQsuCoALYFY4A9zTkoIIcSdC4gIYPKOyXx37DsqOlZkdtfZvOj7IqXsS1l7akLcf8LQhVXG+Vlt0VnLPbn7/VkZUlL0oVkzZuj0i2XLYPhwMAyU0nXXq6/qAuvbb6GXZDQLYVX53cM1JLfbDcNwQce0/2jOSQkhhMi/Y1eP8Y7/O3wV9BXOJZyZ3mE641qMo0yJe337XAhxRxTwF3p/1rfojRtPAa8A97A9K4tdu3T6RVBQlqh3gKtX9Ze+/VYvI1y1CqpWNdO4Qoi7lt8OV66UUlGGYcwCpgFfmWdKQggh8uN09Gmm7ZzGqsOrKFW8FG+3fps3Hn6D8qXKW3tqQtxfUoEN6ITBfUB5YALwEnd3flZuske9f/899OiR+eXff9fBGJGRevngK6/IXi0hbMU9FVw3XAdqmeFxhBBC5MOFuAu898d7LD2wFDvDjnEtxvFW67eoXLqytacmxP3lGrAE+Aw4D9QHFgDPAOY8SPi77+Cll3JEvQMkJ8PEibrI8vCAn36CBx8049hCiHt21wWXYRh2gCcwBQgx24yEEELk6ur1q8z8cybz/5lPmimN55s8z8S2E6lRtoa1pybE/SUU8ANWoN927gQsArpj3vznixfh5Zdhw4YcUe8AISE6GOPQIXjxRR35LsEYQtie/KYUppIzNMMOfThxPPC4meclhBDihuikaGb/PZu5e+ZyPfU6Q72HMqXdFNzLu1t7akLcPxTgj96f9QNgDwxC78/yMfNYJhMsXw7jx0NSku5ojR8P9vZ6KgoWL4bXXoPSpXUDrGdPM89BCGE2+e1wfUjOgisJHXD6o1LqmllnJYQQgviUeObtmcdHf39EdFI0AzwHMLX9VDwqeVh7akLcP1KA9ehC6xBQEZgEjAaqWGC8m6Pe27fXlVX9f0/euXoVRozQRVbXrrBypQRjCGHr8ptSOMnSExFCCKElpSWxaN8iPvjzAy4nXKZH/R5M7zCdB6vIxgwhCsxVYDF6f9Yl9CaKpcBgwAInLRipqTB9uo56d3TMEvWeYetWHYwRFQVz5ujVhhKMIYTtM0dohhBCCDNITU/l84OfM/2P6YTHhdPpgU5M7zCdVjVbWXtqQtw/QtDnZa1Gr+XpBqwEuqI3UljCrl34jhwJp0/niHoHHYzx9tvwySfg6Qm//AI+5l7GKISwmFsWXIZhLLmDx1FKqVFmmI8QQtx30k3pfBn4JVN3TiXsWhitarRiTZ81dHigg7WnJsT9QQG/o5cN/gyUAIai92c1stCYaWl6XeBnn8GOHRSrVClH1DtAcLAOxjh8WAcVfvSRPutYCFF43K7D9Rg5923dSn6vE0IIcYNJmdgUsokpO6YQcjWEJlWa8OOgH+letzuGYam30oUQmZKAtehC6wjgij5Z9D9AJQuNGRGhlwsuWgTnz0OtWvD++/zj40Obxx7LvEwpWLgQXn9dJ8DnUosJIQqJWxZcSinJGRZCCAtQSvFT6E9M3jGZg5cO4lHRgw0DNtDHow92hmzIEMLiIoCFNz4uA97oiPen0d0tc1MKdu/WhxZ//TWkpkLnzrq71aMHFCtGur9/5uVXruhgjO+/h0cfhRUrsqwwFEIUMrKHSwghCtD2U9uZtH0Su87vwr28O6t7r2aQ1yCK2RWz9tSEKPqOoLtZX6DTB3sArwIdsMz+rMREWLdOF1YHD0LZsvrArNGjoUGDXO/y66/w7LNw7RrMnQtjx0owhhCF3e32cFUDLiul0m78/baUUhfMOjMhhChCdp3bxaQdk9h+ajs1ytZgcY/FDHtwGPbF7K09NSGKNhPwK/AJep9WKWAEMA7Ivea5d2Fhej3g8uW6cmrUSH8+ZAg4OeV6l5QUO159VRdZjRrBb7+Bt7eF5ieEKFC363CdA1oBe4Hz5L1PS96eFUKIbA5ePMjkHZP5MfRHKpeuzNxucxnlO4qSxUtae2pCFG3XgTXoxMGjQDXgfWAkUMEC45lMuj01fz789JNuS/XpA2PGQNu2WeLdswsKghdfbEpYmL581iwJxhCiKLldwTUSOHnT3yUYQwgh8inkSghT/KewIXgD5UqW4/2O7zO2xVicHHJ/d1sIYSYXgfnAIiASaIpeQjgAcLDAeNeu6U1WCxbAyZPg6gqTJ+vDi6tXv+1do6Phgw90CryjowM//gg35WYIIYqI24VmLL/p78sKZjpCCFG4hV0LY+rOqXwR8AWO9o5MbjuZ11q9RrmS5aw9NSGKtoPo/VnrgTSgF3p/Vhsssz/r0CHdzfryS71X65FH9KHFffuCw+0ru+Rkfdf33tP12pAh0Lv3Pzz22CMWmKgQwtokNEMIIczgfOx5Zvwxg+UHl1PcrjivtXyNCa0nUNGxorWnJkTRZQJ+QBda/kBpdKT7OKCOBcZLSYGNG3W19Ndfet3f4MH6gKwHH8x7uiadoTFpkj7juGtX+PBDfVd//1QLTFgIYQvyXXAZhlEReBK9xTT75gM5+FgIcV+KiI9g5p8zWbhvISZlYlSzUUxsM5GqZapae2pCFF3xwCr0/qwTQE3gI+B5wBLN5PBwWLwYlizR52jVqQOzZ8OwYVC+fL4eYts2GD9ehxU++KAOxejSxQJzFULYnHwVXIZh1Ad2oQutksA19H9pdkAMEGepCQohhC26lniNj/7+CL89fiSlJfGcz3NMbjeZ2uVqW3tqQhRd54FPgSVANNACmAH0w/xrdpSCnTt1N2vzZt2eeuwxnWrRtWu+s9oDAmDCBPjlF3BzgzVrYNAgiXoX4n6S3/+ePgIOoFdExwNdgSDgWWAS8LhFZieEEDYmLjmOubvnMnvXbGKSY3iq8VNMbT+V+hXqW3tqQhRd/6CXDX6DXkbYF3gNnaVsbvHxuiqaP1/HB5YvD6++qs/PcnfP98OcO6ezM1avhnLl4OOP9crDkhJQKsR9J78F10PAaCDpxud2SqlkYIlhGC7opn4nC8xPCCFsQmJqIgv+WcDMv2Zy9fpVejXoxbQO0/B2lYNyhLCIdGAL+vysv4CywMvAWKC2BcY7elQnDa5aBbGx0LSpPkfrqafA0THfD3Nz8iDAG2/Af/+b75WHQogiKL8FV1kgUillMgwjFrh5F/hedJdLCCGKnJT0FJYdWMaMP2ZwMf4iXet0ZXqH6TSv3tzaUxOiaIoFPgfmAaeAB9Bv6w5D/zZiTmlp8MMPupv1++9gbw8DB+plgy1a3PbsrOxySx6cPl0vIxRC3N/yW3CdBlxv/P0YerX0Lzc+745eSS2EEEVGmimNNYfXMHXnVM7EnKF1rdas77+etm5trT01IYqm0+j9WcvQRVdr4GP0ZoZiZh7ryhVYtgwWLYKzZ6FGDR3p/vzz+hytO2Aywfr1MHFizuRBIYSA/BdcvwOdgQ3oVdRrDcN4GH3SRWPgA8tMTwghCpZJmfg66Gve8X+H45HH8a3my+Iei+lapyvGHbzbLYTIp13oZYOb0OdlDUSfn/WQBcbauxc++wy++kpHvHfsCHPmwBNPQPE7T93Ytg3efBMOHJDkQSHEreX3f5e3gFIASqn1hmEkoyPiHYHF6PPchRCi0FJK8d2x75i8YzKBlwNpXLkxm5/cTK8GvaTQEsLc0oCN6Ldw96Bzj98AxqAj3s0pMVEXWPPnw7594OQEL7wAo0eDp+ddPeTNyYO1aknyoBDi9vJVcCmlkvg3MAOl1GZgs6UmJYQQBUUpxe9hvzNpxyT2hu+lnks91vZdy8BGAylmZ+51TELc56LRSwY/Bc4CdYHP0JnHTmYe6/RpWLhQB19ERoKHh+5uDR0KZe9uM9i5czBlis7VcHaW5EEhRP7csuAyDKMjsFcpFV+A8xFCiALz59k/mbh9In+c+YNazrVY1nMZzz74LMXtzH2gjxD3uZOAHzoMIwFojy66eqBP9DQXk0mHX3z2mQ7DMAzo3VtXRR063FEIxs2io2HmTJ08aDLB66/r5EEXFzPOXQhRZN3ut4qt6BMu9gIYhmEH+AMjlFKhlp+aEEJYxr4L+5i8YzK/nPiFKk5V+LT7p7zQ9AVKFC9h7akJUXQo4H/oZYNb0L9xPA28AjQx81jR0bBypY51Dw2FypXh7bdh1CioefdrFJOT9UPOmCHJg0KIu3e7giv720AGOjOojOWmI4QQlnPk8hGm7JjC5qObcSnlwqzOs3ip+Us42uf/jB0hRB5S0AcUfwIcACoAb6NP86xm5rECAvTerC++gOvXoVUreOcd6N8fStz9GyiSPCiEMCdZNyOEKPJORJ3gHf93WBe4jjIlyjC1/VReafkKZUuY+1AfIe5jUegYrc+AC0BDdKTWUHTElrmkpsLmzXrZ4P/+pzdQDRqklw02bXrPD799O4wfr5MHfXzg1191wSWEsK709HQuXLhAcnKytadyx6TgEkIUWWdjzjJ953RWHFqBQzEH3nzkTcY/PJ4KjhWsPTUhio7j6IOJVwHXgS7oYIxumHd/1oULsGSJ/rh4ER54AD76CIYNgwr3/j0dGKiTB3/+WZIHhbCG5ORkzp07x5kzZ7J8nD59mjNnznD+/HnS0tL45JNP6Natm7Wne0fyKriqG4bhfuPvxW66LcdBx0qpMLPOTAgh7tKl+Eu8/7/3Wbx/MQAvPfQS/23zX6o4VbHyzIQoIhSwA71s8EegBDAYvT/Ly5zjKPjzT93N2rQJ0tKge3dYuhQefRSK3XuSaPbkwY8+gjFjJHlQCHNLSEjItZDK+Lh48SJKqczrDcOgWrVquLm50apVK9zc3KhduzYuhTCtJq+Ca0Mut317i2vz9b+eYRg10Vtou6D3hf0OvKKUOpuP+74P+ALNABdgmFJqZS7X+QPtcnmIV5VSc/MzTyFE4RN5PZJZf83i072fkpKewvAmw5nUdhK1nGtZe2pCFA3JwDr0T/EAoBLwLvAiUNmM4yQkwJdf6kIrMBDKlYOXX4YXX4S6dc0yhCQPCmE+Simio6NzFFE3F1aRkZFZ7lO8eHFq1qxJ7dq16dq1K25ublk+atasiYODQ46x/P39C+hZmc/tCq5h5h7MMAxHYDv6v+xn0e+RzQB2GIbhrZRKyOMhxgKHgB+AZ/K4NgAYle2203c6ZyGE7YtOimbl6ZVs2rWJ+JR4BnkN4t3271LXxTy/mAlx37uC3o81H4gAGgPLgUGAOTtBoaE6FnDFCoiJ0Zuoli7Va/sczbMRTJIHhbhzSikiIiJu26GKi4vLcp9SpUplFk++vr6ZHaqM26pWrUoxM3SpC4NbFlxKqVUWGO8FwB1ooJQ6AWAYRgAQii6OPsnj/s5KKZNhGHXJu+CKU0rtvtcJCyFs1/HI48zbM4+Vh1aSkJpAX4++TGs/jUaVG1l7akIUDcHo/VlrgCSgO/Aa0ImcWcZ3Kz0dfvpJd7N++w2KF4cBA3QIxsMP3/XZWdmZTPDVVzot/vRp6NJFJw82MXdEvRCFUFpaGhcuXMi1kMr4yB5W4ezsjJubG+7u7nTo0CFHh6pSpUoYZvr+LewKOjTjCWB3RrEFoJQ6ZRjGX0Av8ii4lFImC89PCGHjlFJsDduK3x4/fgr9CYdiDjzd+GlaF2/N8z2et/b0hCj8FPAbetngr+gO1rPAOMDDjONERsLy5bBwoa6AqlWDadPghReginn3W27fDm++Cfv3S/KguD8lJydz9uzZW3aozp8/T3p6epb7VK5cGTc3N7y9venZs2eODpWzs7OVnk3hU9AFVyP08YfZBQEDzDxWE8MwYtBhtCGAn1JquZnHEEIUkOup11lzeA3z9s4j+EowrqVdmdp+KqOajcLVybVQrukWwqYkAl+iO1pBQBX0ov9RQEUzjrNvnz47a906vb6vXTudVNGrF9jbm3GgnMmDq1fD4MGSPCiKnvj4+Fsu9csIpLiZnZ1dZiDFI488kqWQcnNzo1atWjiaaRmvKPiCywW4lsvtUUB5M47zB/rHxnGgHHr54TLDMKoqpWaYcRwhhIWdiznH/H/ms/TAUqISo2hSpQmre69mYKOBlCh+9webCiFuuAQsABYCV4EH0RHvT6LTB80hKQm++UYvG9y7F0qXhuHDYfRoaNzYTIP8S5IHRVGilCIqKuqWYRRnzpwhKioqy33s7e2pVasWbm5uPProo5mFVEZhVaNGDezN/AaHuDXj5vhFiw9mGCnAbKXUf7Pd/h4wQSmVrwLwxh6uUG6RUniL+2wGHgUqKaXic/n6SGAkgKura7P169fn52EtLj4+HicnJ2tPQ2Qjr4tlKaUIjg1mQ/gG/rjyBwCtK7amX/V+eDl75bomXF4T2ySvi+3JeE1KnyxNjQ01cN3mipFmENkqkvMDzhPtE222/VklIiKo9t13VP3xRxxiYrhesybhvXtzqWtX0i3w7yI+vjjr1tVkw4YaKGXQt+95Bg06S9myaWYfy9zke8X2FNRrYjKZuHbtGhEREVy6dCnLnxkfiYmJWe5TsmRJXF1dMz+qVKmS5fMKFSpgV0Rbubb0vdKhQ4f9SinfvK4r6A7XNXSXK7vy5N75Mqd1QG/0CSG7sn9RKbUEWALg6+ur2rdvb+Hp5I+/vz+2MhfxL3ldLCMlPYUNwRuYu3su/1z4B+cSzrzW6jVeav4StcvVvu195TWxTfK62BgTBHwYgPc2b9iGXnQ/EhgHFetVpKI51g4qBdu26WWD332nb+vZE8aMwbFTJ+oZBvXufZQskpP1VrDp0yEq6t/kwdq1awGF41gI+V6xPeZ6TdLS0ggPD79lZPrZs2dJSUnJcp9y5cpRu3ZtfHx8siz1y+hQVahQ4b4NpCiM3ysFXXAFofdxZeeJzkKypIx/lQXX0hNC5MuVhCss2b+E+f/M52L8RepXqM/8x+bzjM8zODnYxrtYQhRql4AVwDLwDvOG6sCH6Oxgcy3oj43Va/gWLICjR6FiRb2BatQoi2WuZyQPTpwIp05J8qCwjqSkpCyBFNkLq/Dw8ByBFK6urri5udGkSRN69+6dYw9V2bJlrfRshCUUdMH1HfCxYRjuSqkwAMMwagOPAG9ZeOxB6C3BgRYeRwiRT4ERgfjt8eOLgC9ITk+ma52uLH9iOd3qdsPOKJpLIYQoMOnotMGlwPdAGtAeggcH4znZE8y1fSMoSHezVq/WBxY3b67/PmCARTdN7dgB48dL8qCwvNjY2Fxj0jOKq4iIiCzX29nZUb16dWrXrk3btm1zxKXXqlWLUqVKWenZCGso6IJrKTAG2GIYxiR0t2k6cA5YnHGRYRhuwElgmlJq2k23t0Ofa5+RF+trGEY8gFJqw41r2qCLt03og46d0YG2TwBv5eNwZSGEBZmUiR+P/8jcPXPZfmo7pYqX4rkHn+PlFi/jWcnT2tMTovA7D3yOPpj4LPqn5qvA80B9uOx/GU/7e/xeS02FLVt0oeXvDyVKwFNP6bOzHnro3h47DzcnD9asKcmDwjySkpI4fvw4wcHBhISEEBwczKFDh4iMjOTatay7XhwcHDIDKR5//PEccenVq1eXQAqRRYEWXEqpBMMwOqJP91iDXua3DXglW5CFARQDsv/3ORVod9PnL934yLgPwMUb95uGDrJNBQKAQUqpdeZ7NkKIOxGbHMvKQyuZt2ceJ6+dpEbZGszsNJMXmr2AS6nctnYKIfItDfgJ/bbmT4AJ6AJ8jD7l0sFM41y6BEuXwuLFEB6ulwp++KFOHKxozuz4nM6f18mDK1dK8qC4e/Hx8YSEhGQWVRl/hoWFYTLp417t7Oxwd3enQoUKdOnSJcceKldX1yIbSCEso6A7XCilzgL98rjmNLlkJCml2ufj8U8A3e9yekIIMwu7Fsanez5l+cHlxKXE8XDNh3m/0/v0adgH+2LyDqAQ9+Q0upP1OXABqIpe4zECcDfTGErB33/rbtaGDbq71a2bTql47DEoVsxMA+UuJgZmzoS5c/Werddeg7ffBhd5n0bcRlRUVI6iKiQkhLNnz2ZeY29vT7169XjwwQd5+umn8fT0xNPTk/r161OyZMlCGc4gbFOBF1xCiKJPKYX/aX/89vjx3bHvKGZXjIGNBjKuxTiaV29u7ekJUbilondEL0Xv0QL9NuMC4HHM95P9+nVYu1YXWocO6bbSSy/Biy9C/fpmGuTWkpNh0SKdNhgZeXPyoMWHFoWEUoqIiIgcRVVwcHCWfVUlS5bEw8OD1q1b4+npiYeHB56entSpU0eW/okCIQWXEMJsktKSWBu4Fr89fgREBFDRsSJvt3mb0Q+NplqZataenhCF2wlgGbASiABqAFOA4Zg3+fzECd29+vxziI4GLy+9hHDwYH1gsYWZTPD117qLdeoUdO4Ms2ZJ8uD9TCnFuXPnCA4OzlFc3by/qmzZsnh4ePDYY49lFlWenp64ubnJEkBhVVJwCSHu2cW4iyz4ZwGL9y/myvUreFX2YlnPZQzyGkQpe0liEuKuJQOb0d2s7ejdzT3QZ2d1u/G5OZhMOoVi/nz9Z/Hi0K+f7mi1bg0FdN7Pjh3w5puwb58kD96P0tPTCQsLy1FUhYSEkJDwb+ZZxYoV8fT0ZODAgVk6VtWqVbtvz6YStk0KLiHEXdt3YR9zd8/l66CvSTOl0bNBT8a1GEeH2h3kh54Q9+IoushaBUQCtYEZwDDAnM3iqCjdyVq4EMLCoGpVePddeOEFqFZwXenAQHjrLfjpJ508uGqVbqhZeHuYsJKUlBRCQ0NzdKyOHz9OcnJy5nXVq1fHw8ODESNGZBZVHh4eVKpUyYqzF+LOScElhLgjaaY0NodsZu6eufx97m/KOJRh9EOjGdN8DHVd6lp7ekIUXonABmAJ8Cf6J3RvdDerEzlze+/FgQO6m7V2LSQlQZs28MEH0KcPFOCeluzJg7NmwdixkjxYVFy/fp2jR49mFlQZxdWJEycyDwI2DIPatWvj6elJt27dMosqDw8PnJ2drfwMhDAPKbiEEPkSlRjFsgPL+GzvZ5yLPYd7eXfmdpvLsCbDKFuirLWnJ0ThFYjuZq0BooF6wCz0CZKVzThOejps3EiTadP0YcWOjvDMM3rZoLe3GdimmF4AACAASURBVAfKW0yMTpOfM0eSB4uCmJiYHKEVwcHBnDlzBqUUAMWKFaNevXp4enrSv3//zI5VgwYNcHR0tPIzEMKypOASQtxWyJUQ5u2Zx+qA1VxPvU6H2h34tPun9Kjfg2J2st5HiLuSAHyF7mbtQZ+T1R94AX3apDlX5CYl6dOBP/oITpzAvnp1nbH+7LNQrpwZB8pbSopevSjJg4XTlStXchRVISEhXLhwIfOaEiVK0KBBA1q2bMmwYcMyO1b16tXDwcFcB8IJUbhIwSWEyMGkTPx64lf89vjx68lfKVGsBIO9BjOu5Ti8XQv2nXAhipQD6CJrLRAHeABzgKFABTOPFRurc9XnzNEHFvv6wsaN7HV2pn2nTmYe7PYykgcnTtRbxTp10ssHmzYt0GmIfFBKER4enmvHKjIyMvO60qVL4+npSefOnbMEVzzwwAMUk813QmQhBZcQIlNCSgKrD6/Gb48fxyKPUcWpCtM7TGdUs1FUKi2blIW4K7HAOnShdQAoCTyJ7mY9jHm7WQAREeDnBwsW6LV7nTvDF19Ax446bdDf38wD3l725MFfftHJg5KrY10mk4nTp0/n2rGKi4vLvK58+fJ4enrSt2/fLMEVNWvWlHAkIfJJCi4hBGeizzD/n/ksPbCU6KRofKv58kWfLxjQaAAOxWQJiBB3TAF70UXWeuA64A18BgwGLLGS79QpvWzw88/12r1+/WDCBN3ZsoIjR/TwkjxoXampqZw4cSJHx+ro0aMkJSVlXlelShU8PT155plnsnSsKleuLIWVEPdICi4h7lNKKf469xd+e/zYFLIJA4O+Hn15peUrtKrRSn7ACnE3rgFfoEMwAoHSwCB0N+shzN/NAggI0AkUX30FdnZ6b9b48VC/vgUGy9v58/DOOzp5sEwZSR4sKImJiRw/fjzHGVbHjx8nLS0t87patWrh6elJx44ds3Ssypcvb8XZC1G0ScElxH0mJT2Fr458hd8eP/Zf3E/5kuV5o9UbvNT8JWo517L29IQofBQ6xn0p8A2QBPgCi4GngTKWGFPBn3/CzJm6heTkBK++Cq+8AtWrW2DAvGVPHnz1VUketIS4uLjMw4BvLq7CwsIyEwHt7OyoU6cOnp6ePPHEE5lFVcOGDXFycrLyMxDi/iMFlxD3icsJl1m0bxEL9y3kUvwlGlZsyMLHFzLUeyilHUpbe3pCFD5XgdXoQusourAahu5mNbHQmCYT/PijLrT+/hsqVoQZM2D0aLBShyJ78uDgwXpKkjx4byIjI3MUVSEhIZw7dy7zGnt7e+rXr0/Tpk0ZMmRIZseqXr16lJSWohA2QwouIYq4Q5cO4bfHj7WBa0lJT6F73e6MazGOLnW6YGeY8yRVIe4DJsAfXWRtAlKAVsDnwED0EkJLSE2F9et1CykoCNzc4LPPYNgwfZ6WFZhM8M03uoslyYN378qVKwQGBrJlyxa+/vrrzOLq8uXLmdeUKlUKDw8P2rVrl2UZYJ06dSheXH6VE8LWyXepEEVQuimd749/z9zdc9l5ZieO9o6MaDKCl1u8TMOKDa09PSEKnwhgJbAMOAGUB/6D7mY1tuC416/rEIyPP4YzZ6BxY504OHAg2NtbcODb8/fX28T27dNnJkvyYN4SExMJDg4mMDCQwMBAAgICCAwMJCIiIvMaZ2dnPDw86NGjR5bgilq1amFnJ2+QCVFYScElRBESkxTD5wc/59O9n3Iq+hS1nGsxq/Msnm/6POVLyYZoIe6ICdiK7mZtAdKAtsA7QD+glAXHvnYN5s/X8e5Xr8Ijj+jPH3vMqlXNkSPw1lt6VaMkD+YuI249o6DKKK5CQ0MxmUwAlCxZkkaNGtG9e3e8vLzw8vIiJiaGfv36SWCREEWQFFxCFAGhkaF8uvdTVhxaQXxKPK1rtWZWl1n0btib4nbybS7EHQkHVgDLgdNARWAc8Dxg6QZxeLhOnVi8GOLj4fHHdYXTurWFB857WlOm/Js8+OGHOnmwlCWLzkIgMjIys6jKKKyOHDlCQkJC5jV16tTBy8uLgQMH4u3tjZeXF3Xr1s1xOLC/v78UW0IUUfKbmBCFlFKK7ae2M3fPXH48/iPF7YrzVOOnGNdiHM2qNbP29IQoXNKAX9DdrB/Q3a1OwEygN1DCwuMfO6bP0Fq9Wm+OeuopfVqwt7eFB769jOTBuXMhPV2HIL79NlSoYNVpFbjk5GSOHj2ao2t14cKFzGtcXFzw9vZm+PDheHl54e3tTaNGjSQVUAghBZcQhU1iaiJfBn6J3x4/jlw+QiXHSkxuO5n/+P6HqmWqWnt6QhQuZ9GdrOXozpYr8Ca6m1WnAMbft08nDm7aBCVKwMiR8Prr8MADBTD4raWkwKJFMG3a/ZU8qJTi7NmzOQqrY8eOkZ6eDoCDgwOenp506tQps7Dy8vKiatWq0qESQuRKCi4hConw2HDm/zOfJfuXEJkYiY+rDyt6reCpxk9RsrjE/wqRb6noLtZSdFcLoBvwKdADsHQWhVKwbZsutLZtA2dn3TZ6+WWoXNnCg+c9ta+/vj+SB6Ojozly5EiW4iowMJDY2NjMa9zc3PD29qZ3796ZxVW9evWwt2JgiRCi8JGCSwgbt+f8Hvz2+PFN8Dekm9Lp1bAXr7R4hbZubeXdVCHuRBg6ZXAFcAmoDkwCRgBuBTB+ejps3qwLrf37oWpVvYxw5EgoW7YAJnB7/v56FeM//xSt5MHU1FSOHTuWJRkwICAgy3lWzs7OeHl5MWTIkMzCqnHjxpS1gddFCFH4ScElhA1KTU9lY8hG/Pb4sfv8bsqWKMvY5mMZ03wM7uXdrT09IQqPZHTC4BJgG2AHPI6Oc+9OwfwUTE7WUe6zZsHx41C3LixZAs88o5cRWllQEEyY8G/y4MqVMGRI4UseVEoRHh6epbAKDAwkJCSE1NRUAIoXL07Dhg1p06ZNZjqgt7c3NWrUkDewhBAWIwWXEDYk8nokS/YvYf4/8wmPC6euS13mPTqP5x58jjIlylh7ekIUHsfQ3ayVwFV0B2saMAyoUUBziIvThdUnn8CFC3pd3tdfQ9++NlHNFObkwbi4OI4cOZKjuLp27VrmNTVq1MDLyyszet3b25sGDRrg4OBgxZkLIe5HUnAJYQOCLgfht8ePNQFrSEpLotMDnVjUYxGP1XsMO0MOuxQiX5KAjehu1h/on3BPACOBzkBB1ThXrsC8efDZZxAdDR076qqmc2ebWJ8XH1+MiRN1+rytJw+mpaURGhqao7A6depU5jVlypShcePGDBw4MLNr5eXlRfnycvagEMI2SMElhJWYlImfQ39m7p65/B72OyWLl2SI1xBebvEyXq5e1p6eEIXHEXQAxhrgGjpdcCbwLFClAOdx+jTMng3Ll0NSEvTpo9fqNW9egJO4tdhYfbzXe++1ICbGtpIHlVJcunQpSzJgYGAgwcHBJCcnA1CsWDHq169P8+bNGTFiRGbXys3NTZYDCiFsmhRcQhSwuOQ4Vh1exbw98wiNCqVamWq81/E9RjYbSUXHitaenhCFQwLwNbrQ2gU4AH3Q3az26L1aBeXIEb0eb906sLODoUNh/HhoaOlTkvPn4kXw84OFC3XR5esbz6JFLjSz0nF9CQkJBAUF5ehaXb16NfOaqlWr4uXlxdixYzM7Vh4eHpQsKYmsQojCRwouIQrIqWun+GzvZyw7uIzY5FiaV2/O2r5r6e/ZH/tiEjEsRL4cQi8Z/BKIBRoAs4FngIJ+v+Kvv3Ti4A8/QOnSOtb91Vd18oQNOHoUPv4Y1qyBtDQYMEDXgXFxATRr1t7i46enp3Py5MkcXauTJ0+ilALA0dGRxo0b06tXr8zzrLy8vKhYUd58EkIUHVJwCWFBSin+OPMHfnv82HJsCwYGAxoNYFyLcbSs0dLa0xOicIgD1qG7WfuAksAAdNJga6AgV5MpBT//DB98AH/+qTc+TZ0KL71kM5ugdu3SgYhbtugQxOef12cpu98IOPX3N/+YV65cyRK5HhgYSFBQEImJiQDY2dlRt25dfHx8GDp0aGZh5e7ujp2d7FMVQhRtUnAJYQHJacmsP7KeuXvmcujSIVxKuTDhkQmMfmg0NcoWVESaEIWYQhdXS9DFVgLQGJgHDAEKOg8hLU0nDM6cCYGBuovl5wcjRujulpWZTDrWfdYsXQe6uMDkyTBmDFSqZL5xEhMTCQ4OztG1ioiIyLymUqVKeHt7M2rUqMyulaenJ46OjuabiBBCFCJScAlhRpfiL7Fo3yIW7lvI5YTLeFbyZEmPJQz2HoyjvfyyIUSeotHLBZcChwFH4Cl0N6sFBdvNAkhMhBUr9AHFp0+DpyesWgVPPw321l8KnJICa9fq6QUHg5ubDkgcPvze6kCTycTp06ez7LEKCAggNDQUk8kEQMmSJWnUqBHdu3fPshzQ1dXVTM9OCCGKBim4hDCDAxcP4LfHj3WB60g1pfJ4vccZ12Icnd07S3qWEHlRwN/oIutrIBFoAiwEBgFlrTCn6GhYsADmztUx7y1b6o5Wjx46GMPKYmP1EV9z5ugjvnx84MsvYeBAKH6HP9kjIyMzi6qMwurIkSMkJCRkXlOnTh28vLwYOHBgZnFVt25ditnAeWJCCGHrpOAS4i6lmdLYcnQLfnv8+N/Z/1HavjSjmo1ibIux1K9Q39rTE8L2RaKj3JcCwUAZdPjFC4CVEvS4cEEXWYsW6YOLu3eHt96CNm1s4gyt7ImDnTrpBlyXLnlPLyUlhZCQEH777Td++umnzOLqwoULmde4uLjg7e3N8OHDMwurRo0a4eTkZOFnJoQQRZcUXELcoeikaL469xXPzXuOMzFnqF2uNrO7zmZ4k+GUK1nO2tMTwrYpYCe6yNoIJKOXCi4DngSs9Xt9aKhel7dqld6v9eST8Oab8OCDVppQVseO6cTB1av19Pr319PLLdo940yrgIAAAgICOHz4MAEBAYSEhJCWlgaAg4MDnp6edOrUKfM8Ky8vL6pWrSpdeSGEMDMpuITIp8TURPz2+PHBnx8QmxxLW7e2zOk2hycaPEExO1lWI8RtXQZWoQur44AzupP1AuBtxXkdOKDP0NqwQe/JGjFCR/rVqWPFSf0rt8TB1177d3pJSUmEhIRkFlUZBdbNZ1rVqFEDb29vevTogbe3N4mJiQwZMgR7G9iDJoQQ9wMpuITIg0mZWBu4lre3vc252HP0qN+Dnk49GdlzpLWnJoRtM0H5feVhAfAtkIqOcZ8I9EcHYliDUjobfeZM+O03KFtWt4vGjYMqVaw0qX/lljg4aZKif/9LnD9/kG+++bewOnbsGOnp6QCUKlUqy5lWGR8uLi5ZHt/f31+KLSGEKEBScAlxGztO7eCNrW9w4OIBmlZtyqreq+jwQAf8LXGQjRBFgQnYg14uuAF8zviACzAGeB7wtObcTLpVNHMm7N0Lrq767//5Dzg7W3FiWkbi4KxZJkJC7HBxiaddu99IT1/K/Pl7mT49KvNaNzc3vL296dOnDz4+Pnh7e0uIhRBC2KgCL7gMw6gJzAG6oAN+fwdeUUqdzcd93wd80dupXYBhSqmVt7j2BeB14AHgNDBHKbXIDE9B3AdCroQw4fcJfH/8e2qWrcmaPmsY5DUIO8P66WRC2Jw04A9gE7AZuADYA50heGgwnhM99WHF1pKSoiP8PvxQb4Zyd9ehGM8+CyWtNzGlFOfOnWP37mBWrCjOzp1NSEysAAQAs4iK+oZ//nHAy8uL/v37Z3asvLy8KFdO9osKIURhUaAFl2EYjsB29DbpZ9Hbp2cAOwzD8FZKJdzu/sBY4BDwAzrL6lbjvAAsBj5AF3SdgAWGYRhKqYX3/EREkRURH8G7/u+y9MBSSjuU5oNOHzCuxThK2Zey9tSEsC3JwDZ0J2sLOnGwFNAd6Av0AJzhsv9lPEtaqa0VHw9Ll8Inn8D58zoAY/166NfvzrPT71FCQgJBQUFZ9lodOhRBbOxzwIuAMyVL/k2rVlvp3NmEj08/fHym4e7ujp0NxNALIYS4ewXd4XoBcAcaKKVOABiGEQCEAqOAT/K4v7NSymQYRl1uUXAZhlEceA9Yo5SaeOPmHYZhVAOmG4axTCmVaobnIoqQ66nXmbNrDjP/mklSWhIv+r7IlHZTqFS6krWnJoTtSAB+QXeyfgBi0Wdk9QD6Ad2Aezhs12yuXoVPP9Uf165Bu3awbBl07WrxaHelFGfOnMkRYnHixAmUUgA4OjbByeld4uO7YxjF6NAhismT42nf/mHgYYvOTwghRMEr6ILrCWB3RrEFoJQ6ZRjGX0Av8ii4lFKmfIzRCqgEfJHt9jXAMPSW7R13MmlRdKWb0vki4Asmbp9IeFw4vRv2ZmanmTSo2MDaUxPCNsSgi6uN6GIrEagADEB3sjoBJaw2u6zOntXdrKVL4fp16NULJkyAVq0sMlxcXBxHjhzJEr0eGBhIbGwsAIZhUKdOHby9vRkyZAgODu3Yvt2X3393xGQy+M9/MhIHK1pkfkIIIWxDQRdcjdCLT7ILQv/4NtcYAEdyGQP0lm0puAS/h/3O+K3jOXTpEA9Ve4h1/dbRxq2NtaclhPVdAb5DF1m/o9MFqwLD0UVWW2wrcik4WEf6ffml/nzwYJ066GmepYwmk4lTp05lKawCAgI4efJk5jVly5bF29uboUOHZu61aty4MY6OTvz0k57e//4H5cvDpEkwZgxUrmyW6QkhhLBxBf0j0wW4lsvtUUB5M45BLuNEZfu6uE8duXyEN7e+yc8nfsbN2Y11/dYxsNFACcQQ97dwdODFJvTBxCagNvAyerlgC8DWvkV279Ypg1u2gKMjvPSSbhnVqnXXDxkbG5tZUGV8BAYGEh8fD+iuVb169WjatCnPPfcc3t7e+Pj4UKtWrSwHBmckDn70ka4Ha9UCPz8YPhycrHW4sxBCCKswMtaUF8hghpECzFZK/Tfb7e8BE5RS+SoAb+zhCiWXlELDMCaigzhKKqWSb7q9OPp92ilKqem5POZIYCSAq6trs/Xr19/JU7OY+Ph4nOSns1lEJkey4swKfr74M6WKlWKo21D6VO+Dg53DHT+WvC62R16TO1fyQkkq/a8SFf+oiHOwjkVPcEvgStsrXG1zlfi68TpL9h6Y/XVRCpd//qHW2rWUO3yY1LJlCe/Th/A+fUi9g2j39PR0Lly4QFhYGCdPnuTkyZOEhYVx6dKlzGucnJyoU6cO7u7u1KlThzp16lC7dm1K3ibZMCGhGD/8UI0NG2pw9WoJ3N3jeeqps3TocIXixQvu5+3tyPeKbZLXxfbIa2KbbOl16dChw36llG9e1xV0h+sauXeYypN75+tu3NzJunjT7S7Zvp6FUmoJsATA19dXtW/f3kzTuTf+/v7YylwKq4SUBGbvms2s/bNISU9hbIuxTG47mQqOFe76MeV1sT3ymuRTMHqp4CZ05itAU/TbVH2htEdpSlOa2tQ2y3Bme13S0mDDBt3ROnwYatSAOXOwf/55ajs53Xa2165dIzAwMMuSwCNHjnD9+nUA7OzsaNCgAe3atcs808rb25saNWpk6VrdzsWLMG8eLFwIMTHQsaNe1di1qxOGYc3Dx3KS7xXbJK+L7ZHXxDYVxteloAuuIP7dY3UzT/SvAeYagxvj3FxwZfzEM9c4wsalm9JZeWglk3dM5mL8Rfp79ueDTh9Q16WutacmRMFRwEH+LbKO3rj9YWA20Ad9WqGtSkqClSv12rywMGjQAD7/XO/TcsjanU5LS+PEiRM5EgLPnTuXeU2FChXw8fFh5MiRmcsBPTw8KFXq7o5+OHYMPv4YVq/WNWG/frrQ8s3z/U4hhBD3i4IuuL4DPjYMw10pFQZgGEZt4BHgLTONsQu4CgxGb/fOMATd3frLTOMIG/briV8Zv3U8gZcDaVmjJRsGbuDhmhK3LO4TJvT/hJtufJwGigHt0acZ9gaqWWlu+RUTow8nnjMHIiKgeXNd2fTqBXZ2REZGZtlndfjwYYKCgkhKSgKgePHiNGzYkDZt2mQWVt7e3lStWjXfXavb2b1bB2F8+y2UKAEjRujtY3Xl/RwhhBDZFHTBtRQYA2wxDGMS+r3X6cA59EHFABiG4QacBKYppabddHs7dOR7lRs3+RqGEQ+glNpw489UwzAmow86DkcXXR3R+VpjlVIpln2KwpoCIgIYv3U8v538Dffy7nzd/2v6e/Y3yy9YQti0NHTYxUZ0+MUlwAHoAkwBegKFIX380iWdLrFgAcTGYurShTNPP83uEiUI2LuXw0uXEhAQQHh4eOZdKlWqhI+PD6NHj84srDw8PChRwrx59SYTkjgohBDijhVowaWUSjAMoyMwB30ulgFsA15RSsXfdKmBfj82eybWVKDdTZ+/dOMj4z4Z4ywyDEMBrwPjgbPAGKXUAjM+HWFDwmPDmbJjCisOraBcyXJ80vUTRj80mhLFbeWAICEsIBnYiu5ibUH38B2B7uhkwcfRBxMXBidPkjh9Og5r12KXlsZeNzf8qlZl486dpGzdCoC9vT0eHh507Ngxc5+Vt7c3VapUyePB701uiYNz5+qulo3s2xZCCGHDCvwkFaXUWfSvAre75jS5ZGMppdrfwTiLualrJoqmuOQ4Pvr7Iz7++2PSVTqvtXqNiW0mUr6UuU4ZEMLGJAA/o4usH4A4wBndweoLdEMXXTYsJSWFY8eOcfjwYa5s3UqT336jzaVL2AHLgI+B+KQkfBo0YNwTT2QuCWzQoAEODneeKnq3YmP1Gcpz5kB4OHh7wxdfwMCBYG9fYNMQQghRyNnS0ZVC5FuaKY3PD37OlB1TiEiI4MlGT/J+p/dxL+9u7akJYX7R6OJqI/ALkIReHvgk+u2rjujlgzYoKiqK3377Lcteq5DgYFqlpfEWenNtvJ0dvzRuzPl+/ajbpg1/eXlR2Ypr9LInDnboAMuXQ9euIKuThRBC3CkpuEShopTi5xM/M37reIKvBPNIzUf49qlvaVmjpbWnJoR5XQG+RXeytqFPEawOvIDuZLXG5v4Hv3DhAvv372ffvn3s27eP/fv3ExERkfn1GtWq8UKVKjxXuTK1LlwgzcWF9FdfxWnMGB4vV86KM9dySxwcPx4eesjaMxNCCFGY2diPayFu7eDFg4zfOp5tp7ZR16UuGwdupE/DPhKIIYqO8+jAi43A/9Bpg+7AK+giqzk5d7ZaSURERJbiat++fVy8qE/isLOzw9PTk0cffRQnJyf69+pFs9BQysyfDwcOwAMPwIIFFH/uObjLOHZzksRBIYQQliQFl7B552LOMWnHJNYcXoNLKRfmPTqPUb6jcChmo2uohLgTJ9FdrI3Anhu3NQImopcLepPLjtaCdfXq1RzF1fnz5wEwDIOGDRvSuXNnfH198fX1xcfHh9KlS0NCAqFvvUW9ESPg3Dnw8oIvv9SboIpb98dPbomDEyfC2LGSOCiEEMK8pOASNis2OZYP//yQT3Z/glKKNx95k7dav0W5ktZfeiTEXVPo49czDiI+fOP2ZsD76E5WA+tMDeDatWs5iqszZ85kfr1+/fq0bdsWX19fmjVrRpMmTShTpsy/D3D9Ovz6K2zeDN9/T73oaGjTRp+p1b271TdBpaTAunU6cTAoSBIHhRBCWJ4UXMLmpKansuzAMt7xf4cr168w2Gsw73V8D7dybtaemhB3RwEH+LfIOobuWj0CfIIusqzwzzsmJoYDBw5kKa7CwsIyv16nTh1atmzJmDFjaNasGU2bNsXZ2TnnA0VHww8/wKZN8MsvkJioW0ZPPMEBX1+ajh1bgM8qd5I4KIQQwlqk4BI2QynF98e/Z8LvEzh69Sjt3NrxcdeP8a3ma+2pCXHnTMDf6AJrE3AGfbpgB/SerF5A1YKbTlxcHAcPHsxSXIWGhmZ+vXbt2vj6+jJy5MjM4srFxeXWD3jxImzZoousHTt0ykS1ajB8OPTpA23bgr09sf7+ln9yt5FxjvLNiYPLlkG3blZvtgkhhLhPSMElbMK+C/t447c32HlmJw0qNGDLU1voWb+nBGKIwiUV2InuZH0LXAJKAF2Bd4EngNvUMOaSkJDAoUOHshRXx44dQykFQM2aNfH19eW5556jWbNmNGvWjIoVK+b9wCdP6qWCmzfDrl2gFNSrpxMm+vbVcX52tpHqcewYzJ4Nq1ZJ4qAQQgjrkoJLWNWZ6DNM3D6RLwO/pJJjJRY8toDnmz6PfTFZ4yMKiSRgK7qL9R0QBZQGHkOHXjwGlLnlve9ZYmIihw8fzlJchYSEYDKZAKhWrRq+vr4MGjQos7hydXXN34MrBQEB/xZZAQH69iZNYOpUXWR5etpUq+jmxEEHB91we/11SRwUQghhPVJwCauISYrhgz8/YO7uuRiGwdut32ZC6wmULVHW2lMTIm/xwM/oIuuHG587oztY/dAdLQuknScnJxMQEJCluAoKCiI9PR2AypUr89BDD9GvX7/MUItq1ard2SAmk65aNm3SRVZYmC6oWreGTz6B3r11rLsNuVXi4JgxkN/aUgghhLAUKbhEgUpNT2XRvkVM3TmVqMQohvoMZUaHGdR0rmntqQlxe9fQxdVG4Fd0Z6syMAgdetEBMONJBSkpKRw5ciRLcXXkyBFSU1MBqFixIr6+vvTs2TMzjr169ep3tww3JQX8/XWRtWWL3vhkbw+dOsFbb8ETT9hk5ZI9cbBmTUkcFEIIYXuk4BIFQinFt0e/ZcLvEwiNCqXjAx35qMtHNK3a1NpTE+LWLqP3Ym0CtgFpQA1gJLqT9Qg6COMepaamEhwcnKW4CggIICUlBYDy5cvj6+vL/9u78/ioqvv/468PIWHfZd8REUKAhE2WsKig1L2urVj3vW6tWq27SFvtZvfvV+v3W/u1i/1VpVppLSJECbIIJKyy7yIgEJYECFnO748zk0lCIIGZZGaS99PHfYTcuXdybo5J5j3nnM99KKfNWgAAIABJREFU+OGHS8JVt27dwlvjmJdXpnw7Bw5Akya+dPuVV8JFF0FFFQljwKFD8OqroYqDAwbAG2/Addep4qCIiMQeBS6pdgu2L+CRDx8hc2smyW2TmX79dL7W+2sqiCGxaRswDT+SlYmvNtgbeBg/kjWMsG5EXFhYyOrVq8uEq6VLl3L06FEAmjdvztChQ3nwwQdLwlXPnj0j8/OSk+PD1bRpPmwdOQKtW/uqgldeCRMmQKNqmAsZITt3wq9+Bb/7nSoOiohI/FDgkmqzKWcTT8x6gjdXvEn7Ju155ZJXuDXtVurX0/92EmPW40ex3gYWBvalAE/jQ9YATitkFRUVsXbt2pJgtXjxYrKysjh8+DAATZs2ZciQIdx7770l4erMM8+kXiQr/e3Y4StITJvmpw0WFkLnzn7eXbB8e/3Y/plcuxZ++lNfcbCgIFRxcPjwaLdMRESkcrH9V1biUs6RHH4w5wf8euGvSbAEnh77NI+OepRmDaqxVJvIqXDASkI3Ig4U32MY8CN8yOpzak9ZXFzM+vXry4SrJUuWkJubC0Djxo0ZPHgwd9xxR0m46tOnT2TDVdD69aGiF/Pn+319+sAjj/iQNXRozJRvP5kFC+Cll1RxUERE4psCl0TMsaJj/O6z3zHl4ynsP7qfW1JvYcq5U+jcvHO0mybiQ9YiQiNZ6/CjVunAL4CvA92q+FTOsXHjxjLhavHixRw8eBCAhg0bkpqays0331wSrvr27UtCQgQWfFXcIFi61Aesd96BFSv8/sGD4YUX/HTBfv3iYt5dcTH8+9++4uAnn6jioIiIxD8FLgmbc463P3+bx2c+zoacDUzsNZGfTPwJgzoMinbTpK4rAj4lNJK1Df9b7zz8mqwrgEpexDvn2LJlS5lwtWjRIvbv3w9AUlISgwYNYvLkySXhKjk5mfrVPU2vqMjffDh4j6xNm/yoVXq6ryZxxRXQo0f1tiGCKqo4+PLLcPvtqjgoIiLxTYFLwjJv2zwenvEw87bPI6VdCh9M/oALe18Y7WZJXVYAZOBD1j+AXUAD4EJgKnAJ0LriU51zbN++/bhwtXfvXgASExMZMGAA1157bUm46t+/P0lJEawHfzLHjsHs2aHy7bt2+bl2EybAE0/48u3t2tVMWyLk0CH4/e99uNq+XRUHRUSk9lHgktOyYd8GHv/ocd5a9RYdm3bktUtf4+bUm0moV01TpkROJg/azG0DrwPv4e+Z1RS4GL8e66LA5+Xs2LGjTLXAxYsXs3v3bgASEhJISUnhiiuuKAlXAwYMoEGDBjV0UQF5efDBBz5kTZ8eKt9+8cV+PdZFF0Hz+LthePmKg+PH+1LvkybFxcxHERGRKlPgklOy9/Bepn4yld9+9luSEpJ4fvzzPDzyYZokNYl206QuycGXbP8ksC2BAYUDoBVwGf4eWROBhqFTdu3addzI1ZdffglAvXr1SE5O5qKLLioJVwMHDqRRtEqk79vny7e/8w7MmAFHj0KbNn4tVrB8e8OGlT9PDFLFQRERqWsUuKRK8gvz+c3C3zB1zlQO5h/ktrTbeH7883Rs1jHaTZO64EtgTmD7BFiOL4KRBJwDPAZLWy1l0AODIBG++uorFmcsLhOutm/fDoCZ0bdvXyZMmFASrgYNGkSTJlF+0+CLL8qWby8qgi5d4I47fMhKT4/58u0ns2CBL4QxbZqfBXnLLb7i4FlnRbtlIiIi1St+/3pLjXDO8beVf+P7H32fzfs3c9FZF/HjCT+mf7v+0W6a1FYO2EJo9OoTfEVBgCbAaOBaYCwwDHYf3E1WVhZvvfUWOd/MYdGiRWzZsqXk6fr06cPYsWNLwlVqairNmsXILQrWrg0VvViwwO/r2xe+971Q+fY4nl9XXAzz5rXm2Wd9xcGWLf1Ss/vvV8VBERGpOxS45ITmbJnDIx8+wsIvFjKo/SA+/NaHTOg1IdrNktrGAaspG7C2Bx5rDYwB7gI3xrGp5SaylmeRlZVF9kvZZGVlsWPHjpKnOvPMMxkxYgT33XcfQ4cOJS0tjRYtWtTwBZ2Ec5CdHbpH1sqVfv/QofCDH/iQ1a9fdNsYpsJCf+uv6dP9Ja5ZM7Ck4uBtt0GsZF0REZGaosAlx1m7dy2Pz3ycaaun0blZZ16//HVuGHiDCmJIZBQBSwmFqznAnsBjHYGxUDS6iPWd1jP/4HyylmaR9V4W2VOyS+5zlZCQQL9+/TjvvPNIS0sjLS2N3NxcLr300mhc0ckVFcGnn/qQ9Y9/wObNvnz7mDHwy1/68u3dqngDsBi1b5+v6zF9uv+4b5+f/ZieDl//+udMmdJPFQdFRKTOUuCSEnsO72HKx1P4r0X/RcP6DZl67lS+M/I7NE5sHO2mSTzLx99wOLj+ai5wMPBYLyi4sIDN3TYzP2k+H2/7mKzsLFZMW8GxY8cAaNSoUcl9rlJTU0lLSyMlJeW4ghYZGRk1dkmVys+HWbP8EM+778Lu3X7h0sSJ8PTTcOml0LZttFt52pzz91aePh3ef9/fDqy42F/SpZf6AooXXAAtWkBGxi4SE+N71E5ERCQcClzC0cKj/HL+L/lh5g/JO5bHnUPu5Nlxz9K+qRZZyGnIA+YTGsGaDxz1DxWeXciOsTvIaprFB3kfMGvNLNb9ZR3OOQDatGlDWloaDz74IGlpaaSmptKnTx8SEuJgdDU3F/79bx+ypk+Hgwf9HXuD5du/9rW4LN8edPiwz5DTp/tt2za/f/BgePJJf5nDhvnBOxEREQlR4KrDil0xf13+V56Y9QRbD2zl0j6X8tKEl+jXVu9GyynIwY9aBQPWYqAQXD1HTs8cPh/4ObOLZvPm9jdZuWYlrPGnde/enbS0NCZPnlwyLbBz585YPBWJ2LsX3nvPh6wZM/zI1hlnwDXX+JB1/vlxW74dYMuWUMCaNctXp2/SxA/UPfOMvwVYp07RbqWIiEhsU+CqozI2Z/DIjEdY/OViBncczOuXv865Pc+NdrMkHuwkND1wDrhlDnNGUf0iNrfbzKcdP2Xa3mnMPDyTQxsOkbA5gb59+5I2MY1b024tGblq1apVlC/kNG3f7tdivfOOL71XVARdu8Ldd/uQNXp03JZvLyz00wODUwWDNT3OPBPuusuPYo0dCzV972cREZF4Fp+vCuS0rd6zmsdmPsZ7a96ja/OuvPH1N7h+wPXUM80DkgqULtE+B4oziqm33v+/crT+UbIbZfPvev9mdtFsFhYupF5OPQYNGkTqxan8NO2nJ1xvFXfWrPGjWO+8A5995vf16wePP+5D1uDBcVu+fe9eX+ji/ffhP/+BnByfF8eOhVtv9SGrT5+4vTwREZGoU+CqI3bn7ea5jOd4dfGrNElqwovnv8gD5zxAo8Q4fyEskeXwU/4+gaMzjuI+cTT6yv8/sr/efj4u/pg5zOETPmFr860MGDyAtLQ07k69m1fSXomf9VaVcQ6WLAmFrM8/9/uHDYMf/tCHrL59o9vG0+QcLFsWmio4f74veNGuHVx+uQ9YEyf6ghciIiISPgWuWu5wwWF+Mf8XvJj5IkcKj3DP0Ht4ZtwztG0SvxXSJIKKwC117J22l/wP82mxvAVNDzcFIIccPgn8t77jepoMb0Lq4FTGpY3jwdQH6dKlS3ytt6pMURHMnRu6R9bWrb4CxLhxcM89vnx7167RbuVpOXwYPvooFLK2B+5zNmQIPPUUXHKJ/7cKXoiIiESeAlctVeyK+dOyP/HkrCfZfnA7V/S9ghfPf5Gzzzg72k2TKCrIK2DL21s48M8DNFzUkO7butO0qClncAYb2cjb9jbrO63n8LDDdB7TmbTBaUxNnRq/660qk5/vk8g77/jiF1995RcoTZwIzz3na5yfcUa0W3laNm8OrcWaPdtfatOmvlz788/7ookdO0a7lSIiIrWfAlct9NHGj3jkw0fI3pnNsE7D+MuVf2FM9zHRbpbUsNzcXFYsWMGud3dhmUbHdR3pn9uf3vQGYJWtYkbbGeQMyKHhxIb0Oa8P16ZcG//rrSpz6FDZ8u2HDkGzZn4u3ZVXwqRJ/vM4U1Dg768cHMVatcrvP+ssP0B38cX+XssqeCEiIlKzFLhqkZW7V/K9md/jX+v+RfcW3fnrVX/l2v7XqiBGHbB7926ysrL4fN7n5M/Kp/WK1qTkpDCUoSSSSBFFbGi2gcVDFuPGODpc3YGzR5xNckJytJteM/bsCZVv//BDP9zTti1cd50PWeedF5dJZM8enx2nT/cFL/bvh8REX/Di9ttDBS9EREQkehS4aoGduTt5dvazvJb1Gs0bNOcnE3/CfcPvo2H9+L3/j1TMOcemTZvIysoiKyuLzQs203hxY1JyUhjLWCYykXrUo8AK+LLbl2wavolWl7XijMvOoE+LPvShDr363rbNB6xp03z59uJi6N7dD/dceSWMGgVxVuDDOVi6tGzBC+egfXtfx+OSS2DChLi+v7KIiEito8AVx/KO5fGzeT/jx3N/zLGiYzww/AGeGvsUbRq3iXbTJAIKCgr4/PPPS8JVdnY2e5fsJfVQKmMYww3cQF98pbyCpAIODTjE0QuO0vjCxiQOT6Rbo25RvoIoWL06VPRi0SK/LzkZnnjCJ5K0tLirb56X55eZvf8+/Otf8MUXfv+wYfDss34Ua/BgFbwQERGJVTUeuMysK/AyMBEwYCbwkHNuaxXObQi8ANwAtASygcecc5+UO24z0L2Cp/i6c+4fYV1ADCgqLuKPS//IU7Oe4svcL7k6+Wp+dP6P6N26d7SbJqcpNzeXZcuWlYSrrKwsVixfQY+CHoxlLOcmnMtjCY/R8ZivclDYrBAbY3AuMAYSByfSOrF1dC8iGnJzYc4cmDmTYW+95SsLAgwfDi++6ENWHM6p27gxNIqVkeFnQDZr5gteXHyxL3jRoUO0WykiIiJVUaOBy8waA7OAfOAm/F1/pgKzzWygcy6vkqf4H+Bi4FFgI/Bt4D9mNtI5l13u2P8Az5Xbtya8K4i+GRtm8MiMR1i+ezkjuozgrWvfYlTXUdFulpyC4Hqr7OzsknC1bt06zBkDGMDXGn+Nl5u+TFpiGs0KfPEGd4bDxhqMBcZC/ZT6UBdHNAoKYOFCmDnTD/vMmweFhZCUxLGUFJo8+qgv396lS7RbekoKCnxF+mBVwdWr/f4+feDee0MFL5KSottOEREROXU1PcJ1B9ALONs5tx7AzJYB64C7gJ+f6EQzGwRcD9zqnPtDYN/HwEpgCnBZuVP2OOfmR/wKomTZrmU8+uGjzNgwg16tevH3a/7OVf2uql33QaplSq+3Kh2uduzYAUAiiVzS4RKebP0kI3uPpMeOHiTmJcJhoB0wiZKAZb3NjwfXNc7B8uU+XH30EXz8sR/VMvM3jnr4Yb9oafRoli5YwPjx46Pd4ir76itf8OL992HGDDhwwBe8GDcO7r7bh6zeGrQWERGJezUduC4D5gfDFoBzbpOZzQUu5ySBK3BuAfC3UucWmtmbwONm1sA5l19N7Y6aPfl7uO3d2/hD9h9o2bAlL1/4MvcMvYcG9eOvolptVtF6q+zsbA4cOABAQkICqX1SuS/5PsaljKPfV/1oubolttNgJ9APP1F2LDAGiM/760bG5s0+XM2cCbNmwe7dfn+fPvCtb/mANX48tI6vKZTOQVZWaKrgwoV+X4cOcPXVPmBNmBCXFelFRETkJGo6cPUH3q1g/0rgmiqcu8k5d7iCc5OA3oF/B11qZoeBBCALeDHe1m+9sfQN7lx4J8VWzHdHfpcnxzxJq0a19Aa0cSQvL48VK1awcuXKknC1YsUK8vN93m/UqBEDBw7klitv4YImF5B6MJV2a9qRsCQBPsdPBUwF7sQHrHT8iFZdtWePvzNvcJrghg1+f4cO/gbEEybA+edD1/hLobm5/rKmT/cFL3bs8INzw4b5+ypffLGv46GCFyIiIrVXTQeu1kBOBfv3AZUliZOdG3w86J/AZ8AmoD1wHzDNzL7lnPvTKbU4ivq368/INiN57Zuv0atVr2g3p87atWsXmZmZJVtWVhZFRUUAtG7dmrS0NO6//35G9BrBOcfOodOGTtSbUw9ex69STASGAQ/jA9YooEWULiYW5OVBZmYoYGVn+6GeZs38yNUDD/iAlZwcdxUFwefF4Fqsjz+GY8d8mfYLLvBl27/2NWhXlwO2iIhIHWPOuZr7YmbHgJ85575fbv8P8NUGTxgAzexDoKlzbmS5/ROBGcBY59ycE5ybAMwHOjjnKnyb3MzuxI850L59+yFvvvlm1S+sGuXm5tK0adNoN6POcM7xxRdfsGzZMpYvX86KFSvYvn07AElJSfTr148BAwbQo0cPzul4Dr2296Ll8pa0WNaCJlubAFDUoIiD/Q+yf+B+Dgw6wMG+ByluWBzNy4oqKyqi2erVtFq8mFZLltB85UrqFRZSnJjIweRkcoYMIWfwYA717YsL475Y0fpZKSgwli9vwfz5bZg/vw3btjUGoGvXw4wcuZcRI/YyYMAB6tevud+1sUS/w2KP+iQ2qV9ij/okNsVSv5x77rmLnXNDKzuupke4cig7EhXUiopHr0rbB1R0Y6FWpR6vkHOuyMz+DrxkZh2dc19WcMyrwKsAQ4cOdbGy+D4jIyOuCgHEm8LCQrKzs5kzZ07JCNbuwJqh1q1bk56ezoP3P8j5vc4nhRQS1ybCCjj6+6M03BW4sXQL/Lqr+/zHhMEJtEpqRatKB21rKedg1arQCFZGBhw65Eer0tLgO9+BCROol55Oy8aNaQn0jMCXrcmflV27fMGL6dN9wYuDB30FwfHj4ZFH/FTBM89sDDSmbi/I0++wWKQ+iU3ql9ijPolN8dgvNR24VuLXYpWXDKyqwrlfN7PG5dZxJQPHgPUVn1YiODepbr7NLIB/V2TBggVkZmYyZ84c5s+fT16evxtBrx69mDx6MhM7T2RI0hDa7m6LrTJ/c4EjpZ6kGxzse5CGTzb0UwRT8CsF67KtW0OVBD/6CHbu9Pt794brr/frsM49F9rE5025i4vLFrz47DOfKzt1gmuvDRW8iJE33ERERCSG1HTgeg/4qZn1cs5tBDCzHsBo4PEqnPs8vrjGHwPn1geuA2acrEJh4LhrgK3OuZ1hXoPEkV27djF37tyS0aslS5ZQVFREV7pyaa9L+XbqtxmUOIguOV1IWp8E00qd3Bn/9sDd+FDVHx/vm8GqjFW0G1+HF+Ls21e20MW6dX5/u3Z+/VWw0EX3iu4/Hh8OHfKX9/77vuDFzp1+kG74cJgyxYes1NS4XGYmIiIiNaimA9fv8ROv3jWzp/CjTS8A24BXggeZWXdgAzDFOTcFwDmXbWZ/A35hZon4ghj34GcjTS517jfxJeb/FXje9vgbJA8BvlndFyjR45xjw4YNoemBczI5uO4gKaQwKGEQz7R9hoEdBtIxpyOJhxP9rbM3Ah3wYWpc4GMKPli1jN61xJzDh/2deYMBa8kSP8TTtKm/cdS99/qAlZIS1wlk3brQKNbHH/sbEjdvDpMm+YA1aZIKXoiIiMipqdHA5ZzLM7PzgJeBN/DT/D4CHnLO5ZY61PCTtMoXS74F+AEwFf9yeCkwyTm3pNQxm/BFtn+CXy92GF+xcJJz7j8RvyiJmsLCQpYuXcqcOXNYNnMZBz49QMecjqSQwu31b+cX9guaEbipURFQCPTFh6rSW3zOcqtehYWweHEoYM2d68vtJSbCiBG+pvn55/vhnsTEaLf2tB07BnPmhELW2rV+f79+8OCDPmSNHh3XlygiIiJRVtMjXDjntgJXVXLMZkJrrkrvPwJ8N7Cd6Nz5wHnhtVJiUV5eHotnLGbjPzdyYN4BGq5vyNmFZzOZyTzEQyXHFTYvJGFgAtbfQlMB+1O373VVGedg9epQwJo921eCABg0CO6/3wesMWPifqHSzp2+4MX778OHH/qpg0lJfonZfff5kNVLd2EQERGRCKnxwCVSJfshJzOHzdM3c2jBIRpuaEi3g90YG/gP4EjSEfLOyqPh0IYwnJJwVb9D/Qriuhxn+/ZQkYuZM+HLQPHOXr3guutChS7ato1uO8NUXOwH64KjWIsW+f2dOsE3vuHvjXX++dCkSXTbKSIiIrWTApdE1yFgFbgVjgNzD5C3MI9GmxrR+nBrWgX+yyWXbU238cXAL8gZnkPXC7vS9JymNOrSiEbWKNpXED9ycnyJ9uAo1po1fn/btnDeeaFCFz0jUaQ9ug4e9KNX06f7ghe7dvmlZSNGwNSpfhRr0KC4Xm4mIiIicUKBS2pGHvA5vrj/SiheXkxBdgENdjYAwDCSSGIDG1iXtI4jfY/QdERTel3Si5SLUujXqF80Wx+fjh4tW+hi8WI/3NOkCYwdC3fe6QPWgAFQr/xyyfizbVsjXn7Zh6xPPvEFL1q2hAsvDBW8iPPBOhEREYlDClwSWUeA1ZQEq+DmNjnM+eGEY/WOsZrVLC9ezkpWsrvtbpqPbM7ZF55N+rh0ru13LfVqQQCocUVFvnpgMGBlZkJ+PtSvD+ecA08/7QPWOef4RUtxbssWv9QsI8NvW7acA0ByMjz0kJ8qOGqUv3wRERGRaNFLETk9+cBafKBaQShcbQCK/SHF9YvZ1XIXK4pXkGmZLHfLWcUqGvdvzMgxI0lPT+ee9Hvo2rVrlC4izjnny+qVLnSxf79/bMCAUKn2sWOhWbPotjUCtm0LBazZs2HzZr+/TRsYPx4uv3wtDz3UpzbMiBQREZFaRIFLTq4AWEcoUAXD1Tp8qXXAJTgKehSwo9UOlg1axqxds5ixYwbrCtdR72A9hg8fzpgxY7g9/XZGjhxJq1atonQxtcCOHWULXXzxhd/fvTtcdZUPWOedB+3bR7edEbB9eyhcZWTAxo1+f+vW/tZf3/mOr+nRv7+fEZmRsYOePftEs8kiIiIix1HgEq8QPzpVbioga/ChC/xd0c4El+zYNXoX2YXZfPjlh7y97G22bNgCQMuWLRk9ejQ33n8jY8aMYciQITRs2LDmr6e2OHCgbKGLzz/3+9u0KVvoolevuK8AsWNH2YC1fr3f37KlD1gPPOBHsmrJkjMRERGpIxS46ppi/K2hy08FXI2fJhjUC3/vqksgv3c+y4uXM3P7TGbPn828WfM4dOgQAN26dSP9vHQeS3+MMWPGkJycrPVX4Th6FObNCwWszz7zhS4aN/b3wLr1Vh+wBg2K+9Tx5Zfw8cehgBW86XCLFn4W5L33+oA1cCAkJESzpSIiIiKnT4GrtioGtnL8VMDP8YUtgrrh7191ASU3CN7Tdg9zs+eSmZlJZkYmi3+2mIKCAsyMlJQUbrjhBtLT00lPT6dbt241e121TVERZGeHAtacOT50JSTA8OHw5JM+YI0YAQ0aRLu1Ydm1K1TgIiPD32cZ/PKyYNHE8eMhNVUBS0RERGoPBa5454DtHD8VcCW+FHtQZ3ygupuSGwSTDK6pY/PmzcyZM8cHrJcy+TwwbS0pKYlhw4bx8MMPk56ezqhRo7T+KlzO+blywYA1a5a/Pxb4xUh33eUD1rhx0Lx5dNsapq++CoWr2bNDsyGbNQsN1o0fD2lpqiQoIiIitZde5sQLB+zk+KmAK4GDpY7rgA9TtwU+pgDJQEv/cFFREcuXL/cB6+eZZGZmsmPHDgBatGjh11/deCPp6ekMHTpU668iYefOsoUutm3z+7t2hSuu8OuwzjsPOnSIbjvDtGePnyIYDFgrV/r9TZr4gHXTTb7IxeDBClgiIiJSd+hlTyybC2e9fBY8jQ9WOaUeOwMfqL5FyVRA+gNtyj7FkSNHWLhwIZmZmcyZM4dPP/20ZP1Vly5dGDduHOnp6YwZM4b+/ftr/VUkHDzok0cwYAWTR6tWPlg98YQfxerdO64LXezd628wHAxYy5f7/Y0bQ3o6TJ7sA9aQIZCYGNWmioiIiESNAlcsWwvtZreDQcC1hKYC9gfaVXzK3r17mTs3sP4qM5NFixZRUODLDKakpDB58uSSgKX1VxGSnw/z54cC1sKFfm1Ww4Z+aOfGG33AivPFSTk5PmAFi1wsW+ZnSDZqBKNHw3XX+YA1dGituK+yiIiISEQocMWyG2Fuj7mMP3d8hQ8759iyZUto/VVmJqtWrQIgMTGRYcOG8d3vfrdk/VXr1q1rsPG1WHExTdet8xUEP/rIp5AjR3zVwGHD4PHHfcAaOdKHrji1f7+v4REMWNnZPmA1bAijRsHzz/uANWxY3NfzEBEREak2ClyxLAEoNeOsqKiIFStWlAlYXwRufNu8eXNGjx5dUkFw6NChNGrUKDrtri2OHYMNG3w5vXLb0IOBhXP9+sHtt4cKXbRsGd02h+HAAcjMDAWsrCxfkb5BA58dn3vOF7k45xwFLBEREZGqUuCKYUeOHGHp0qV8+umnJeuvDgZe6Hfu3JkxY8aUWX+VEMfT1aIqJ6fCUMWGDX5qYFDnztC3L9xwA5+3aEG/++6DTp2i1+4wHTrkR7CCa7CWLPEBKynJV6F/+mkfsEaMiOuBOhEREZGoUuCKYb/97W959NFHAejfvz/f/OY3y6y/sjguuFDjiopg69aKg9Xu3aHjkpLgrLNgwAC45hofsPr2hbPP9vXMA3ZlZNAvzsJWbq4fwQoGrMWL/bclMdGPWj35pA9YI0f6dVkiIiIiEj4Frhh21VVXcezYMe666y7atGlT+QkCeXmwdu3xoWrtWn9D4aA2bXyQuvTSUKjq2xd69Kg1Ncvz8mDu3FDA+uwzH7Dq1/cB6/HH/RqskSN9ZUERERERibza8cqylurZsyejRo1S2CrPOX9vq4pGq7ZuDR1Xrx706uWD1AUXlB2tOuOM6LW/mhw+DJ9+GlqDtXAhFBb6gDVsGHzvez5gjRrl740lIiIiItVPgUti10mKVnCw1N2emzb1QWrs2LKjVb171+rqDkeOwLx5oYC1YAEUFPjK80OHwsMP+4A1erSFW9jvAAAWxklEQVT/FomIiIhIzVPgkuiratGKLl18kLrxxrLBqlOnuL6BcFUdPepv9zV7tt8WLPCZtF49f3Ph73zHr8EaPRqaN492a0VEREQEFLikppxK0Yo+fWDgQLj22lCo6tOnTNGKuiB4P+XgGqz58/2+evUgLQ0eeMAHrDFjFLBEREREYpUCl0RWVYtWnHGGD1KXXXZ80Yo6Wt4+P9+vuwoGrHnz/LfMDFJT4dvfDgWsOL7dl4iIiEidosAlp05FKyLi2DFfOTAYsD791K/LMoNBg+Duu33AGjsWWrWKdmtFRERE5HQocMmJqWhFRBUUwKJFoSIXc+f6yoLgZ1DecYcvcjF2LLRuHdWmioiIiEiEKHAJ7NsHa9aoaEWEFRb6mwsHA1Zmpp9xCZCSArfeGgpYGvATERERqZ0UuOoKFa2odoWFsGSJD1cZGTBnDuTm+seSk+Gmm0IBq127aLZURERERGqKAldto6IVNaaoCLKyQmuw5syBQ4f8Y337wg03+IA1bhy0bx/VpoqIiIhIlChwxSMVrahRzsFXX8HmzbBpE2zcCP/8ZworV4aWsvXpA9df74tcjB8PHTpEscEiIiIiEjMUuGLZsWM03rIFpk1T0Ypq5Bzs3RsKVJs3h7bg50eOlD2nc+fGXHddKGB16lTDjRYRERGRuKDAFct+/WuGP/JI6HMVrTgtzkFOzonD1ObNoWIWQa1a+dmVffvCpEn+3z17+o/du8OSJQsZP358jV6HiIiIiMQfBa5YdvHFrNq3j+Qrr1TRikrs33/yQBVcWxXUvLkPUL17w4QJoTAVDFS6sbCIiIiIRIICVyzr25fdEyeSPGRItFsSdQcOnDhMbd7sHy+tadNQiBo/vmyg6tFDNxIWERERkZqhwCUx4dChkweqnJyyxzdpEgpPY8aUDVM9e/pApVmWIiIiIhJtClxSI3JzYcuWisPU5s2+aEVpjRqFwtPIkccHqjZtFKhEREREJPYpcElEHD584kC1aRPs2VP2+AYNQuFp2LCyYapHD2jbVoFKREREROJfjQcuM+sKvAxMBAyYCTzknNt60hP9uQ2BF4AbgJZANvCYc+6TcsfVAx4D7gI6AGuAKc65tyN4KXXKkSP+Fl8VjU5t2gS7d5c9PikpFKLS0sqGqR49oF07f5swEREREZHarEYDl5k1BmYB+cBNgAOmArPNbKBzLu9k5wP/A1wMPApsBL4N/MfMRjrnsksd9wLwCPAksBj4BvB3M7vEOfevSF5TbZGfX3GgCn6+c2fZ4xMTfTW/Hj3gssuOD1QdOihQiYiIiIjU9AjXHUAv4Gzn3HoAM1sGrMOPRv38RCea2SDgeuBW59wfAvs+BlYCU4DLAvva4cPWi865nwZOn21mvYEXgToZuI4dg23bThyoduwoe3z9+tCtmw9PF110fJW/jh0hIaFmr0FEREREJN7UdOC6DJgfDFsAzrlNZjYXuJyTBK7AuQXA30qdW2hmbwKPm1kD51w+cCGQBPyp3Pl/Av7XzHo65zZF5nJiR0GBD1QnqvT3xRf+BsBBCQnQtasPTxdeWDZM9egBnTsrUImIiIiIhKumA1d/4N0K9q8ErqnCuZucc4crODcJ6B34d3/8lMX1FRwHkAzEXeAqLITt208cqLZvh+Li0PH16kGXLj48nX/+8VX+Onf2o1giIiIiIlJ9avold2sgp4L9+4DKbkV7snODjwc/7neu9HhOhcfFvHffheeeG8T+/X70qqgo9JiZD009e8K4ccdX+evSxa+zEhERERGR6InGGEf5IAS+WmFlrIrnVvW4sg+a3QncCdC+fXsyMjKq0KTqtXTpGeTnd6J3712kpx+lQ4ejdOhwhA4djtKuXT6JiRVdpi/PvmVLDTe2jsnNzY2J/0ckRH0Sm9QvsUd9EpvUL7FHfRKb4rFfajpw5VDxCFMrKh69Km0f0O0E5wYfD35sZWZWbpSr/HFlOOdeBV4FGDp0qBs/fnwlzal+48fD2LEZxEJbpKyMDPVLrFGfxCb1S+xRn8Qm9UvsUZ/Epnjsl5ou3B1cY1VeMrCqCuf2DJSWL3/uMUJrtlYCDYAzKziOKnwdERERERGRiKjpwPUeMMLMegV3mFkPYHTgscrOTaRUcQ0zqw9cB8wIVCgE+AAfwCaXO/8GYEVtrFAoIiIiIiKxqaanFP4euA9418yewq+1egHYBrwSPMjMugMbgCnOuSkAzrlsM/sb8AszS8RXGrwH6EmpcOWc221mLwPfN7NDwBJ8KDsPX3peRERERESkRtRo4HLO5ZnZecDLwBv4QhYfAQ8553JLHWpAAsePwN0C/ACYCrQElgKTnHNLyh33JJALPAh0ANYA1zrn/hnZKxIRERERETmxGq9S6JzbClxVyTGbqaCqoHPuCPDdwHay84vwoWzqaTdUREREREQkTDW9hktERERERKTOUOASERERERGpJgpcIiIiIiIi1USBS0REREREpJoocImIiIiIiFQTBS4REREREZFqosAlIiIiIiJSTRS4REREREREqokCl4iIiIiISDVR4BIREREREakmClwiIiIiIiLVRIFLRERERESkmihwiYiIiIiIVBNzzkW7DTHHzL4CtkS7HQFnAHui3Qg5jvol9qhPYpP6JfaoT2KT+iX2qE9iUyz1S3fnXNvKDlLginFmtsg5NzTa7ZCy1C+xR30Sm9QvsUd9EpvUL7FHfRKb4rFfNKVQRERERESkmihwiYiIiIiIVBMFrtj3arQbIBVSv8Qe9UlsUr/EHvVJbFK/xB71SWyKu37RGi4REREREZFqohEuERERERGRaqLAFSVm1tXM3jKzA2Z20MzeMbNuVTz3h2Y2w8z2mpkzs5urubl1wun2iZkNNbNXzWy1mR02s61m9mcz61kT7a7twuiX7mb2rpltMbMjZrbHzDLM7Gs10e7aLJzfX+We5/uB32GZ1dHOuiTMvynuBFtqdbe7tgv3Z8XM+pnZ3wO/v46Y2Roze7A621zbhfE35bmT/KwcrYm212Zh/g7rZmZ/DLz+Omxma81sqpk1qe52V5WmFEaBmTUGlgL5wFOAA6YCjYGBzrm8Ss4/BGQDG4EbgVucc69XZ5tru3D6xMx+CowE/gysBDoDTwPtgFTn3LbqbX3tFWa/9Ae+C2QA24HmwB3AxcBVzrl3qrXxtVS4v79KPU8vYBmQB6xzzqVXT4trvwj8TXHA68Ar5R5a5pw7HPEG1xER6JehwCz877D/BQ4AZwFNnXM/r76W115h/k3pAnQpt7sJ8AEwzTl3bbU0ug4Is1+aAFlAIvAcsBUYBjwPvOecu65aG19VzjltNbwBDwJFQO9S+3oChcB3q3B+vcDH3vj/KW+O9jXF+xZOnwBtK9jXHSgGpkT72uJ5C/dnpYLnqw9sA/4Z7WuL1y1SfQL8B/8CPwPIjPZ1xfMWgb8pDpga7euobVuYf1fq4d/Amxbt66hNWzX8TflW4Ofn4mhfWzxvYf6sXBDogwvK7X8xcH7jaF+fc05TCqPkMmC+c259cIdzbhMwF7i8spOdc8XV2La66rT7xDn3VQX7tgBf4Ue75PSF9bNSnnOuEP8ucUHEWlj3hN0nZnY9MBj4frW0sO6J6M+JREw4/TIeSAY0khVZkf5ZuQnYhX8DSU5fOP2SFPh4sNz+/fg3LixSjQyHAld09AdWVLB/Jf4XrNS8iPaJmfXDTyn8PMx21XVh94uZ1TOz+mbWwcyeBvoAv41gG+uasPrEzFoBLwPfc87ti3Db6qpI/P66x8zyA+sfZpnZmMg1r84Kp1+CU2wbmtl8Mysws91m9iszaxTRVtYtEftbH5hieC7w58CbeXL6wumXmcA64CUzSzazpmZ2Hn7U7L9dFae5VzcFruhoDeRUsH8f0KqG2yJexPrEzOoD/40f4fqf8JtWp0WiX36MH9H6Evge8A3n3EeRaV6dFG6f/ARYi18zJJERbp/8CbgXmADcCbQBZpnZ+Eg1sI4Kp186BT7+DZgBTMT/Lrsd+EukGlgHRfL117fwr6P/GG6j5PT7xTl3FP8GRXAa7iHgI+B94L7INvP01Y92A+qwiqqVxMSwZx0WqT75DTAKP6e7ol8gcmrC7ZdfAG8CHfBFZv5iZlc7596PROPqqNPqk8CoyY3AYBeYZC8Rc9o/J865b5X6dI6ZvYt/t3kqoZEWOT2n2y/BN8T/5Jx7JvDvDDNLAF40s2Tn3KqItLDuidTf+huBLOfcsjDbI97p/l1piH9joh0+BG8FhgPP4Ndw3RPBNp42Ba7oyMGn+fJaUXHCl+oXkT4xsx/h3yG+yTk3I0Jtq8vC7hfn3HZ8lUKA980sA/gp/t0vOXXh9Mkr+FHf7WbWMrCvPpAQ+PyIcy4/Yi2tOyL6N8U5d8jMpgO3hduwOi6cftkb+Phhuf0z8MUAUgEFrlMXqb/1w4G+wEMRalddF06/3IZf89jbObchsO8TMzsAvGpm/+2cWxqxlp4mTSmMjpX4+arlJaNfoNESdp+Y2ZPA48CDzrk3Iti2uqw6flYW4St8yukJp0/6AXfj/4AGt9HAiMC/Y+KdyDhUHT8nRsXvOEvVhdMvKwMfy/dB8B1/Fc86PZH6WbkJP3qi6Z2REU6/DABySoWtoIWBj/3CbFtEKHBFx3vAiMB9aAAwsx74Fx7vRalNdV1YfWJmD+Cn3zzpnPt1NbWxLoroz4qZ1cNPkSr/i1mqLpw+ObeCbSl++tq5wFuRb26dEOmfk+b4+9UtiFD76qpw+uXf+HsSTSq3/8LAx0WRaWKdE/bPipklAd8A/lVRlWI5LeH0y06glZmVfyP1nMDHLyLUxvBEuy59XdzwN8pbDyzHl7u8DP+iYyP+hobB47rj30F5ptz544Cr8YsBHX7N0NXA1dG+tnjdwukT/C/eYvwfyBHltuRoX1s8b2H2y3PAr4DrAj8z1+Gn4xTjC2dE/fricQv391cFz5eB7sMVtT4BHgF+D1yPn5ZzU+B5jgFjon1t8bxF4G/9s4H9P8QXNHkcOAK8Hu1ri9ctEr+/gCsDr72ujPb11JYtzN9hPfAl4dcGfn+dCzwa2LeIwL1ro71pDVcUOOfyAiUrXwbewE8R+Ah4yDmXW+pQAxI4fiTyefwLyKBvB7bgOXKKwuyTSYH9kzj+3ciP8S9i5DSE2S9L8PPrvwG0wL8LthT/InJuDTS/VorA7y+JsDD7ZA3w9cDWAv8iZS5wm3NuIXLaIvCzMgVfce1efDD+El/l84VqbnqtFaHfXzfhq+dpHXCEhNMvzrnNZjYC/ybrVOAMYBvwKvADFyP3rrVAOhQREREREZEI0zuPIiIiIiIi1USBS0REREREpJoocImIiIiIiFQTBS4REREREZFqosAlIiIiIiJSTRS4REREREREqokCl4iInBIze83MnJn9PNptORVm9lzgXi91mpn1CHwvekW7LSIidYECl4iIVJmZNQKuCXw62czqR7M9p+hZoM4HLqAH/nuhwCUiUgMUuERE5FR8HWgO/AtoB0yKbnMEwMwaRLsNIiJSMQUuERE5FTcBOcDNwBHgxooOMrNBZjbNzPaa2REzW2Nm3y93zNfNbK6Z5ZrZQTNbaGaXlXq8vpl938xWm1m+me0ws5+ZWcNSx/QITG+818x+bma7zeywmb1vZj1KHecC/3wycLwzs+cCjw0zs7fMbHuptv4wMJpXur0ZZpZpZhPMbEng66wwsytO8/qvNLP5gefZb2Z/N7NulXVAqXZcamZZZpYP3Bt47D4zm2dm+wLPOd/MLi517nhgduDTD0t9L8aXOuYOM1tqZkfNbI+Z/Y+Zta6sXSIiUrF4mgoiIiJRZGadgAnAq865r8zsH8CVZtbKOZdT6rjhQAawHvgOsB04CxhY6pj7gV8B/8CHuFxgMH66W9CfgEuBl4BPgX7AC4FjrirXvO8D2cAt+JG3HwIzzKy/c64AGAnMA14HXgmcsz3wsVvg3NeBQ0B/4Bn8lLtvlPs6ZwK/BH4E7AEeBt4ys77OufWncP13A/8F/AGYAjQDngM+NrOBzrlDnFwf/PfvBWAjsC+wvwfwGrAZ/zf+UuB9M7vIOfdvYAnwbeC3wAPAZ4HzVgXa9WLgmn4FPAp0BqYCKWY2yjlXVEm7RESkPOecNm3atGnTVukGPAY4YGTg8wsDn99d7rhPgG1A4xM8T3N8sHnnJF9rTOC5byy3f3Jgf2rg8x6Bz1cB9UodNzqw/7ZS+xwwtZJrNHxQuQEoBtqUeiwDKADOKrWvHVAEPHEK198UOAD8b7n9PYBjwEOVtDEj0LbUSo6rF7iWGcC7pfaPD3wvJlTw9YuAZ8rtD34vr4j2/4PatGnTFo+bphSKiEhV3Qisc87NC3w+E9hBqWmFZtYY/wL9z865wyd4nlH40PHqSb7WJHz4eDswtbB+oEDHjMDjY8sd/5Zzrjj4iXNuLn5kaWRlF2Vmzc3sJTPbAOTjQ9Ub+PB1VrnD1znn1pX6OruB3fhRsqpe/0h86PxzuWvbDqyu4Noqstk5l13BtQwJTKfcBRQGrmUicHYVnnMiPqSVb9cC4GAV2yUiIuVoSqGIiFTKzIYBycBLZtay1EPvAPeZWR/n3FqgFf5F+/YKniaoTeDjyY5pByThpxqe7DmCdlVwzC78lLjK/AE/VfIZ/NTCPGA4ftpdw3LH7uN4+aWOq8r1twt8nHmCx3NOsL+0L8vvMLOuwEf40b77ga340PUCfjpmZYLtWn+Cx8t/z0VEpAoUuEREpCpuCnx8LLCVdyPwFD4sFHPyoLMn8LEzsOIEx+wFjuKnFlZkR7nP21dwTHt8gDqhQAGOy4HnnHO/LLV/wMnOO4mqXP/ewMebgZUVPF7Z+i3wU/zKmwS0AK51zpUEvsCoW1UE23UBFYe+vRXsExGRSihwiYjISZlZEr54xALg8QoOeRn4lpk97Zw7bGaZwA1mNsU5d6SC4z/Fj1zdCfznBF/2A3ywa+Gc+6gKzbzazJ4LTis0s9FAF3yhjKBjQKNy5zUAEvBT70q7uQpf8zincP2HgN7OuT+eztc5gWCwKrkWM+uDn+JYesQtP/Cx/PfiQ3xY7Oac+zCC7RIRqdMUuEREpDKX4KeTPeycyyj/oJm9gq+4Nx5fcvwR4GNgnpn9DP9ivxe+yMP9zrlDgRLpvzazt4E/4wNIKnDUOfdr51yGmf0VXwHw58BCfBjoAVwEPBaYwhjUDPhHoC1t8VUE1wH/V+qYVcDFZvYBfgRnh3Nuh5nNBx42sy/xo2+3UrWpiCdS2fUfNLNHgd+aWVvg3/giGp2BcUCGc+4vp/F1Z+KnEP5f4Ot2BJ7HTy0svWZ7beC4W81sHz6ArXHObTCzl4DfmNnZgWs4CnTFr+96zTk3GxEROSUqmiEiIpW5CR+I/n6Cx/+KvyfXTQDOuc/woyrbgF/jb5L8KKVGWZxzvwGuwY9C/Rl4G7ga2FTqeW/Al0q/GngXeAu4Dx+kyq/Z+hF+7dHrwO/w5c8vdL4kfNB9+PVZ/8SXQ78zsP+bwGL8mq3XgZ3Agyf8blSiitf/CnAZvpjFG/jQ9Tz+jdCTToM8ydddia/i2B14D/gefkTyk3LH7cV/LwbhQ9VnwJDAY0/gvy9jgf+H/74/hg+o6xARkVNmzlU0DVxERCT2BW5uvAm4wzn3WnRbIyIicjyNcImIiIiIiFQTBS4REREREZFqoimFIiIiIiIi1UQjXCIiIiIiItVEgUtERERERKSaKHCJiIiIiIhUEwUuERERERGRaqLAJSIiIiIiUk0UuERERERERKrJ/wdR2YPP4IRedwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1008x576 with 1 Axes>" ] @@ -887,8 +945,8 @@ " #### Causal effect - \"vanilla\" (wrong) model\n", " # Integral of P(Y=0 | T=1, X=x)*P(T=1 | R=r, X=x)*P(X=x) from negative to\n", " # positive infinity.\n", - " failure_rates[r - 1, 4] = si.quad(lambda x: f(np.array([x]), logreg, 0) * \n", - " f(np.array([[x, r/10]]), decision_model, 1) * \n", + " failure_rates[r - 1, 4] = si.quad(lambda x: getProbabilityForClass(np.array([x]), logreg, 0) * \n", + " getProbabilityForClass(np.array([[x, r/10]]), decision_model, 1) * \n", " scs.norm.pdf(x), -np.inf, np.inf)[0]\n", "\n", "# Error bars TBA\n", @@ -910,27 +968,18 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 106, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.0 (0.018287661925724383, 8.00221559955285e-11)\n", - "1.0 (0.3419746629567682, 6.491768654045975e-09)\n" - ] - } - ], + "outputs": [], "source": [ "# Below are estimates for P(Y=0 | do(R=0)) and P(Y=0 | do(R=1))\n", - "r = 0.0\n", - "print(r, si.quad(lambda x: f(np.array([[x, r]]), decision_model, 1) * \\\n", - " f(np.array([x]), logreg, 0) * scs.norm.pdf(x), -np.inf, np.inf))\n", - "\n", - "r = 1.0\n", - "print(r, si.quad(lambda x: f(np.array([[x, r]]), decision_model, 1) * \\\n", - " f(np.array([x]), logreg, 0) * scs.norm.pdf(x), -np.inf, np.inf))" + "#r = 0.0\n", + "#print(r, si.quad(lambda x: f(np.array([[x, r]]), decision_model, 1) * \\\n", + "# f(np.array([x]), logreg, 0) * scs.norm.pdf(x), -np.inf, np.inf))\n", + "#\n", + "#r = 1.0\n", + "#print(r, si.quad(lambda x: f(np.array([[x, r]]), decision_model, 1) * \\\n", + "# f(np.array([x]), logreg, 0) * scs.norm.pdf(x), -np.inf, np.inf))" ] }, { @@ -957,40 +1006,26 @@ }, { "cell_type": "code", - "execution_count": 203, - "metadata": {}, - "outputs": [], - "source": [ - "# instantiate the model (using the default parameters)\n", - "logreg = LogisticRegression(solver='lbfgs')\n", - "\n", - "# fit, reshape X to be of shape (n_samples, n_features)\n", - "logreg = logreg.fit(\n", - " s_train.X[s_train.decision_T == 1].values.reshape(-1, 1),\n", - " s_train.result_Y[s_train.decision_T == 1])\n", - "\n", - "## predict probabilities and attach to data\n", - "#label_probs_logreg = logreg.predict_proba(s_test.X.values.reshape(-1, 1))\n", - "#\n", - "#test = test.assign(B_prob_0_logreg=label_probs_logreg[:, 0])\n", - "#test_labeled = test_labeled.assign(B_prob_0_logreg=label_probs_logreg[:, 0])" - ] - }, - { - "cell_type": "code", - "execution_count": 215, + "execution_count": 107, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0.072 0.14 0.2 0.25 0.3 0.344 0.378 0.412]\n" + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAHICAYAAABajeu4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VNX9//HXJyEEwh4gIWFHdgREEVFQVq0LuFar1latdreVUrW2WovaulXF1v6sGy51be1XqwnuSEQWRUSJIiJLWBPWsISQfc7vj3sDwzAhAySZSfJ+Ph7zwNx75t7PvefOeD9zlmvOOURERERERKTmxUU7ABERERERkYZKCZeIiIiIiEgtUcIlIiIiIiJSS5RwiYiIiIiI1BIlXCIiIiIiIrVECZeIiIiIiEgtUcIlIhEzsz+bmTOz0UHLJvrLbo1mbCIikYi176xoxRNr50GkIVPCJdLAmFkP/3+iVb12RjvGhqIx37CY2Tv+sX8R7VhqUmOu05pgZnPNrDzacUjd0OdFJDJNoh2AiNSa5cDLYZYXH8U2HwKeB9YexTaknjOzLsBEwAFDzWyYc+7zKIclEqn5wABga7QDEZHGQQmXSMP1jXNuWk1u0Dm3DdhWk9uUeukqvB4SDwC/BX4E/CqaAYlEyjm3F/gm2nGISOOhLoUijZiZJZrZ9Wb2vpltNLNSM8s1s+fN7Jgw5Q8aw1XFdnv75Z6MdJ2ZbTCzlWbW3sweN7M8MwuEjBfrY2bPBsW63sz+YWYdIjzeJv6+3zez7mb2splt9Zd18ctcZGb/MbPVZlZsZjvM7D0zGx96LoD3/D/vDOqyWR5SLs2PMcfMSsxsk5n9y8y6RxCvmdlaP8aEKsqs8mNs6v/d3MxuNrOvzGyPme0ys2/M7CkzS4vkPEXgKmAHcAuwGrjczBIPcRwTzWymfxzFZrbGzJ4zs0Eh5dqa2V/M7GszKzKzfDP7xMymVrHNt/wyxf57bjKzJiHlrvXr5Qozu9TMvvC3vdHM/mpmSUFlq61TMzvRzB7x91dgZoVm9pmZ/SxMjMHXW5r/udpuZnvN7AMzO66K89XXzJ42s3X+NZNnZm+b2Tkh5eLM7GdmttCv6z1mNs/MzquqLsLsa99n2sx+ambZ/vl80l/fxczuNLNPzWybH88KM7vPzFqGHiswCoi3A7sx3xqyz0vM7EP/2iwys8Vmdm2kMVdzPJf652Cbf57XmNlrZnZKUJmDusGF1FVX874D8s1sp5n928w6+uVGmdlsv+63+NdQfEgMEV9zERzPCWb2X39fJeZ93u8ysxaHsY0EM/uTfy6KzWypmf34EOVr7DvwcD4vIg2ZWrhEGreOeK0UHwJvALuB/sClwFlmdrxzri67DzYDsvB+DHoFSAAKAMxLvN4EEoHXgTV43YJ+AZxhZiOcc5GOT+sILAA2AM8B7YAyf909wB68c7IZSAPOB94zswudc6/75T4AugE/AGYDc/zlgcqdmFk//3hSgJnAf/33XAZ8x8xGOudyqgrSOefM7EXgZuAMfxv7mNlIoBfwhHOu1F/8oh/vR8A7/rIewEXA40BedSfnUMxsDHAM8JhzrsTMngduA84D/hOm/E3AvcAu4H/+/rvidUn8BFjql0vzYz7GX/4w0BwY7B//g0HbnOL/vcXf5g7gNH8/JwIXhwn9MmACXjfbt4HvADcAx5nZd5xzASKoU+Cn/nvnABlAa//vf5pZb+fcDWH2nQzM8+N9Fq8+LgA+MLP+zrktQcc2zt9uMyATWAZ0AE4Grsa/BswsDu98XwR8BTyD97k5B/ifmf3KOfePMLFU5RbgFH/fbwG5/vKxwPXALP8YHDASuBE41cxOdc6V++fodrzWzi7AHUHbrjyPmNl0YAqQg1cXxcDpwBNm1s85d+NhxHwAM7ser9vzSuAloBDoDIzBuz7mR7CZ9v5x5gBPA8cDlwBdzOxmvGvnLeAJ4Cy8a2gn8Jcw24rkmjvU8XwX7/NcjPedtwkYDvweGGNmY51zZYfYRKVn/ViWA3/H+757EO87Lpwa+w7kyD4vIg2Pc04vvfRqQC+8mzmH12VmWphX/6CyzYC0MNsYD1QAj4Ys/7O/7dFByyrH8twatKy3v+zJMNsOuw4v+XF4N9BNQ9YlAuuB7UC/kHWX+e97KIJz08Qv64B/ABamTM8wy9LwbkC/CVl+0LGHrF+Id7M0KmT5aKAc+F8EMR/r7+PFMOse9ted5v/d3v/7P2HKNgda1MD19Yy/j1H+3338v98KU3Y43s3XSqBTyLoEICXo7zf87dwYZjtdgv57iH/u5gGtg5Yb8E9/G+cHLb/WXxYIuW7j8G4AHfDDw6jT7kBcmOvqPT+uLiHLK6+3B4OvN+DO0OP162gTUBp6zfjrOwf99y/99/8tOB6gJbDIv+46hTuGkG1WfqZ3AH3DrE8BksIsn+a/79KQ5XOB8ir2dY7/nv8CiUHLmwbVxbCjuDaz8caXNg9ZbkDyoeo4pK7uCnnvm/7yfOA7Qeta4SXRW4H4mrzmgFS8pGdFaD3iJVwOmBLBOTnDL7sg5JwPBkrCXevU7HdgxJ8XvfRqyC91KRRpuPoBfwrz6l9ZwDlX7Jw7qMXDOfcB3q+hE+sm1AP8zu1vral0Ht6v5nc655YHr3DOvQQswWuVi1QR3g2CC13hwrQ4+efof0A/87seVsfMRuC1tjzqnJsXsr25eK0Xk4K7ZYXjnPsK70by3OBuROZ1nfsesA6vZQi8G5/K4wvdTpFzrjCS2KtiZq2A7wI5lcfknFuB1yJ1hpl1DnnLT/FuWG92zm0KiafM+S07/jmdDHyJ1+IaGvuGoD9/BsQDv3TO7Q4q44A/+H+Guxbe9M97ZfkAXqsOwBWHOu6QWNa6kJYJ57XwPOHHNTbM2wo4+Hp7xv93eNCyC/FutB8PvWb8/WwM+vOXeOMpbwiOxzm3By+JSsRrlYjUo865b8Psc4vzxjyFesT/93C+I36Jl4T81DlXErSPUuCP/p/fO4zthVOKdyO/j/PkR/j+XXjJ8L73sr/l9lPn3DtB6wrwkrEOQHqYbR3NNXcl0AIvId8Usu4+vOQvku+8yv38KeScfwm8EO4NNfUd6L/vSD4vIg2OuhSKNFyvO+eqveEysxPxugeNwvs1O/h7IdyNVm3aE5pQ+U7y/x1iZtPCrE8EUs2srYusW+Gqqsr5Xdv+gNftpSteK2CwNLzWuOpUxtytiphT8W44egPVTa3+PN5N1vnsv0k6Ha9r5D2VN/LOuXwzex/4oXljxF7HS8Y+d85VRBBzdS7Buwl8PmT5c3jHeyVwV9DyE/1/361mu5VJx/uhN2dhnITX+nqBmYW7vosJ+lEhyNzQBc65bDPbDQytZp/7mFkzvC52lwB98VqUgoUbJ7c8TNJSmTy1DVoW0fkys9Z43WlzgFvMLLRIqv9vuPNQlUWH2N/3gJ8Ax/nxBv9YezjjAk/CS2h+FSbmyjGAhxNzqH/jJZtfmdm/8brELagiYazKt8650B8sKhOeJWHKV65Lx2uFD3Y011zl98dpFn6sXymRnavK/XwUZt1cvG6qB6jB78Aj/byINDhKuEQaMX88TmXXjnfwun7txWsp+RHhf7WtTVuqWJ7s/3vQzUGIFnjjKY5oP/7A+E/xjnsO3liNXXi/yo8HTmX/jWF1KmO+wH9VJZLB7y/hjau4nP0J1/f9f0OTnwvwxlRdxv5xT1vN7EHg3nCteoeh8vyH7vPfwHS8yTSCE642QGFwS1QV2vj/5h6ylCcZL1G97RBlwp3TqqYA34LXehqp/+HdiH6NN75mK97npxfeWJZw18euMMsqW2GCJ1yI9Dy08//tiddqXZWIJ1ag6s/E7/HqdDNea84GvK5ocXitUpF+HsCL26i5mEPdhdft+Gd4sf0RKDKzl4DfRvhjTLhrtTyCdeEmtTmaa67y++M3hygTyfPO2uD9kHVQqzdenR6ghr8D4cg+LyINjhIukcbtD3g3CqOdcwuDV5jZ98O/JSKVrRTxYda1PsT7qkoGKm90xjnnso40qAj2cy3eIPubnHN/DV7hd5c79TD2URnz1c65Zw47wiDOuQ1mNgev214HvKT4fGCJc25pSNk9wE3ATf6kHROAXwN3400i8PCRxGBmffFaQQGWh2mhAOjjT6JQ+Wv6TqCHmbWuJumqvBGOJMHfjTfBSQsX2YQBlTpWsTyF8DfSBzGzk/FuHjOB84Jb4/zPyw8OI55wIj0PlfF+6Jwbe5T7rHTQZ8K8mS//gNdyc1xwtzz/8/DH0PdUowDY4ZzrcRRxVsn/MeFR4FEz64Q3WcY1eD8etcWbYKQuHc01V7m+p3NuzVHEsAvobmbNwyRdqWHK19h3YB18XkTqDY3hEmncjgE2h0m20vEm3zhSlTeOoWN6AIYdwfYq4xt5ZOFErHIq/IzgheZlFyeHKV/ZTS9cYlnTMb+A9yPZJXjJVriufQdwzi13zj0CnOkvOvco9l/ZuvUBMCPMKyOkHHi/lIM3cP9QFuHd8E/wZ987lIV4PxKcEFnY+xz0KAMzG4L3A0BwV7FD1Wnl9TEzTNfHUaGFj0BE58s5twOvNXrw4UwxfgRS8LqAzQ8zBqqq463Af6JBmHUL8brY1nrLuXNuk3Pu33jX/mrgHAuZvr0ORHrNhVNT3x+V+wmXKIV7vEdNfgfW9udFpN5QwiXSuK0DOvqtF4D3bC68GfyOuAXcvzlbgzd1cfegbaeyf2KDw/EqXjerP5jZ8NCVZpZkZicd/LbDts7/N/Rm4AZgEAervAkNl1jOBxYD15rZ2aEr/WfjHPJ5ZiFewevK9X3/FcDrahi8zVQzC5eIVP6SXRRUNsnM+ptZ1+p27N+o/hCvK9BlzrlrQ194U7HvAC4OmgjkMT/Oe/wWh+BtNjGzFNg3GUQG3gyE4Z65FXx+H/G3+UjoNv2yncws3NiWs+3AZ7rFsX8q7+DE9VB1Gvb6MLNReC0pR+s1vG5eP7Gg50YF7Sc4UXkYr9vZPyzMM9DM7FiL8Pl0h1A5Y+IJ/lic4DjCTYMO3vmLI/zYnIfxuhTO8MehhcbcK+T7ovLZWJF0ncPMvhMmqWqBlzSW1tA4xsMR6TUXzlN4LdL3WfhnIratYmxXqMr93B58nZjZYPZ3Sw5Wk9+Btf15Eak31KVQpHH7BzAOWOAPMg/gzToWhzdj3MCj2PZD/utjM/sv3pTX5+IN3u51OBtyzhWZ2cV4Y0g+MbN38cYEJOCNYxmDN95g0lHEC97zam7Ee0bMBLwkr3K2wTeB0MTpa7zxGN83s2K/fMA5d59zzpnZpXjPp5npdwn8Au8cd8f7xXkz3rTv1XLO7TKzmXhjtAJAVsisdeANcP/UzL7w95WH1z3tArxk6e9BZU/BG783i+pnmvuOv53XXdAzo0LiK/HHyvwCL/l62jn3mZn9AW/82Tdm9ireTXxnf593412D4I27ORb4q5ldhHedJOLd5A3GTxqdc5+b97ylvwHfmtmbeMl9Mt4U9afiPbfrm5AQ38J7jtC//RjOwGttfZ8Db36rrFO8JPpz4Ao/6fgM71f8c/Gmtb+wmvN4SP51fhleF6w5Zpbpx9Mer6VjBd4skeCdt1PwWhTHm9lsvOspHS9xHYp33W47injKzewx4FfA5/65TsabUTILb8KXULPxWmBfMbN38BK2Oc65+c65N8zsr3ifsZX+53gDXkvaALyJIi7Bm9od9v8oHFHCBfwfkG9m8/1ttMD7TkjBm8a+rkV6zR3EOZdnZj/A+1Hla//cr8Q7pl54s/s9CVxXzXbe9T+XlwFLzOwNvO6Vl+F9/s8JeUuNfQdSy58XkXrFxcDc9HrppVfNvdj/HK5qn/Hkl78M7+Z8L95NwVN4NygHPU+HCJ/DFbTut3jdeUqBb/HGElU+tyncc7hWVhNrd7wWjtV4rT35eFOm/w0YHsGxVj5r5/1DlDkBLwnZ6b/e8pcddOx++dH+uSr014ees454D+RdhtfCtNv/7yfxxqQdTt1eyP5nBV0dZn07vBvLj/y6LMH7lfm/wIkhZSvrrcpzEVT2FUKeb1VFueF+uY9Clp+JNynLDrxZBHOAfwEDQsol++dqhR/7duBj4Pow+xqFd4Nd2QqzCe9ZQ7dy4LOwKp+JdAXeNNpf+DHkAvcT/hlTVdYp0MmPPQ/vM7PI3+6hnu100DmuZt0AvJkf8/xjy8W72T0rpJzhjYPJ8q/VYrxE4228KfkPOrYw+wp7XQetT/SvqZX+9lfiTVjSPFz8eM/Umo73eS4PPSd+mXPwPlfb/OPb6B/DVKB9ULnj/fc/E+Hn45d4yepaP9bN/nYvruLaj7SuDvUdF+478bCuuWq2f6x/va33z9VWvMTlbkKeSXiI85Lg12Hlefka+HFV+6UGvwM5jM+LXno15Jc5dzQTVomIiMQuM7sW75k/P3DOVdeNS2KImf0aL3kb5JwLbbGMWbrmRCSUxnCJiIhILBoNvFafki0RkXA0hktERERijnPukmjHICJSE9TCJSIiIiIiUks0hktERERERKSWqEthGB06dHA9evSIdhgAFBYW0qJFi2iHISFUL7FHdRKbVC+xR3USm1QvsUd1EptiqV4+++yzbc65jtWVU8IVRo8ePVi0aFG0wwAgKyuLsWPHRjsMCaF6iT2qk9ikeok9qpPYpHqJPaqT2BRL9WJma6svpTFcIiIiIiIitUYJl4iIiIiISC1RwiUiIiIiIlJLlHCJiIiIiIjUEiVcIiIiIiIitUQJl4iIiIiISC3RtPBHaPfu3WzZsoWysrJa3U+bNm1YtmxZre5DDl9N10tCQgIpKSm0bt26xrYpIiIiItGnhOsI7N69m82bN9O5c2eaN2+OmdXavgoKCmjVqlWtbV+OTE3Wi3OOoqIiNm7cCKCkS0RERKQBUZfCI7BlyxY6d+5MUlJSrSZb0jiYGUlJSXTu3JktW7ZEOxwRERERqUFKuI5AWVkZzZs3j3YY0sA0b9681ruoioiIiEjdUsJ1hNSyJTVN15SIiIhIw6OES0REREREpJYo4RIREREREaklSrhERERERERqiRIuOcCCBQu45JJLSE9Pp2nTprRv357TTz+dZ599loqKihrfX1ZWFtOmTSMQCNT4tiPx0EMP8eqrrx60fNq0aRpTJSIiIhIjnHN8vm4H5QEX7VAOmxIu2eehhx5i1KhR5Ofnc++99/L+++/z1FNP0bdvX37+85+TmZlZ4/vMysri9ttvj7mE69prr2XBggVRiEhEREREwEuyvtq4i3ve+oZT75vNBY/M5+vtNd8AUNv04GMBYM6cOUydOpXrrruOv//97wesO++885g6dSqFhYVRis5TVlZGkyZN6qTlqUuXLnTp0qXW9yMiIiIiB/p2cwGZS3LJyM4jZ1shTeKMUb07MGViX5LyV0Q7vMOmFi4B4J577iE5OZn77rsv7PpjjjmGIUOGALBw4UImTpxIy5YtadGiBRMmTGDhwoUHlL/qqqvo0qULn3/+OaeeeipJSUn06dOHRx99dF+ZadOmcfvttwOQkJCAme1LptasWYOZ8cgjj3DTTTeRnp5OYmIiO3fuZOvWrfz0pz+lb9++JCUl0bVrVy6//HI2btx4UNxLlizhggsuoH379jRv3px+/fpx9913A9CjRw/Wrl3LCy+8sG/fV1111b7YQhO73bt3c91115Genk6HDh3o168f06dPx7n9TdtZWVmYGW+88QbXXXcdHTp0oGPHjlxxxRXs3LnzcKpEREREpNHI2VbIw7NWcMb0Dzlj+hz+MXsl6W2bcfeFg/n0lok8+6MRfPeELiQl1L8hH2rhqiG3Zyzl69zdNb7diooK4uPjIyo7ML01f5o86Ij2kZWVxfnnn0+zZs0OWTY7O5sxY8YwcOBAnnnmGcyMe+65hzFjxvDxxx8zdOjQfWV3797N5ZdfzpQpU7jtttt4+umn+fnPf06/fv0YN24c1157LRs2bGDGjBnMnTs37HH+5S9/4cQTT+Txxx+noqKCZs2asW7dOpo1a8bdd99Nx44dyc3N5YEHHmDUqFF88803+45h4cKFjB07lt69ezN9+nS6dOnCihUryM7OBuC1117j7LPPZujQoUybNg2Ajh07hj3uQCDAOeecw+LFi7njjjs45phjmD17NlOnTmXr1q3cddddB5S//vrrmTRpEi+++CLLly/npptuIj4+nmeffTbiehERERFpyNbn72Xml3lkLMllqX8fPaJHMnecN4izjk2jY6vEKEdYM5RwCdu2baOoqIju3btXW/aOO+4gMTGRWbNm0bZtWwBOP/10evTowe23337AeKiCggIeeeQRxo0bB8Bpp53Gu+++y0svvcS4ceMO6LZ30kkn0aTJwZdjamoqr7322gGtTf369eNvf/vbvr8rKioYNWoU3bp146233uKCCy4A4IYbbqB9+/Z8/PHHJCUlATB+/Ph97xs2bBiJiYl06NCBkSNHHvK433zzTebOncvTTz/NVVddRUFBAeeffz6FhYU88MADTJ06lQ4dOuwrf9ppp/Hwww8DcMYZZ7B8+XKefPLJfUmqiIiISGO0aVcxmdm5ZGbn8cV6r/fPcV3bcus5AzhnSBppbZpHOcKap4SrhhxJy1IkCgoKaNWqVa1s+0jMmTOHSZMm7Uu2AFq3bs25555LRkbGAWWTkpL2JVsAiYmJ9OnTh3Xr1kW8v/PPPz9sgvLPf/6TRx99lFWrVh0wtmz58uUA7N27l3nz5nHjjTfuS7aOxpw5c4iLi+Oyyy47YPkVV1zBjBkzWLBgAZMnT963/Jxzzjmg3ODBgykpKWHz5s106tTpqOMRERERqS+2FpTw1ld5ZC7J49O1+TgHg9Jb87sz+zNpSBpdk4/+Xi2WKeGSfeOb1q5dW23Z/Px80tLSDlreqVMnduzYccCydu3aHVQuMTGR4uLiiGMLt6+HH36YX//610ydOpW//vWvtGvXjkAgwMiRI/dte8eOHQQCgRqb+CI/P5/k5GQSEw9s2q5MnvLz8w9YnpycfMDfle87nGMXERERqa92FJby9tJNZGbnsmDVdgIO+qa25DcT+zJpSBq9OraMdoh1RgmX0KRJE8aOHct7771HSUnJQUlFsOTkZDZt2nTQ8k2bNh2UZNSEcK1bL7/8MhMmTOCBBx7YtywnJ+eAMu3atSMuLi7sRBpHIjk5mfz8fEpLS2natOm+5ZXnon379jWyHxEREZH6andxGe8u3Uxmdi5zV2yjPODo2aEF143rzaSh6fRNjZ1eW3WpzmcpNLOuZvZfM9tlZrvN7FUz63YE2/m9mTkzmxtmXZy/fo2ZFZvZEjO7qGaOoGG6+eab2b59OzfeeGPY9Tk5OfsmzJg5cyYFBQX71hUUFJCRkcGYMWMOe7+VyV1RUVHE79m7dy8JCQkHLHv66acP+DspKYnRo0fz/PPPH3LbiYmJEe17zJgxBAIBXnnllQOWv/DCCzRt2rTaMWAiIiIiDVFhSTmvf7GRH/9rEcPvfJ8bXlnCis17uPbUXmT+ajQf/HYMU8/o12iTLajjFi4zSwI+AEqAKwEH/BmYbWZDnHMRPejJzHoBtwBbqihyJ3CDX+Yz4FLgFTOb5Jx78+iOomE67bTTePDBB5k6dSrLli3jqquuolu3buzYsYNZs2bx5JNP8uKLL/LHP/6RzMxMJkyYwO9+9zvMjHvvvZe9e/dy2223HfZ+Bw4cCMADDzzAWWedRXx8PMOHDz/ke84880zuvfde7rrrLkaMGMEHH3zAf//734PK3X///YwZM4aTTz6Z3/72t3Tp0oXVq1fzxRdf7JvQYuDAgXz00UdkZmbSqVMnOnToQI8ePQ7a1llnncXo0aP52c9+xtatW+nZsydZWVk8+eST/P73vz9gwgwRERGRhqy4rILZ32whIzuXD77ZQnFZgE6tm/GDk7szaUgax3Vtq0nCgtR1l8IfA72Afs65lQBmlg2sAH4KPBjhdv4JvAD0I+QYzCwFL9m6xzl3v794tpn1Bu4BlHBVYcqUKYwYMYLp06dzww03sG3bNlq1asXw4cN57LHHmDx5MnFxcWRlZXHLLbdw5ZVX4pxj5MiRfPjhhwdMCR+pSZMm8Ytf/IJHHnmEO+64A+fcAc+1Cue2225j586dTJ8+neLiYsaMGcM777xDr169Dih34oknMm/ePG677TZ+9atfUVJSQvfu3bn66qv3lbn77rv58Y9/zCWXXEJRURFXXnklzzzzzEH7jIuLY+bMmfzhD3/g3nvvZfv27fTo0YMHH3yQKVOmHPZxi4iIiNQnJeUVzPl2G5nZubz/9WYKSyvo0LIplwzvyqQh6Qzv3o64OCVZ4Vh1N7c1ujOzWUAz59yokOUfAjjnqu2TZmaXA3/DS7ZeBZo450YHrf8B8C+gr3NuRdDyq4GngF7OuQMH/IQYPny4W7RoUZXrly1bxoABA6oLtUbE2iyF4qmteqnLa6uhycrKYuzYsdEOQ0KoXmKP6iQ2qV5ij+oEyioCzF+1nYwlubyzdBMFxeW0TUrgrGM7MWlIOif1TKZJfN2OUIqlejGzz5xzh+6aRd23cA0CXg+zfClwcXVvNrN2wHTgJudcfhVNlYPwuiyuDLMPgIHAIRMuEREREZHGqCLg+GT1djKy83j7qzx27C2jVWITzhjUiclD0xjVuwMJdZxk1Xd1nXAlAzvCLM8HDp5D/GB/Bb4FnqlmHzvdwU13+UHrD2JmPwF+At7DdrOysqrcQZs2bQ6YNKI2VVRU1Nm+JHK1VS/FxcWHvPakanv27NG5i0Gql9ijOolNqpfY05jqJOAcK3cG+CSvnEWbK9hV4kiMh2Ep8ZzUP5FjO8STELcD8nYwLy+6sdbHeonGtPDh+jBW2+HTzE4FfggcHyaZCt3WYe/DOfc48Dh4XQoP1VS5bNmyOuvmpy6Fsam26qVZs2YMGzasxrfbGMRSFwPZT/USe1QnsUn1Ensaep0451iyYReZS3KZ+WUeebuKSWwSx/j+qUwems64fik0bxof7TAPUh/rpa4Trh2Eb2FqR/iWr2CPATOADWbW1l/WBIj3/y5yzpXgt5aZmYUkZpUtaAc+oVZEREREpBFwzvF13m4DiHL5AAAgAElEQVQys/PIzM5lfX4RCfHGmL4p3HxWfyYMSKVloh7TW9Pq+owuxRtjFWog8HU17x3gv34WZt0O4DfAQ/4+EoFjOHAc10D/3+r2ExHnnKa7lBpVlxPYiIiISOOxYnMBGdl5ZC7JZfW2QuLjjNG9O/Dr8X04Y1An2jRPqH4jcsTqOuF6A7jfzHo551YDmFkPYBRwczXvHRdm2UNAPPAr9idXbwOlwPeB24PKXgF8Vd0MhZFISEigqKiIpKSko92UyD5FRUUHPdBZRERE5EjkbCskc0kumdl5LN9cQJzByF7tufbUXpx5bCeSWzSNdoiNRl0nXE8A1wGvm9mteGOt7gTW43UZBMDMugOrgDucc3cAOOeyQjdmZjvxpoXft845t8XMpgO/N7MCYDHwPWA8cF5NHERKSgobN26kc+fONG/eXC1dclSccxQVFbFx40ZSU1OjHY6IiIjUU+vz9zLzS6+74FcbdwNwYo923H7uIM4a3ImUVs2iHGHjVKcJl3Ou0MzG403t/hzeRBazgCnOuT1BRQ2v5epI55y8BdgDXA90ApYDlzjnMo409mCtW7cGIDc3l7KysprYZJWKi4tp1kwfjlhT0/WSkJBAamrqvmtLREREJBKbdhXvS7I+X7cTgKFd23LrOQM4e3Aa6W2bRzlCqfNRcc65dcBF1ZRZQwQzFzrnxlaxvAL4s/+qFa1bt66Tm+OsrCzNWheDVC8iIiISLdv2lPDWl3lkZOfx6Zp8nIOBaa256cx+TBqcTrf2GvYSSzQNiYiIiIhIjNu5t5S3v9pEZnYe81dtI+CgT0pLfjOxL5OGpNGrY8tohyhVUMIlIiIiIhKDdheX8d7SzWRk5zJ3xTbKA44e7ZP45bjeTBqSTr9OelZrfaCES0REREQkRhSWlDPrmy1kLMnlw+VbKa0I0Lltc645tSeTh6QzKL21JmyrZ5RwiYiIiIhEUXFZBVnLt5CxJI9Z32ymuCxAautErhjZnUlD0xjWta2SrHpMCZeIiIiISB0rKa/go2+3kZmdy3tfb6awtIIOLZty8QldmTQkjRN7JBMXpySrIVDCJSIiIiJSB8oqAsxftZ3MJbm8s3QTu4vLaZuUwOSh6Uwems5JPZNpEn+kT0WSWKWES0RERESkllQEHJ/kbCczO4+3v9pEfmEprRKbcPqgVCYPTWd07w4kKMlq0JRwiYiIiIjUoEDAsXjdDjKz85j5ZR5bC0pIahrPhAGpTB6Sxml9O9IsIT7aYUodUcIlIiIiInKUnHNkb9hFZnYumdl55O0qJrFJHOP7pzBpSDrj+6fQvKmSrMZICZeIiIiIyBFwzrEsr2BfkrUufy8J8caYvh353Zn9mTgwlZaJut1u7HQFiIiIiIgchhWbC8jIziMzO5fVWwuJjzNG9e7AdeN7852BnWiTlBDtECWGKOESEREREanGmm2F+1qyvtlUgBmM7Nmea0b35MxBnWjfMjHaIUqMUsIlIiIiIhLGhh17mZmdR2Z2Hl9u3AXA8O7tmDZ5IGcPTiOldbMoRyj1gRIuERERERHf5t3FzMzO48WPi1j59mwAhnZpw63nDODswWmkt20e5QilvlHCJSIiIiKN2rY9Jbz11SYyl+SycE0+zkHXVnHcdGY/Jg1Op1v7pGiHKPWYEi4RERERaXR27i3lnaWbyFiSx/xV2wg46J3SkikT+jJpaBrrly5i7Nje0Q5TGgAlXCIiIiLSKOwuLuO9pZvJzM7loxXbKA84erRP4hdjezNpaBr9UlthZgCsj3Ks0nAo4RIRERGRBmtvaTnvL9tC5pJcsr7dSml5gM5tm3PN6J5MGpLOsZ1b70uyRGqDEi4RERERaVCKyyrIWr6FjOw8Zi3bTHFZgNTWiXz/pG5MHprOsK5tlWRJnVHCJSIiIiL1Xml5gI9WbCUzO493l26isLSC9i2a8t0TujB5SDon9kgmLk5JltQ9JVwiIiIiUi+VVwSYv2o7mdm5vP3VJnYXl9OmeQKTh6YzaUg6I3sl0yQ+LtphSiOnhEtERERE6o2KgGNhTj4ZfpKVX1hKy8QmnDEolclD0hnVuwNNmyjJktihhEtEREREYlog4Ph8/Q4yluQx88s8thaU0DwhnokDU5k0JI0xfTvSLCE+2mGKhKWES0RERERijnOO7A27yMzOZWZ2Hrm7imnaJI7x/VKYNDSN8f1TSGqqW1mJfbpKRURERCQmOOdYlldAZnYumdl5rMvfS0K8cVqfjtx4Zj8mDkilVbOEaIcpcliUcImIiIhIVK3cUkDGkjwysnNZvbWQ+DjjlGPac9343nxnYCfaJCnJkvpLCZeIiIiI1Lm12wvJzM4jY0ku32wqwAxO6pnMNaN7cuagTrRvmRjtEEVqhBIuEREREakTG3cWMTM7l4wleXy5cRcAJ3Rvx7TJAzl7cBoprZtFOUKRmqeES0RERERqzebdxczMziMzO5fF63YCMLRLG245ewBnD0mjc9vmUY5QpHYp4RIRERGRGrVtTwlvfbWJzCW5LFyTj3MwIK01N36nH5OGpNG9fYtohyhSZ5RwiYiIiMhR27m3lHeWbiIzO4/5q7ZTEXD0TmnJ9RP6MGlIOr1TWkY7RJGoUMIlIiIiIkekoLiM977eTMaSXOau3EZZhaN7+yR+NqYXk4em0y+1FWYW7TBFokoJl4iIiIhEbG9pObOWbSFjSS5Z326ltDxA57bNuXpUTyYPSefYzq2VZIkEUcIlIiIiIodUXFZB1vItZGTn8cGyLRSVVZDSKpHvn9SNSUPSGda1LXFxSrJEwlHCJSIiIiIHKS0P8NGKrWRm5/He15vZU1JO+xZNueiEzkwaks6JPZKJV5IlUi0lXCIiIiICQHlFgPmrtpOZncs7Szezq6iMNs0TOGdwGpOGpnFyr/Y0iY+Ldpgi9YoSLhEREZFGrCLgWJiTT2Z2Lm9/tYnthaW0TGzCGQNTmTQ0jdG9O9K0iZIskSOlhEtERESkkQkEHJ+v30HGkjze/DKPLQUlNE+IZ8KAFCYPTWdM3440S4iPdpgiDUKdJ1xm1hWYDpwOGPA+MMU5t66a93UH/g4cB6QAhcBXwL3OubdCyroqNjPMOffF0R2BiIiISP3jnOPLjbvIWJLLzOw8cncV07RJHOP6dWTy0HTG908hqal+ixepaXX6qTKzJOADoAS4EnDAn4HZZjbEOVd4iLe3BLYBtwIbgNbAj4E3zewi59yrIeWfAR4LWfbtUR+EiIiISD3hnGNZXgGZ2blkZuexLn8vCfHGqX06cuOZ/Zg4IJVWzRKiHaZIg1bXP2P8GOgF9HPOrQQws2xgBfBT4MGq3uicWwpcE7zMzGYCOcDVQGjCtdE593HNhS4iIiJSP6zcUkDGkjwys3NZtbWQ+DjjlGPac9243nxnUCfaJCnJEqkrdZ1wnQt8XJlsATjncsxsHnAeh0i4wnHOlZvZLqCsZsMUERERqV/Wbi8kMzuPjCW5fLOpADM4qWcyV4/qyVnHdqJ9y8RohyjSKNV1wjUIeD3M8qXAxZFswMzigDigA16LWV/g+jBFf25mNwIVwMfAn5xzHx1J0CIiIiKxaOPOImb63QWzN+wC4ITu7fjT5IGcPTiN1NbNohyhiJhzVc0vUQs7MysFHnTO3Ryy/M/Azc65ahNAM7sf+K3/5x7gytDxW2b2HJAJ5ALdgRuBgcDpzrmsKrb7E+AnAKmpqSe8/PLLh3FktWfPnj20bNky2mFICNVL7FGdxCbVS+xRncSmw6mXncUBPt1UwSebylm5MwBAz9ZxjEhrwohO8bRvrinca4I+K7Eplupl3LhxnznnhldXLhoJ1wPOud+HLP8L8LsIE64uQCf/9UO8borfdc5lHuI9rfBmNFzvnBtd3T6GDx/uFi1aVF2xOpGVlcXYsWOjHYaEUL3EHtVJbFK9xB7VSWyqrl627ynhra82kbEkl4Vr8nEO+ndqxeSh6Uwakkb39i3qLthGQp+V2BRL9WJmESVcdd2lcAeQHGZ5O39dtZxzG/BmKQTINLMs4H68Fq2q3lPgT7BxTVVlRERERGLJzr2lvLN0E5nZecxftZ2KgOOYji24fkIfJg1Jp3dKbPzKLyKHVtcJ11K8cVyhBgJfH+E2FwFTIihneNPQi4iIiMSkguIy3vt6M5nZeXy0YitlFY7u7ZP42ZheTBqSTv9OrTCzaIcpIoehrhOuN4D7zayXc241gJn1AEYBNx/ifWH5E2iMBlZVU641cA7wyeHuQ0RERKQ27S0t55O8cl56bhGzl2+ltDxA57bNuXpUTyYNSWNw5zZKskTqsbpOuJ4ArgNeN7Nb8Vqc7gTWE/SQYjPrjpdE3eGcu8NfNg2vO+I8YBPeGK5rgBHA5UHvvQHoB8xm/6QZN/jlv1+rRyciIiISoTXbCnl6Xg6vfLaBvaUVpLTayeUjujF5aDrDurYlLk5JlkhDUKcJl3Ou0MzGA9OB5/C6+c0Cpjjn9gQVNSAeb/r3Sovxug5eCrTBS7qWAKc65+YFlVsOXOC/2gC78ZK0a5xzC2vjuEREREQi4Zzj49X5zJibw6xvNtMkzpg8NJ0+8dv5yQXjiVeSJdLg1HULF865dcBF1ZRZg5d0BS97A69LYnXbzwAyjiJEERERkRpVUl5BxpI8npqbw9d5u0lu0ZTrxvXmByO7k9K6GVlZWUq2RBqoOk+4RERERBqL7XtKeOGTdTz38Vq2FpTQJ6Ul91w4mPOHdaZZQny0wxOROqCES0RERKSGfbu5gKfm5vDa5xspKQ8wpm9Hrrm4J6f26aAJMEQaGSVcIiIiIjXAOceH325lxtwcPlqxjcQmcVx4fBd+NKoHfVJbRTs8EYkSJVwiIiIiR6G4rIJXF2/kqXk5rNyyh5RWidxwRl8uP6k7yS2aRjs8EYkyJVwiIiIiR2DL7mL+tWAtL3yylh17yxiU3poHLxnKpCHpNG0SV/0GRKRRUMIlIiIichi+2riLp+bmkJGdS3nAMXFAKteM7slJPZM1PktEDqKES0RERKQaFQHHrGWbmTE3h09y8klqGs/3T+rOVaf0oEeHFtEOT0RimBIuERERkSoUlpTzyqL1PD1/DWu376Vz2+b84ez+fO/EbrRpnhDt8ESkHlDCJSIiIhJi484inp2/hpcWrqOguJxh3dpy43f6ceagTjSJ1/gsEYmcEi4RERER3+J1O5gxN4e3v9oEwJnHduKa0T05vlu7KEcmIvWVEi4RERFp1MorAry9dBMz5ubw+bqdtGrWhGtG9+TKU3rQuW3zaIcnIvWcEi4RERFplHYVlfHvT9fx7Py1bNxZRPf2SUybPJCLh3elRaJukUSkZujbRERERBqVNdsKeWb+Gv6zaD17SysY2SuZaecOYnz/FOLjNK27iNQsJVwiIiLS4Dnn+Hh1PjPm5jDrm800iTMmD03nR6N6cmznNtEOT0QaMCVcIiIi0mCVlgfIWJLLU/NyWJq7m3ZJCVw3rjc/GNmdlNbNoh2eiDQCSrhERESkwckvLOWFj9fyr4/XsrWghD4pLbn7wsFcMKwzzRLiox2eiDQiSrhERESkwVixuYCn5uXw6uKNlJQHOK1vR+6/uCen9emAmcZniUjdU8IlIiIi9ZpzjjkrtjFjbg5zvt1KYpM4Ljy+Mz8a1ZM+qa2iHZ6INHJKuERERKReKi6r4LXPN/LU3BxWbNlDx1aJ/Pb0vlx+Ujfat0yMdngiIoASLhEREalnthQU89yCtbzwyTryC0sZmNaaBy4eyqShaSQ20fgsEYktSrhERESkXliau4sZc3PIWJJLecAxoX8q14zuycheyRqfJSIxSwmXiIiIxKxAwDHrmy3MmLuaj1fnk9Q0nstHdOPqUT3p0aFFtMMTEamWEi4RERGJOYUl5fz3sw08PS+HNdv3kt6mGb8/qz+XjuhGm+YJ0Q5PRCRiSrhEREQkZuTuLOLZ+Wt4aeE6dheXc1zXtjx8Rj/OOrYTTeLjoh2eiMhhU8IlIiIiUff5uh3MmJvDW19tAuDMYztxzeieHN+tXZQjExE5Okq4REREJCrKKwK8s3QzM+auZvG6nbRq1oRrRvfkhyd3p0u7pGiHJyJSI5RwiYiISJ3aXVzGvxeu55n5a9i4s4ju7ZOYNnkg3x3elZaJujURkYZF32oiIiJSJ9ZuL+TpeWt4ZdF6CksrOKlnMn+aPJAJA1KJj9O07iLSMCnhEhERkVrjnOOTnHxmzM3h/WWbaRJnTB6Szo9G9+TYzm2iHZ6ISK1TwiUiIiI1rrQ8QGZ2LjPm5rA0dzftkhL45dje/ODk7qS2bhbt8ERE6owSLhEREakx+YWlvPjJWv61YC1bCkrondKSuy4YzAXDOtO8aXy0wxMRqXNKuEREROSordxSwIy5a3h18QZKygOc2qcD9313CKf16UicxmeJSCOmhEtERESOiHOOj1ZsY8bcHD78diuJTeK48PjOXD2qJ31TW0U7PBGRmKCES0RERA5LcVkF//t8I0/Ny+HbzXvo2CqR357el8tP6kb7lonRDk9EJKYo4RIREZGIbCko5vkFa3n+k3XkF5YyMK01D1w8lElD00hsovFZIiLhKOESERGRQ/o6dzcz5uaQsSSXskCACf1TuWZ0T0b2SsZM47NERA5FCZeIiIgcJBBwfPDNFmbMzWHB6u0kNY3nshFduWpUT3p2aBHt8ERE6o06T7jMrCswHTgdMOB9YIpzbl017+sO/B04DkgBCoGvgHudc2+FlG0G3AlcAbQFvgB+55ybU7NHIyIi0rAUlpTzf4s38PS8NeRsKyS9TTN+f1Z/Lj2xG22SEqIdnohIvVOnCZeZJQEfACXAlYAD/gzMNrMhzrnCQ7y9JbANuBXYALQGfgy8aWYXOedeDSo7AzgHuBFYDfwSeMfMTnbOfVHDhyUiIlLv5e4s4tkFa3jpk3XsLi7nuK5tefiyYZx5bCcS4uOiHZ6ISL1V1y1cPwZ6Af2ccysBzCwbWAH8FHiwqjc655YC1wQvM7OZQA5wNfCqv2wocDnwI+fc0/6yD4GlwB3AuTV7SCIiIvXXF+t3MmNuDm9+mYdzjrOOTeNHo3tyQvd20Q5NRKRBqOuE61zg48pkC8A5l2Nm84DzOETCFY5zrtzMdgFlIfsoA/4dUu5l4GYzS3TOlRzNQYiIiNRn5RUB3v16MzPm5vDZ2h20SmzCj0b14MpTetClXVK0wxMRaVDqOuEaBLweZvlS4OJINmBmcUAc0AGvxawvcH3IPnKcc3vD7KMp0Nv/bxERkUaloLiMt3PKuOXjLDbuLKJbchJ/mjyQi4d3pWWi5tESEakNdf3tmgzsCLM8H4i078J9wG/9/94DXOqcmxXhPirXi4iINBoFxWU8M28NT87NYVdRGSN6JnPb5IFMHJBKfJymdRcRqU3mnKu7nZmVAg84534fsvwveLMIVpsAmlkXoJP/+iFeF8LvOucy/fXvAS2dcyeHvO904F3gNOfcR2G2+xPgJwCpqaknvPzyy0dwhDVvz549tGzZMtphSAjVS+xRncQm1Ut0FZU73ltbxjtryigsg2Ep8UxMK2dQmuok1uizEntUJ7Eplupl3LhxnznnhldXrq5buHYQvoWpHeFbpQ7inNuAN0shQKaZZQH3A5n+snygWxX7qFwfbruPA48DDB8+3I0dOzaScGpdVlYWsRKL7Kd6iT2qk9ikeomOguIy/rVgLU/MX83OvWVMHJDC9RP6MrhLG9VJjFK9xB7VSWyqj/VS1wnXUrwxVqEGAl8f4TYXAVNC9nGBmSWFjOMaCJQCKxEREWmA9pSU8+z8NTzxkZdoTeifwpSJXqIlIiLRUdcJ1xvA/WbWyzm3GsDMegCjgJsPd2P+BBqjgVUh+7gdbxKOZ/1yTYDvAe9qhkIREWlowiVa10/sw5AubaMdmohIo1fXCdcTwHXA62Z2K96Dj+8E1gOPVRYys+54SdQdzrk7/GXT8LojzgM24Y3hugYYgffcLQCcc1+Y2b+Bh8wsAe85XT8HegLfr+XjExERqTN7Ssr514I1PDFnNTv2ljG+fwrXT+jD0K5KtEREYkWdJlzOuUIzGw9MB54DDJgFTHHO7QkqakA83vTvlRbjdR28FGiDl3QtAU51zs0L2dXVwF+APwNt/XJnOucW1/hBiYiI1LHCknKeXbA/0RrXryNTJvZVoiUiEoPq/KEbzrl1wEXVlFmDl3QFL3sDr7tgJPsoAqb6LxERkQahsKScfy1Yy+NzVu1LtK6f2JfjlGiJiMQsPeVQREQkxhWWlPPcx2t5fM5q8gtLGduvI9dP6MOwbpE+wlJERKJFCZeIiEiM2ltaznML1vKYn2iN6duR6yf24XglWiIi9YYSLhERkRhTmWg9Pmc12wtLOa1vR6Yo0RIRqZeUcImIiMSIvaXlPP/xWh77cH+idf2EPpzQXYmWiEh9pYRLREQkyopKK7xEa84qtu0p5dQ+HZgysQ8ndE+OdmgiInKUlHCJiIhESVFpBS98spZHP9yfaF0/oQ/DeyjREhFpKJRwiYiI1LHQRGt0b69FS4mWiEjDo4RLRESkjuxPtFazbU8Jo3t34PqJfThRiZaISIMVccJlZkOAW4HTgGRgpHNusZn9GZjjnHu3lmIUERGp14rLKnjhk3U8+uEqthaUMKp3ex6ZcDwjeirREhFp6CJKuMzsFGAWsA54Ffhp0Oo44GeAEi4REZEgoYnWKce05/9drkRLRKQxibSF6168hOtc9idYlRYB36/huEREROqt4rIKXvxkHf8MSrT+cdkwTurVPtqhiYhIHYs04ToBuMg5FzAzC1m3DUit2bBERETqn+KyCl5auI5/Zq1iS0EJJ/dqz8OXDWOkEi0RkUYr0oSrBGhexbpOwK6aCUdERKT+KS6r4OWF63jET7RG9krmb5cO4+RjlGiJiDR2kSZcc4Ffm9n/gpY5/98fAbNrNCoREZF6oDLR+ueHq9i8u4QRPZVoiYjIgSJNuG7DS7o+B17BS7auMLP7gJHAiNoJT0REJPYUl1Xw70/X80jWyn2J1kPfU6IlIiIHiyjhcs59bmZjgfuBaYABU4D5wDjn3LLaClBERCRWFJdV8J9F63lk9io27S5mRI9kpn/vOE7u1Z6DhziLiIgcxnO4nHOfAmPMLAnoAOxwzhXUWmQiIiIxoqS8gv98up7/5ydaJ/Zox4OXDOXkY5RoiYjIoUX6HK7Hgbucc2ucc3vxnsdVua4bcKtz7ie1FKOIiEhUVCZaj2StIm9XMcO7t+OBS4ZyihItERGJUKQtXNcCTwJrwqzrCFwDKOESEZEGoaS8gv8s2sAjs1fuS7Tuv1iJloiIHL6IuxQeQipQVAPbERERiaqS8gpe8ROt3F3FnNC9HX/97lBG9VaiJSIiR6bKhMvMzgPOC1r0RzPbGlKsOTAGWFwLsYmIiNSJ0vKAPxmGl2gd360t9353CKN7d1CiJSIiR+VQLVy9gNP9/3Z4U7+XhpQpARYBv6v50ERERGpXaXmAVz7zZh3cuLNIiZaIiNS4KhMu59x0YDqAma0HJjnnltRVYCIiIrWltDzAfz/bwP+bvZKNO4sY1q0td184mFP7KNESEZGaFelzuLrWdiAiIiK1rbQ8wP8t3sA/PvASreO6tuWuCwdzmhItERGpJYc1aYaZtQZ6A81C1znn5tdUUCIiIjWprMJr0QpOtP5ywbGM6dtRiZaIiNSqSJ/DlQg8AVwGxFVRLL6mghIREakJZRUB/u+zDfxj9ko27ChiqBItERGpY5G2cN2KN4HGtcDTwK/xJsy4Cu85XFNrIzgREZEjUVYR4NXFG3j4Az/R6tKGO88/lrFKtEREpI5FmnBdDNwBPI+XcM13zi0GnjCzV4EJQGbthCgiIhKZsooAry3eyMOzV7A+30+0zjuWsf2UaImISHREmnB1A5Y65yrMrAxoEbTuSeAp4Dc1HZyIiEgkQhOtIV3acPu5gxjXL0WJloiIRFWkCdd2oKX/3xuAIcBH/t/t8B6ALCIiUqfKKgK89vlG/vHBStbl71WiJSIiMSfShOsTYCjwJvAqcKeZJQHlwE3AvNoJT0RE5GDllYnW7JWs3b6XwZ3bMOPK4Yzvr0RLRERiS6QJ131Ad/+//wz0Be7Gm7FwEfCLmg9NRETkQKGJ1rGdW/PkD4czYYASLRERiU2RPvh4IbDQ/+9dwHlm1hxo5pzbUYvxiYiIUF4R4H9f5PLwByuUaImISL1SbcJlZk2BucAtzrn3Kpc754qAolqMTUREGrnyigCv+4nWmu17GZTemid+OJyJSrRERKSeqDbhcs6VmllfoKIO4hEREaG8IsAbS3J5+IOV5GwrZGBaax7/wQmcPjBViZaIiNQrkY7heh+YCHxQi7GIiEgjF5poDUhrzWM/OIEzlGiJiEg9FWnC9SDwopnFAf8D8gAXXMA5t66GYxMRkUaiIuB4Y8lGHp61ktVBidbpA1KJi1OiJSIi9VekCddc/9+bgBurKBN/9OGIiEhjUhFwZCzJ5e+zVrB6WyH9O7Xi0Su8Fi0lWiIi0hBEmnD9hJAWrSNlZl2B6cDpgOF1V5xSXQuZmQ334zgN6AZsw3v48q3OuZyQsmvYP419sAucc/872mMQEZGjUxFwZGbn8rdZK1i9tTLROp4zBnZSoiUiIg1KpNPCP1kTO/MflvwBUAJciZfE/RmYbWZDnHP/v707D6+quvc//v4CMoOCCqKCFAcQFBxwwg44tM7Sqlit1qGtentrvd5fa9U6g61DW4VqB60dba1X0YpzFTRqVRwrCAiESaHIjMxz1u+PfdLGGMgBk5yT5P16nvMkZ+199v6eLIPnk7X22is38/IzgD7Az4EJwC7ANcCbEbFfSmlWpf3/DlxfqW3yp34TkqStVlXQ+tVZB3BMH4OWJKlhyneEq6ZcAPQAeqaUpgJExDigFLiI7FqxTbklpbSgYllfc6gAACAASURBVENEvAzMyB332kr7L0wpjampwiVJW688aP18dCnTFqykZ2eDliSpcajrwHUyMKY8bAGklGbkgtMgNhO4KoetXNv7EbGAbLRLklRkylLi0dw1WlPnr6Bn53b88qwDONagJUlqJOo6cPUBRlbRPgEYvKUHi4i9gU7Ae1VsPikiVpEt5vFP4Gav35KkurGxLPHkux9y0z9WM2flP9mrc1t+8bUDOG4fg5YkqXGJlGpkLYz8ThaxDrgtpXRFpfYbgStSSnkHwIhoBowG9iaborikwrY7gDfIpht2Bi4GvgB8PaX0500c70KyRTno3Lnzgffff/+WvLVas2LFCtq2bVvoMlSJ/VJ87JPiUJYSb8zdyMhp65izItGldeIre7Wkf+emNPE+WkXB35XiZL8UH/ukOBVTvxxxxBFvpZT6V7dfXY9wQdWrHW7N/4XvBAYAJ1QMWwAppe9+7OARfwPGADcBVQaulNLdwN0A/fv3TwMHDtyKkmpeSUkJxVKL/sN+KT72SWGVlSWeHP8hw0eVUjp/FXt2asudJ+9J60WTOfKIIwpdnirwd6U42S/Fxz4pTvWxX7Y4cEVEK6AjMC+ltGELX74k99rKOuS25VvDTWSjUeemlJ6pbv+U0saIeBC4JSK6pJQ+zPdckqRNKytLPDV+LsNHT2HKvBXs0aktd5y5P8fv24WmTYKSkimFLlGSpILakil8xwE3AAfkmg4G3o6Iu4DnU0r5zMGbQHYdV2W9gYl51nEVcAVwSUrp3nxeU/7S3Ne6m0MpSQ1UVUHr52fuzwm5oCVJkjJN8tkpIk4CHgeWA1dXet0s4Lw8z/cocGhE9Khw7O7A4blt1dVxCdl9u65KKd2R5znLr/caDHyQUpqb7+skSR9XllsM47jhL/Gd+95mY1ni52fuz98v/Twn99vZsCVJUiX5jnBdD/wppXR+Lrz8uMK2d4H/yvM4vyFbwGJkRFxNNto0lCy03VW+U0TsBkwDhqSUhuTazgCGAU8Dz0XEoRWOuyylNDG335lkS8w/mTtuZ+A7wIHAmXnWKUmqoKws8fcJcxk+upRJc5ez+45tGH7GfpzY15AlSdLm5Bu4epNN44NPTslbAuyQz0FSSisj4kjgduBesml+o4FLU0orKuwaZMu5VxxJOzbXfmzuUdELwMDc9zPIlor/Cdn1YqvIViw8NqX093zqlCRlKgetHgYtSZK2SL6Bazmw/Sa27QZ84qbEm5JS+gA4tZp9ZlJp5cKU0nnkMXUxpTQGODLfeiRJn1RWlnhm4lyGjcoFrR3aMOyr+3GS0wYlSdoi+Qau0cAVEfEksDLXliKiOdl0PUeOJKkByILWPIaPLuW9D5cZtCRJ+pTyDVw/BF4HJgFPkE0rvAzoRzbydVqtVCdJqhMp5YLWqFImfriMz+zQhtu/2o+T+u5Ms6Z5ra8kSZKqkFfgSinNiIj+wBDgpFzzF8kWsLg6pTS7luqTJNWiqoLWbaf34+R+Bi1JkmpCXoErItoAc1JK59ZyPZKkOpBS4tnc1MEJc5bRffvWBi1JkmpBtYErIrYBlgKnkMe9siRJxSulxKj35jNs1JR/B62fDe7HoP0MWpIk1YZqA1dKaX1EzAc21EE9kqRakFJi9HvzGTZ6CuP/tYzdtm/NTwf348sGLUmSalW+i2bcB5xPdjNhSVI9UTlodevYmp+c1pev7L+LQUuSpDqQb+CaAnw1Il4FRgIfUukGyCmlP9VwbZKkrZRS4rlJ8xk2qpR3/7X030Hry/vvwjYGLUmS6ky+gevXua+7AIdUsT0BBi5JKrCUEs9PzoLWuNlL6dqxFbfmRrQMWpIk1b18A9eetVqFJOlTqTJondqXrxxg0JIkqZDyvQ/XtNouRJK05VJKlExewLBRUxg7eym7dmjFLafuyykH7GrQkiSpCOQ7wiVJKiIpJUqmLGDYqFLGzvrIoCVJUpHK98bHpVRaJKOylNJeNVKRJGmTUkq8kAta78z6iF22a8XNp2RBq3kzg5YkScUm3xGu1/hk4NoeOBRYBrxYk0VJkj6uqqB10yn7cqpBS5KkopbvNVxnV9UeER2Bp4EnarIoSVImpcSLpQsZNmoK//zAoCVJUn3zqa7hSiktjohbgSHA/9VMSZKklBIv5YLW27mg9eOv7MtpBxq0JEmqT2pi0YxVQLcaOI4kNXqVg9bO27bkR1/Zh8EHdjVoSZJUD2114IqIJkBv4FrgvRqrSJIaoZQS/5i6kGGjSnnr/SXsvG1LbvzyPgzuvystmjUtdHmSJGkr5btK4Xo+uWhGEyCAFcAJNVyXJDUKKSVenrqIYaOm8Ob7S+hi0JIkqUHJd4TrFj4ZuNYA7wNPpJSW1GhVktTApZR4ZVoWtN6YmQWtoV/eh9MNWpIkNSj5rlJ4dW0XIkmNQeWgtVP7lgwd1IfTD+pq0JIkqQGqiUUzJEnVSCnx6rRFDBtVyuszF7NT+5YMGdSHrxq0JElq0DYZuCLi7i04TkopXVQD9UhSg5JS4tXpuaA1YzGd27dgyKA+nN6/Ky23MWhJktTQbW6E63g+ed3WpuS7nyQ1Gq9OW8Tto6b8O2jdcHI2omXQkiSp8dhk4Eop7VqXhUhSQ/Fq7hqt12YsplO7Flx/Um/OOLibQUuSpEbIa7gkqYaMmZ4FrTHTDVqSJCmzuWu4dgbmp5Q25L7frJTSnBqtTJLqiddy12i9On0RO7ZrwXUn9eZMg5YkSWLzI1yzgMOA14HZVH+dlp8sJDUqr89YzO3PTvl30Lr2xN587RCDliRJ+o/NBa4LgWkVvndhDEkiC1rDRk3hlWmL2KFtC645sTdnGbQkSVIVNrdoxm8rfH9P3ZQjScXrjZlZ0Hp56n+C1tcO7kar5gYtSZJUNRfNkKRqvDlzMbdXCFpXn7A3Zx2ym0FLkiRVK+/AFRE7AF8FegItK232xseSGpw3Zy5m2KhS/jF1ITu0bW7QkiRJWyyvwBURewGvkgWtlsASYDugCbAUWF5bBUpSXXvr/SxovVSaBa2rjt+bsw81aEmSpC2X7wjXT4C3gUHACuBLwATgXOBq4IRaqU6S6tBb7y9h2KgpvFS6kO3bZEHrrEO70bq5s68lSdLWyfdTxEHAfwNrcs+bpJTWAndHREdgGHBULdQnSbWuctD64fG9OPvQ3QxakiTpU8v300R7YFFKqSwilgE7VNj2OtkolyTVK29/sIRho0p5ccoCOrZpzpXH9eLrhxm0JElSzcn3U8VMoHPu+8nAqcDTuefHAR/VbFmSVHve/mAJw0eV8kKFoHX2obvRpoVBS5Ik1ax8P12MAo4GRgC3A/dFxABgA7APcFPtlCdJNeefuRGt8qB1xXG9+LpBS5Ik1aJ8P2VcAbQCSCndHxFryZaIbw3cBfw63xNGRFey0PZFIMjC3KUppQ+qeV1/4ELg80A3YCHwEnB1SmlGpX2bAJcDFwE7kY3KDUkpPZRvnZIajndmfcSwUVMombyADq234fJje3HOYQYtSZJU+/L6tJFSWsN/FswgpfQ34G9berKIaA08B6wlW+EwATcCz0dE35TSys28/AygD/BzshUSdwGuAd6MiP1SSrMq7DsU+D5wFfBW7rUPRsSJKaUnt7RuSfXTO7M+YvioKTyfC1o/OLYn5x7W3aAlSZLqzCY/dUTEkcDrKaUVNXi+C4AeQM+U0tTcecYBpWSjUbdt5rW3pJQWVKrxZWBG7rjX5to6kYWtm1NKP83t+nxE7AHcDBi4pAZu7KyPGD66lOcmzWe7XNA657DutDVoSZKkOra5Tx/PAoeRrUJYPk2vBPhmSql0K893MjCmPGwBpJRm5ILTIDYTuCqHrVzb+xGxgGy0q9wxQHPgz5V2/zPwu4j4TOUpiJIahnGzP2LYqP8ErcuO6cm5AwxakiSpcDb3KSSqeP5ZoN2nOF8fYGQV7ROAwVt6sIjYG+gEvFfpHGuBqZV2n5D72ptsVExSAzFp7jJuf2sNY59++d9B65zDdqNdy20KXZokSWrk6vrPvh2BJVW0LwY6bMmBIqIZ2WIdC4DfVjrHRymlVMU5yrdXdbwLyRbloHPnzpSUlGxJObVmxYoVRVOL/sN+KQ6rNyT+VrqOUR9soGXTxCl7NueLu21Dq5jNW2NmF7o84e9KMbJPipP9Unzsk+JUH/ulEPNsKgch+ORoWj7uBAYAJ6SUKoa42JpzpJTuBu4G6N+/fxo4cOBWlFTzSkpKKJZa9B/2S2GllBj5zhx+9OR7LFyxgTMP7saANgs58UtHFLo0VeLvSvGxT4qT/VJ87JPiVB/7pbrAtUtE9Mh937RC2ydudJxSmp7H+ZZQ9QhTB6oe+apSRNxENhp1bkrpmUqbFwMdIiIqjXJ1qLBdUj01ee5yrhk5ntdnLKbvrttyzzn96dd1u3r31y5JktQ4VBe4RlTR9sgm9m26ifaKJpBdY1VZb2BiHq8nIq4iuy/YJSmlezdxjhbA7nz8Oq7eua95nUdScVm+Zj3DR5Xy+1dm0q5lM378lX356kFdadpkawbIJUmS6sbmAtf5tXC+R4GfRkSP8hGxiOgOHE4WojYrIi4hu2/XVSmlOzax29PAOuAs4IYK7WcD412hUKpfUko8OnYOP3riPRasWMsZB3XlsmN60bFN80KXJkmSVK1NBq6U0h9r4Xy/AS4GRkbE1WTXWg0FZgF3le8UEbsB04AhKaUhubYzgGFkgeq5iDi0wnGXpZQm5uqeHxG3A1dGxHLgbeCrwJFkS89LqidK5y3n2pETeHX6IvbdZVvu+vqB7N9ti9bXkSRJKqg6XTQjpbQyd0Pl24F7yRayGA1cWukGy0E2RbFJhbZjc+3H5h4VvQAMrPD8KmAF8D/ATsBk4PSU0mM19mYk1ZoVazfw89Gl/O4fM2jTohk3fnkfzjy4m9MHJUlSvVPnqxSmlD4ATq1mn5lUWlUwpXQecF6e59hINvXwxq2pUVJhpJR4fNyH/OiJ95i7bA1f7d+VHxzbk+3btih0aZIkSVulEMvCS9InTJ2/guseHc/LUxfRZ+f2/PLsAzjA6YOSJKmeM3BJKqiVazdwx3NT+e0/ptNqm6YMHdSHrx2ym9MHJUlSg2DgklQQKSWeGj+XoY9P5MOlaxh84K5cflwvdnD6oCRJakAMXJLq3LQFK7j+0Qm8VLqQvbu0586v7c+Bu1V1T3RJkqT6zcAlqc6sWreBO5+bym9emk7LbZpyw8l9OOuQbjRr2qT6F0uSJNVDBi5JtS6lxN8nzGXIYxOZs3QNpx6wK1cc14sd2zl9UJIkNWwGLkm1asbClVz36ARenLKAXju1Y/iZ+3NQd6cPSpKkxsHAJalWrF63kV88P5W7X5xOi2ZNuO6k3nz90N2cPihJkhoVA5ekGpVS4pmJ8xjy2ET+9dFqTtl/F644vhed2rUsdGmSJEl1zsAlqcbMXLiS6x+bQMnkBfTs3I7/u/BQDumxfaHLkiRJKhgDl6RPbfW6jfyqZCq/fmE6zZs14eoT9ubcAd3ZxumDkiSpkTNwSfpUnp04jxsem8DsJasZtN/OXHX83nRq7/RBSZIkMHBJ2kofLFrFDY9NYPSk+ezZqS1/veBQDtvd6YOSJEkVGbgkbZE16zfy6xem8cuSaWzTJLjq+L0573CnD0qSJFXFwCUpb89Nmsf1j07kg8WrOKlfNn1wp22dPihJkrQpBi5J1Zq1eBU3PDaRUe/NY49ObbnvW4cwYI8dCl2WJElS0TNwSdqkNes3cveL0/nF81Np2iS48rhenH/4Z2jezOmDkiRJ+TBwSarS85Pnc/2jE3h/0SpO6NuFq0/Ymy7btip0WZIkSfWKgUvSx8xavIqhj0/kmYnz6LFjG/78zUP47J5OH5QkSdoaBi5JAKzdsJHfvDidO5+fShBcfmwvvvlZpw9KkiR9GgYuSbwwZQHXjRzPzEWrOH7fnbj6hN7svJ3TByVJkj4tA5fUiP3ro9UMfWwiT0+YS48d2vCnbxzM5/fasdBlSZIkNRgGLqkRWrthI/e8NIM7nisF4LJjevKtz32GFs2aFrgySZKkhsXAJTUyL5Uu4LqRE5i+cCXH9OnMNSf2ZtcOrQtdliRJUoNk4JIaiTkfrebGJyby5Ltz6b59a35//kEc0bNTocuSJElq0AxcUgO3bkMZv/3HDH4+upSylPjeF/figs/3oOU2Th+UJEmqbQYuqQF7eepCrh05nmkLVvLF3p259sTedO3o9EFJkqS6YuCSGqC5S9cw9ImJPDHuQ7p1bM3vzuvPkb06F7osSZKkRsfAJTUg6zaU8fuXZzB8dCkbyxL/e/ReXPQFpw9KkiQVioFLaiBembaQa0dOYOr8FRy9dyeuPbEP3bZ3+qAkSVIhGbikem7esjX86In3eHTsHLp2bMU95/Tn6N5OH5QkSSoGBi6pnlq/sYw/vjKT25+dwvqyxP8ctSffHri70wclSZKKiIFLqofGTF/EtSPHM2XeCo7ouSPXn9yH3bZvU+iyJEmSVImBS6pH5i9bw4+ffI9H3pnDLtu14jfn9OfovTsREYUuTZIkSVUwcEn1wIaNZfzx1fe5/dkprNtQxiVH7sG3B+5Bq+ZOH5QkSSpmBi6pyL0+YzHXjhzPpLnL+cJe2fTBz+zg9EFJkqT6wMAlFan5y9dw85OTePif/2KX7Vpx19cP5Eu9Ozt9UJIkqR4xcElFZsPGMu4d8z63PTOFtRvKuPiIPfjOEU4flCRJqo+a1PUJI6JrRIyIiKURsSwiHo6Ibnm+9scR8UxELIqIFBHnbWK/ktz2yo9La/TNSDXszZmLOfGOf3DDYxPZr9t2PH3p5/j+MT0NW5IkSfVUnY5wRURr4DlgLXAukIAbgecjom9KaWU1h/gu8A7wOHBONfuOAy6q1DZzS2uW6sKC5Wu5+alJPPT2bHbetiW/OusAjt1nJ6cPSpIk1XN1PaXwAqAH0DOlNBUgIsYBpWTh6LZqXr9tSqksIvag+sC1PKU05tMWLNWmDRvL+MtrH/DTZyazZv1Gvj1wd7575B60bu5sX0mSpIagrj/VnQyMKQ9bACmlGRHxMjCIagJXSqmsluuT6sxb7y/mmkcmMPHDZXx2jx24YVAfdt+xbaHLkiRJUg2q68DVBxhZRfsEYHANn2v/iFgKtAbeA4anlH5bw+eQttjCFWu55alJPPjWbHZq35JffO0Ajt/X6YOSJEkNUaSU6u5kEeuA21JKV1RqvxG4IqWUVwDMTSksBc5PKf2hiu1DgFnAFGA7sumHpwDXpJRu3MQxLwQuBOjcufOB999/f75vq1atWLGCtm0d9Sg2W9MvZSlRMmsDI6asY+1GOKb7Npy8+za0bGbQqgn+rhQn+6X42CfFyX4pPvZJcSqmfjniiCPeSin1r26/QlwoUlXCq9FPnCmlays1jYyIvwFXRcSwlNKKKl5zN3A3QP/+/dPAgQNrsqStVlJSQrHUov/Y0n755wdLuGbkeMb/axUDdt+eIYP6sEendrVXYCPk70pxsl+Kj31SnOyX4mOfFKf62C91HbiWAB2raO+Q21ab/gp8GdgXeLWWzyUBsHjlOm59ehL3vzGLzu1bcMeZ+3Ni3y5OH5QkSWok6jpwTSC7jquy3sDEWj53+SfcuptDqUZrY1ni/jc+4NanJ7Ny7QYu/HwPLjlqT9q2cPVBSZKkxqSuP/09Cvw0InqklKYDRER34HDgis28riZ8DVgNvFvL51EjN3bWR1wzcjzjZi/l0B4dGTJoH/bq7PRBSZKkxqiuA9dvgIvJrqm6mmy0aSjZAhd3le8UEbsB04AhKaUhFdq/AOwI7JRr6h8RKwBSSiNy+3yOLLw9THaj423JbrJ8MtnCHNXdXFnaKktWruPWv0/m/jc+YMe2LRh+xn6c3G9npw9KkiQ1YnUauFJKKyPiSOB24F6yaX6jgUsrLWQRQFOgSaVD3AB8ocLz7+Qe5a8B+DD3uiHADsB6YBzwtZTSX2vu3UiZsrLE/705i1uensTyNRv45uGf4X+O3pN2LbcpdGmSJEkqsDq/oCSl9AFwajX7zKSKlQtTSgPzOP5U4LitLE/aIuNmf8Q1IycwdtZHHPyZjgwdtA89d3L6oCRJkjJewS9thRXrElf97V3ue/0Dtm/TgmFf3Y9B+zl9UJIkSR9n4JK2QEqJB9+azZCXVrF64yzOH/AZLv3inrR3+qAkSZKqYOCS8jRv2Rouf2gcJZMXsFeHJgw/53D27tK+0GVJkiSpiBm4pGqklHh07ByuHTmBtRs2csPJfei6doZhS5IkSdUycEmbsWjFWq5+ZDxPjZ/L/t2242eD+9Fjx7aUlMwsdGmSJEmqBwxc0iY8O3EeVz48jmWrN3D5sb248PM9aNrERTEkSZKUPwOXVMmyNesZ8thERrw1m727tOfP3+pHr52cPihJkqQtZ+CSKnh56kIue3As85av5btH7sF3j9yT5s0q339bkiRJyo+BSwJWrdvAzU9N4k+vvk+PHdvw0LcHsF/X7QpdliRJkuo5A5cavbfeX8z3HhjLzEWr+Mbhn+EHx/ak5TZNC12WJEmSGgADlxqttRs2cvuzpdz94jS6bNuKv15wKIftvn2hy5IkSVIDYuBSozT+X0v53gNjmTxvOWcc1JWrT+xN2xb+OkiSJKlm+QlTjcqGjWX8qmQaw0eX0rFNc35/3kEc0atTocuSJElSA2XgUqMxdf4KvvfAO4ydvZST++3MkEF92K5180KXJUmSpAbMwKUGr6ws8buXZ/CTv0+mdfOm/OJrB3BC3y6FLkuSJEmNgIFLDdqsxav4/oNjeW3GYo7q1YmbTt2XTu1aFrosSZIkNRIGLjVIKSXuf2MWNz4+kYjg1tP6MvjAXYmIQpcmSZKkRsTApQZn3rI1XP7QOEomL2DA7ttz62l92bVD60KXJUmSpEbIwKUGI6XEo2PncO3ICazdsJEbTu7D1w/djSZNHNWSJElSYRi41CAsXrmOqx95lyffncv+3bbjZ4P70WPHtoUuS5IkSY2cgUv13rMT53Hlw+NYuno9Pzi2Jxd+rgfNmjYpdFmSJEmSgUv117I16xny2ERGvDWbvbu0595vHsLeXdoXuixJkiTp3wxcqpdenrqQyx4cy9xla7j4iD245Kg9ad7MUS1JkiQVFwOX6pVV6zZwy1OT+OOr79NjxzY89O0B7N+tQ6HLkiRJkqpk4FK98db7S/jeA+8wc9Eqzj+8Oz84phetmjctdFmSJEnSJhm4VPTWbtjIsFGl3PXCNLps24r7LjiEAbvvUOiyJEmSpGoZuFTUJsxZyv/7v7FMnrecr/bvytUn7k27ltsUuixJkiQpLwYuFaUNG8v4Vck0ho8upUOb5vzuvP4c2atzocuSJEmStoiBS0Vn6vwVfO+Bdxg7eykn9duZISf3oUOb5oUuS5IkSdpiBi4VjbKyxO9fmcmtT0+iVfOm3Pm1/Tmx786FLkuSJEnaagYuFYVZi1fx/QfH8tqMxRzVqxM3nbovndq1LHRZkiRJ0qdi4FJBpZS4/41Z3Pj4RCKCW0/ty+D+uxIRhS5NkiRJ+tQMXCqYecvWcMVD43h+8gIO67E9Pxncl107tC50WZIkSVKNMXCpzqWUeHTsHK4dOYG1GzZy/Um9Oeew7jRp4qiWJEmSGhYDl+rU4pXruOaR8Tzx7ofs13U7bju9Hz12bFvosiRJkqRaYeBSnRk1cR5XPPwuS1ev47JjenLR53vQrGmTQpclSZIk1RoDl2rdsjXrGfLYREa8NZteO7Xj3m8ezN5d2he6LEmSJKnWGbhUq16eupAfjBjHh0tXc/ERe3DJUXvSvJmjWpIkSWoc6vyTb0R0jYgREbE0IpZFxMMR0S3P1/44Ip6JiEURkSLivM3se0FETIqItRExOSL+q8behKq1et1Grhs5nrPueY0WzZrw0LcH8P1jehq2JEmS1KjU6QhXRLQGngPWAucCCbgReD4i+qaUVlZziO8C7wCPA+ds5jwXAHcBNwGjgKOAX0ZEpJR+9anfiDbrrfeX8P0HxzJj4UrOG9Cdy4/tRavmTQtdliRJklTn6npK4QVAD6BnSmkqQESMA0qBi4Dbqnn9timlsojYg00ErohoBvwIuDeldFWu+fmI2BkYGhH3pJTW18B7USVrN2xk2KhS7nphGl22bcV9FxzCgN13KHRZkiRJUsHU9fyuk4Ex5WELIKU0A3gZGFTdi1NKZXmc4zBgR+DPldrvBbYHPpt3tcrbhDlLGXTny/yqZBqDD+zK05d+zrAlSZKkRq+uR7j6ACOraJ8ADK7BcwCMr+IcAL2B52voXI3eho1l/PqFaQwfXcp2rZvz23P7c9TenQtdliRJklQU6jpwdQSWVNG+GOhQg+egivMsrrT9YyLiQuBCgM6dO1NSUlJD5Xw6K1asKJpaKpuzoox73l3L9KVlHLxTU87p3ZSm896jZN57hS6t1hVzvzRW9klxsl+Kj31SnOyX4mOfFKf62C+FWBY+VdEWNXj88mNVdZ5NSindDdwN0L9//zRw4MAaLGnrlZSUUCy1lCsrS/zhlZncMmYSrZo35Y4z+3FSv50LXVadKsZ+aezsk+JkvxQf+6Q42S/Fxz4pTvWxX+o6cC2h6hGmDlQ98rU1Ko5kfVihvWOl7doKsxav4rIRYxkzfTFH9urEzafsS6f2LQtdliRJklSU6jpwTeA/11hV1BuYWIPnIHeeioGrd+5rTZ2nUUkp8X9vzGLo4xOJCG49tS+D++9KRE0OTkqSJEkNS10HrkeBn0ZEj5TSdICI6A4cDlxRQ+d4FVgInEV2D65yZ5ONbr1cQ+dpNOYtW8MVD43j+ckLOKzH9tx6Wl+6dmxd6LIkSZKkolfXges3wMXAyIi4muw6q6HALLIbFQMQEbsB04AhKaUhFdq/QLbk+065pv4RsQIgpTQi93V9RFxDdqPjf5GFriOBV8N75gAAEWxJREFUbwDfTSmtq9232LA8OnYO1zwynjXrN3LdSb0597DuNGniqJYkSZKUjzoNXCmllRFxJHA72X2xAhgNXJpSWlFh1wCa8sn7hN0AfKHC8+/kHuWvKT/PryMiAd8DLgM+AC5OKf2yBt9Og7Z45TquGTmeJ8Z9yH5dt+Nnp/dj9x3bFrosSZIkqV6p81UKU0ofAKdWs89Mqli5MKU0cAvOcxcVRs2Uv1ET53HFw++ydPU6LjumJxd9vgfNmtb1PbIlSZKk+q8Qy8KrSC1fs54hj03kwbdm02undvzpGwfTe+f2hS5LkiRJqrcMXALglakLuWzEOD5cuprvHLE7lxy1Jy2aNS10WZIkSVK9ZuBq5Fav28gtT0/iD6/MpMcObRjx7QEc0K1DocuSJEmSGgQDVyP21vtL+P6DY5mxcCXnDejO5cf2olVzR7UkSZKkmmLgaoTWbtjIsFGl3PXCNLps24r7vnUIA/bYodBlSZIkSQ2OgauRmThnGf/vgXeYNHc5p/fflWtO7E27ltsUuixJkiSpQTJwNRIbNpbx6xemMXx0Kdu1bs5vz+3PUXt3LnRZkiRJUoNm4GoEpi1Ywf97YCxjZ33ECX27cOOgfejQpnmhy5IkSZIaPANXA1ZWlvjDKzO55elJtGrelDvO3J+T+u1c6LIkSZKkRsPA1UDNWryKy0aMZcz0xRzZqxM3n7Ivndq3LHRZkiRJUqNi4GpgUko88OYshj7+Hiklbjl1X07v35WIKHRpkiRJUqNj4GpA5i9bwxUPv8tzk+ZzaI+O/OS0fnTt2LrQZUmSJEmNloGrgXh07ByueWQ8a9Zv5LqTenPuYd1p0sRRLUmSJKmQDFz13OKV67hm5HieGPch/bpux22n92P3HdsWuixJkiRJGLjqtdHvzePyh95l6ep1XHZMTy76fA+aNW1S6LIkSZIk5Ri46qHla9Yz9PGJPPDmbHrt1I4/feNgeu/cvtBlSZIkSarEwFXPvDJ1IZeNGMeHS1fz3wN353+O3pMWzZoWuixJkiRJVTBw1ROr123klqcn8YdXZvKZHdow4tsDOKBbh0KXJUmSJGkzDFz1wNsfLOH7D4xl+sKVnDegO5cf24tWzR3VkiRJkoqdgauIrd2wkRFT1vHk31+hy7atuO9bhzBgjx0KXZYkSZKkPBm4itg9L83g8enrGXzgrlxzUm/at9ym0CVJkiRJ2gIGriJ2/uHd2bhwJpcM7lfoUiRJkiRtBW/aVMRaN29G3x3NxJIkSVJ9ZeCSJEmSpFpi4JIkSZKkWmLgkiRJkqRaYuCSJEmSpFpi4JIkSZKkWmLgkiRJkqRaYuCSJEmSpFpi4JIkSZKkWmLgkiRJkqRaYuCSJEmSpFpi4JIkSZKkWmLgkiRJkqRaYuCSJEmSpFpi4JIkSZKkWmLgkiRJkqRaEimlQtdQdCJiAfB+oevI2QFYWOgi9An2S/GxT4qT/VJ87JPiZL8UH/ukOBVTv+yWUtqxup0MXEUuIt5MKfUvdB36OPul+Ngnxcl+KT72SXGyX4qPfVKc6mO/OKVQkiRJkmqJgUuSJEmSaomBq/jdXegCVCX7pfjYJ8XJfik+9klxsl+Kj31SnOpdv3gNlyRJkiTVEke4JEmSJKmWGLgkSZIkqZYYuIpQRHSNiBERsTQilkXEwxHRrdB1NWYRsWtE3BERr0bEqohIEdG90HU1ZhFxWkQ8FBHvR8TqiJgcETdFRLtC19aYRcQxEfFcRMyNiLURMTsiHoiI3oWuTf8REU/n/h27sdC1NFYRMTDXB5UfHxW6tsYuIo6PiBcjYkXuc9ibEXFkoetqrCKiZBO/Kykini50ffloVugC9HER0Rp4DlgLnAsk4Ebg+Yjom1JaWcj6GrE9gNOBt4CXgC8VthwB3wc+AH4IzAb2B64HjoiIASmlsgLW1ph1JPs9+SWwAOgGXAGMiYh9U0rFclP5RisizgT6FboO/dslwBsVnm8oVCGCiLgIuDP3GEo2OLEf0LqQdTVy/w20r9R2GHAb8Gjdl7PlDFzF5wKgB9AzpTQVICLGAaXARWT/canuvZhS6gwQEd/CwFUMTkopLajw/IWIWAz8ERhI9ocL1bGU0l+Bv1Zsi4jXgUnAacDPClGXMhGxHXA78L/AfQUuR5n3UkpjCl2EIDdzZRhwWUppWIVNfy9IQQIgpTSxcltEXACsA+6v+4q2nFMKi8/JwJjysAWQUpoBvAwMKlhVjZyjJcWnUtgqV/5X4l3qshZVa1Hu6/qCViGAW4EJuWAs6eO+AZQBvy50Idq0iGgFDAYeSyktLnQ9+TBwFZ8+wPgq2icAXgMhbd4Xcl/fK2gVIiKaRkTziNgTuAuYSz35S2RDFRGfBc4hm56j4vGXiNgYEYsi4j6v2S6oz5KNxp8REdMiYkNETI2I7xS6MH3MKUA7shkt9YJTCotPR2BJFe2LgQ51XItUb0TELsAQYFRK6c1C1yNeAw7MfT8VODKlNL+A9TRqEbENWfD9aUppcqHrEQBLyabYvgAsI7sO9YfAqxGxv78vBbFz7vETsr6YRjaScmdENEspDS9kcfq3c4D5wFOFLiRfBq7iVNXdqKPOq5DqiYhoC4wku9j8/AKXo8zXyS5y7kG2wMmzEfHZlNLMglbVeF0OtAJ+VOhClEkp/RP4Z4WmFyLiReB1soU0ri5IYY1bE7KRk/NSSg/n2p7LXdt1ZUT8PKVU1Wc01ZGI2Bk4GhieUqo3C8w4pbD4LCEb5aqsA1WPfEmNWkS0JFulqAdwTEppdoFLEpBSei+l9FruWqGjgLZkqxWqjuWmqF0FXAO0iIjtcotnUOF508JVqHIppbeBKcBBha6lkSq/3vTZSu3PAJ2BLnVbjqpwNll+qTfTCcHAVYwmkF3HVVlv4BOrtEiNWW6a1EPAwcDxKaV3C1ySqpBS+ohsWuEeha6lkeoBtAT+TPaHu/IHZKOPS4B9C1OaqhBUPdNFtW/CJtrLZxm5gFbhnQOMTSmNLXQhW8LAVXweBQ6NiB7lDbmh7MOpJ/cakOpCRDQB/kI2ejLIZZWLV0R0BnqRXQ+huvcOcEQVD8hC2BFkgVgFFhH9gb3IroFU3ftb7usxldqPAWanlObWcT2qIPf70Yd6NroFXsNVjH4DXAyMjIiryf7KNRSYRXbBswokIk7LfVu+EMBxEbEAWJBSeqFAZTVmvyC7mPlHwMqIOLTCttlOLSyMiPgb8DYwjmwhgL3I7vm0Ae/BVRC5EcaSyu0RAfB+SukT21T7IuIvwAyy35ePyBbNuBL4F3BHAUtrzJ4EngfuiogdgOlk9w/8El4fXAzOIft/Sb27h2B47V/xyc23vx34Itkw9mjgUi82L6yI2NQvywsppYF1WYsgImYCu21i8w0ppevrrhqVi4jLgdOB3YHmZH8sKgFu8t+w4pL7N+1HKSUXZyiAiLgSOJPs37HWZLdOeAq4LqX0YSFra8wioj1wE1nQ6kC2TPzNKaV69yG/IcldQjCH7F61JxW6ni1l4JIkSZKkWuI1XJIkSZJUSwxckiRJklRLDFySJEmSVEsMXJIkSZJUSwxckiRJklRLDFySJEmSVEsMXJKkLRIR90REiojbCl3LloiI6yPiyELXUWgR0T33s+hR6FokqTEwcEmS8hYRrYDBuadnRUSzQtazha4DGn3gArqT/SwMXJJUBwxckqQt8RWgPfAk0Ak4trDlCCAiWhS6BklS1QxckqQtcS6wBDgPWA2cU9VOEdEvIv4WEYsiYnVETI6IKyvt85WIeDkiVkTEsoh4PSJOrrC9WURcGRGTImJtRMyJiJ9FRMsK+3TPTW/874i4LSLmR8SqiHg8IrpX2C/lvr0qt3+KiOtz2w6KiBERMbtCrT/OjeZVrLckIv4REUdHxNu584yPiC9v5fs/JSLG5I7zUUQ8GBHdquuACnWcFBH/jIi1wH/ntl0cEa9GxOLcMcdExAkVXjsQeD739NkKP4uBFfa5ICLGRsSaiFgYEb+NiI7V1SVJqlp9mgoiSSqgiNgZOBq4O6W0ICIeAU6JiA4ppSUV9jsYKAGmAv8LzAb2BPpW2Oe7wM+BR8hC3ArgALLpbuX+DJwE3AK8AuwNDM3tc2ql8q4E3gHOJxt5+zHwTET0SSmtBw4DXgX+ANyVe83s3Nduudf+AVgO9AGuJZtyd0al8+wODAduAhYC3wNGRESvlNLULXj//wX8Cvg9MARoB1wPvBARfVNKy9m8vch+fkOB6cDiXHt34B5gJtn/408CHo+I41NKTwFvA98BfgFcAryRe93EXF03597Tz4HLgF2AG4F9ImJASmljNXVJkipLKfnw4cOHDx/VPoDLgQQclnt+TO75f1Xa70VgFtB6E8dpTxZsHt7MuT6XO/Y5ldrPyrXvl3vePfd8ItCkwn6H59q/WaEtATdW8x6DLKicDZQB21fYVgKsB/as0NYJ2Aj8cAvef1tgKfC7Su3dgXXApdXUWJKrbb9q9muSey/PACMrtA/M/SyOruL8G4FrK7WX/yy/XOj/Bn348OGjPj6cUihJytc5QGlK6dXc81HAHCpMK4yI1mQf0P+SUlq1ieMMIAsdd2/mXMeShY+HclMLm+UW6Hgmt/3zlfYfkVIqK3+SUnqZbGTpsOreVES0j4hbImIasJYsVN1LFr72rLR7aUqptMJ55gPzyUbJ8n3/h5GFzr9Uem+zgUlVvLeqzEwpvVPFezkwN51yHrAh916+CPTM45hfJAtplet6DViWZ12SpEqcUihJqlZEHAT0Bm6JiO0qbHoYuDgi9kopTQE6kH1on13FYcptn/u6uX06Ac3Jphpu7hjl5lWxzzyyKXHV+T3ZVMlryaYWrgQOJpt217LSvov5pLUV9svn/XfKfR21ie1LNtFe0YeVGyKiKzCabLTvu8AHZKFrKNl0zOqU1zV1E9sr/8wlSXkwcEmS8nFu7uvluUdl5wBXk4WFMjYfdBbmvu4CjN/EPouANWRTC6syp9LzzlXs05ksQG1SbgGOQcD1KaXhFdr33dzrNiOf978o9/U8YEIV26u7fguyKX6VHQtsC5yeUvp34MuNuuWjvK4vUXXoW1RFmySpGgYuSdJmRURzssUjXgOuqGKX24GvR8Q1KaVVEfEP4OyIGJJSWl3F/q+QjVxdCPx9E6d9mizYbZtSGp1HmadFxPXl0woj4nBgV7KFMsqtA1pVel0LoCnZ1LuKzsvjnJ+wBe9/ObBHSumPW3OeTSgPVv9+LxGxF9kUx4ojbmtzXyv/LJ4lC4vdUkrP1mBdktSoGbgkSdU5kWw62fdSSiWVN0bEXWQr7g0kW3L8+8ALwKsR8TOyD/s9yBZ5+G5KaXluifQ7IuIh4C9kAWQ/YE1K6Y6UUklE/JVsBcDbgNfJwkB34Hjg8twUxnLtgEdytexItopgKfCnCvtMBE6IiKfJRnDmpJTmRMQY4HsR8SHZ6Ns3yG8q4qZU9/6XRcRlwC8iYkfgKbJFNHYBvgCUpJTu24rzjiKbQvin3Hm7ADeQTS2seM32lNx+34iIxWQBbHJKaVpE3ALcGRE9c+9hDdCV7Pque1JKzyNJ2iIumiFJqs65ZIHowU1s/yvZPbnOBUgpvUE2qjILuIPsJsmXUWGUJaV0JzCYbBTqL8BDwGnAjArHPZtsqfTTgJHACOBisiBV+Zqtm8iuPfoD8Euy5c+PSdmS8OUuJrs+6zGy5dAvzLWfCbxFds3WH4C5wP9s8qdRjTzf/13AyWSLWdxLFrpuIPtD6GanQW7mvBPIVnHcDXgU+AHZiOSLlfZbRPaz6EcWqt4ADsxt+yHZz+XzwANkP/fLyQJqKZKkLRYpVTUNXJKk4pe7ufEM4IKU0j2FrUaSpE9yhEuSJEmSaomBS5IkSZJqiVMKJUmSJKmWOMIlSZIkSbXEwCVJkiRJtcTAJUmSJEm1xMAlSZIkSbXEwCVJkiRJteT/Ax3wzpM6knBdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAHICAYAAABajeu4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8VfX9+PHXO3uQAJmMkIQdQESUpewhiohirVbFKlY7bG2lOGqrUrUVxIXr56qKfgtWLa11KwpEFBkiCMoIOwEChJBA9ryf3x+fk5BcbkgCSW5I3s/H4z4w53zuOe8z7vW872eJMQallFJKKaWUUg3Px9sBKKWUUkoppVRLpQmXUkoppZRSSjUSTbiUUkoppZRSqpFowqWUUkoppZRSjUQTLqWUUkoppZRqJJpwKaWUUkoppVQj0YRLKVVnIvJ3ETEiMqLKsgnOsvu8GZtSStVFc/vO8lY8ze08KNWSacKlVAsjIonO/0Rreh31dowtRWt+YBGRz5xj/97bsTSk1nxNG4KIfC0iZd6OQzUN/bwoVTd+3g5AKdVoUoC3PCwvOo1tPgUsAFJPYxvqDCciccAEwAADRGSgMWa9l8NSqq6+AfoAh70diFKqddCES6mWa6sx5oGG3KAxJhPIbMhtqjPSdGwLiSeAO4BfAL/3ZkBK1ZUxpgDY6u04lFKthzYpVKoVE5FAEbldRL4Qkf0iUiIi6SKyQES6eyh/Qh+uGrbbwyn3Sl3Xicg+EdkhIpEi8rKIHBARl1t/sZ4i8kaVWPeKyHMiElXH4/Vz9v2FiCSIyFsicthZFueUuVJE3hGRXSJSJCLZIvK5iIxzPxfA586ff6vSZLPMrVxHJ8bdIlIsIgdF5P9EJKEO8YqIpDox+tdQZqcTY4Dzd7CI3CMiP4pInogcE5GtIvKaiHSsy3mqg+lANnAvsAu4TkQCT3IcE0TkI+c4ikRkj4j8U0T6uZVrJyIPi8hmESkUkSwRWS0iM2vY5idOmSLnPXeLiJ9buVuc63K9iFwjIt87294vIo+JSEiVsrVeUxEZLCLPO/vLFZF8EflORH7jIcaq91tH53N1REQKRGSpiJxTw/nqJSLzRSTNuWcOiMinIjLZrZyPiPxGRNY41zpPRFaIyOU1XQsP+6r8TIvIr0Vko3M+X3HWx4nI30TkWxHJdOLZLiKPikgb92MFhgO+Ur0Z831u+7xaRL507s1CEVknIrfUNeZajuca5xxkOud5j4i8KyIXVClzQjM4t2vVRex3QJaIHBWRt0Uk2ik3XESWOdc+w7mHfN1iqPM9V4fjOU9EFjn7Khb7eZ8tIqH12Ia/iPzVORdFIrJJRH55kvIN9h1Yn8+LUi2Z1nAp1bpFY2spvgTeB3KAJOAaYJKInGuMacrmg0FAMvbHoH8D/kAugNjE62MgEHgP2INtFvRbYKKIDDHG1LV/WjSwEtgH/BNoD5Q66x4B8rDn5BDQEZgKfC4iPzHGvOeUWwrEAz8HlgHLneWuip2ISG/neGKAj4BFznuuBS4SkWHGmN01BWmMMSLyJnAPMNHZRiURGQZ0A/5hjClxFr/pxPsV8JmzLBG4EngZOFDbyTkZERkNdAdeMsYUi8gCYBZwOfCOh/J3A3OBY8D/nP13wTZJXA1scsp1dGLu7ix/FggG+jvH/2SVbc5w/s5wtpkNjHL2Mxi4ykPo1wLjsc1sPwUuAu4EzhGRi4wxLupwTYFfO+9dDnwAhDt/vyAiPYwxd3rYdwSwwon3Dez1uAJYKiJJxpiMKsc21tluEPAhsAWIAs4HbsK5B0TEB3u+rwR+BF7Hfm4mA/8Tkd8bY57zEEtN7gUucPb9CZDuLB8D3A4scY7BAMOAu4CRIjLSGFPmnKMHsbWdccBDVbZdcR4RkXnADGA39loUARcC/xCR3saYu+oRczUicju22fMO4F9APtAZGI29P76pw2YinePcDcwHzgWuBuJE5B7svfMJ8A9gEvYeOgo87GFbdbnnTnY8P8V+nouw33kHgUHAn4HRIjLGGFN6kk1UeMOJJQV4Bvt99yT2O86TBvsO5NQ+L0q1PMYYfelLXy3ohX2YM9gmMw94eCVVKRsEdPSwjXFAOfCi2/K/O9seUWVZRV+e+6os6+Ese8XDtj2uwyY/BvsAHeC2LhDYCxwBerutu9Z531N1ODd+TlkDPAeIhzJdPSzriH0A3eq2/IRjd1u/BvuwNNxt+QigDPhfHWI+y9nHmx7WPeusG+X8Hen8/Y6HssFAaAPcX687+xju/N3T+fsTD2UHYR++dgAd3Nb5AzFV/n7f2c5dHrYTV+W/z3bO3QogvMpyAV5wtjG1yvJbnGUut/vWB/sAaIAb6nFNEwAfD/fV505ccW7LK+63J6veb8Df3I/XuUYHgRL3e8ZZ37nKf//Oef/TVeMB2gBrnfuug6djcNtmxWc6G+jlYX0MEOJh+QPO+65xW/41UFbDviY771kEBFZZHlDlWgw8jXtzI7Z/abDbcgEiTnaN3a7VbLf3fuwszwIuqrIuDJtEHwZ8G/KeA2KxSc929+uITbgMMKMO52SiU3al2znvDxR7utdp2O/AOn9e9KWvlvzSJoVKtVy9gb96eCVVFDDGFBljTqjxMMYsxf4aOqFpQq3mT+Z4bU2Fy7G/mv/NGJNSdYUx5l/ABmytXF0VYh8QjPsK46HGyTlH/wN6i9P0sDYiMgRb2/KiMWaF2/a+xtZeXFq1WZYnxpgfsQ+Sl1VtRiS26dzPgDRszRDYB5+K43PfTqExJr8usddERMKAnwK7K47JGLMdWyM1UUQ6u73l19gH1nuMMQfd4ik1Ts2Oc06nAD9ga1zdY99X5c/fAL7A74wxOVXKGOAvzp+e7oWPnfNeUd6FrdUBuP5kx+0WS6pxq5kwtobnH05cYzy8LZcT77fXnX8HVVn2E+yD9svu94yzn/1V/vwdtj/lnVXjMcbkYZOoQGytRF29aIzZ5mGfGcb2eXL3vPNvfb4jfodNQn5tjCmuso8S4H7nz5/VY3uelGAf5CsZK6uO7z+GTYYr38vxmttvjTGfVVmXi03GooBOHrZ1OvfcjUAoNiE/6LbuUWzyV5fvvIr9/NXtnP8ALPT0hob6DnTedyqfF6VaHG1SqFTL9Z4xptYHLhEZjG0eNBz7a3bV7wVPD1qNKc89oXIMdf49W0Qe8LA+EIgVkXambs0Kd9ZUzmna9hdss5cu2FrAqjpia+NqUxFzfA0xx2IfOHoAtQ2tvgD7kDWV4w9JF2KbRj5S8SBvjMkSkS+AG8T2EXsPm4ytN8aU1yHm2lyNfQhc4Lb8n9jjvRGYXWX5YOffxbVstyLp+ML94cyDodja1ytExNP9XUSVHxWq+Np9gTFmo4jkAANq2WclEQnCNrG7GuiFrVGqylM/uRQPSUtF8tSuyrI6nS8RCcc2p90N3Csi7kVinX89nYearD3J/n4G/Ao4x4m36o+19ekXOBSb0PzeQ8wVfQDrE7O7t7HJ5o8i8ja2SdzKGhLGmmwzxrj/YFGR8GzwUL5iXSdsLXxVp3PPVXx/jBLPff1KqNu5qtjPVx7WfY1tplpNA34HnurnRakWRxMupVoxpz9ORdOOz7BNvwqwNSW/wPOvto0po4blEc6/JzwcuAnF9qc4pf04HeO/xR73cmxfjWPYX+XHASM5/mBYm4qYr3BeNalL5/d/YftVXMfxhGua86978nMFtk/VtRzv93RYRJ4E5nqq1auHivPvvs+3gXnYwTSqJlxtgfyqNVE1aOv8m37SUlYENlGddZIyns5pTUOAZ2BrT+vqf9gH0c3Y/jWHsZ+fbti+LJ7uj2MellXUwlQdcKGu56G9829XbK11Teo8sAI1fyb+jL2mh7C1OfuwTdF8sLVSdf08gI1baLiY3c3GNjv+DTa2+4FCEfkXcEcdf4zxdK+W1WGdp0FtTueeq/j++ONJytRlvrO22B+yTqj1xl7Tahr4OxBO7fOiVIujCZdSrdtfsA8KI4wxa6quEJFpnt9SJxW1FL4e1oWf5H01JQMVDzpjjTHJpxpUHfZzC7aT/d3GmMeqrnCay42sxz4qYr7JGPN6vSOswhizT0SWY5vtRWGT4qnABmPMJreyecDdwN3OoB3jgT8Ac7CDCDx7KjGISC9sLShAiocaCoCeziAKFb+mHwUSRSS8lqSr4kG4Lgl+DnaAk1BTtwEDKkTXsDwGzw/SJxCR87EPjx8Cl1etjXM+Lz+vRzye1PU8VMT7pTFmzGnus8IJnwmxI1/+BVtzc07VZnnO5+F+9/fUIhfINsYknkacNXJ+THgReFFEOmAHy7gZ++NRO+wAI03pdO65ivVdjTF7TiOGY0CCiAR7SLpiPZRvsO/AJvi8KHXG0D5cSrVu3YFDHpKtTtjBN05VxYOje58egIGnsL2K+IadWjh1VjEU/gdVF4rNLs73UL6imZ6nxLKhY16I/ZHsamyy5alpXzXGmBRjzPPAxc6iy05j/xW1W0uBVz28PnArB/aXcrAd909mLfaBf7wz+t7JrMH+SHBe3cKudMJUBiJyNvYHgKpNxU52TSvuj488NH0c7l74FNTpfBljsrG10f3rM8T4KYjBNgH7xkMfqJqOtxxnRgMP69Zgm9g2es25MeagMeZt7L2/C5gsbsO3N4G63nOeNNT3R8V+PCVKnqb3aMjvwMb+vCh1xtCES6nWLQ2IdmovADs3F3YEv1OuAXcezvZghy5OqLLtWI4PbFAf/8U2s/qLiAxyXykiISIy9MS31Vua86/7w8CdQD9OVPEQ6imx/AZYB9wiIpe4r3TmxjnpfGZu/o1tyjXNebmwTQ2rbjNWRDwlIhW/ZBdWKRsiIkki0qW2HTsPqjdgmwJda4y5xf2FHYo9G7iqykAgLzlxPuLUOFTdpp+IxEDlYBAfYEcg9DTnVtXz+7yzzefdt+mU7SAinvq2XCLV53Tz4fhQ3lUT15NdU4/3h4gMx9aknK53sc28fiVV5o2qsp+qicqz2GZnz4mHOdBE5Cyp4/x0J1ExYuJ5Tl+cqnF4GgYd7PnzwXPfnGexTQpfdfqhucfcze37omJurLo0nUNELvKQVIVik8aSBurHWB91vec8eQ1bI/2oeJ4TsV0NfbvcVeznwar3iYj053iz5Koa8juwsT8vSp0xtEmhUq3bc8BYYKXTydyFHXXMBztiXN/T2PZTzmuViCzCDnl9Gbbzdrf6bMgYUygiV2H7kKwWkcXYPgH+2H4so7H9DS49jXjBzldzF3aOmPHYJK9itMGPAffEaTO2P8Y0ESlyyruMMY8aY4yIXIOdn+Yjp0ng99hznID9xfkQdtj3WhljjonIR9g+Wi4g2W3UOrAd3L8Vke+dfR3ANk+7ApssPVOl7AXY/ntLqH2kuYuc7bxnqswZ5RZfsdNX5rfY5Gu+MeY7EfkLtv/ZVhH5L/YhvrOzzznYexBsv5uzgMdE5ErsfRKIfcjrj5M0GmPWi51v6Wlgm4h8jE3uI7BD1I/Eztu11S3ET7DzCL3txDARW9v6BdUffmu8ptgkej1wvZN0fIf9Ff8y7LD2P6nlPJ6Uc59fi22CtVxEPnTiicTWdGzHjhIJ9rxdgK1RHCciy7D3Uyds4joAe99mnkY8ZSLyEvB7YL1zriOwI0omYwd8cbcMWwP7bxH5DJuwLTfGfGOMeV9EHsN+xnY4n+N92Jq0PtiBIq7GDu0Ox38UrlPCBfwHyBKRb5xthGK/E2Kww9g3tbrecycwxhwQkZ9jf1TZ7Jz7Hdhj6oYd3e8V4LZatrPY+VxeC2wQkfexzSuvxX7+J7u9pcG+A2nkz4tSZxTTDMam15e+9NVwL47Pw1XrHE9O+WuxD+cF2IeC17APKCfMp0Md5+Gqsu4ObHOeEmAbti9RxbxNnubh2lFLrAnYGo5d2NqeLOyQ6U8Dg+pwrBVz7XxxkjLnYZOQo87rE2fZCcfulB/hnKt8Z737OYvGTsi7BVvDlOP89yvYPmn1ubY/4fhcQTd5WN8e+2D5lXMti7G/Mi8CBruVrbhuNZ6LKmX/jdv8VjWUG+SU+8pt+cXYQVmysaMI7gb+D+jjVi7COVfbndiPAKuA2z3sazj2AbuiFuYgdq6h+6g+F1bFnEjXY4fR/t6JIR14HM9zTNV4TYEOTuwHsJ+Ztc52Tza30wnnuJZ1fbAjPx5wji0d+7A7ya2cYPvBJDv3ahE20fgUOyT/CcfmYV8e7+sq6wOde2qHs/0d2AFLgj3Fj51Tax7281zmfk6cMpOxn6tM5/j2O8cwE4isUu5c5/2v1/Hz8TtssprqxHrI2e5VNdz7db1WJ/uO8/SdWK97rpbtn+Xcb3udc3UYm7jMwW1OwpOcF3/nGlacl83AL2vaLw34HUg9Pi/60ldLfokxpzNglVJKKdV8icgt2Dl/fm6Mqa0Zl2pGROQP2OStnzHGvcay2dJ7TinlTvtwKaWUUqo5GgG8eyYlW0op5Yn24VJKKaVUs2OMudrbMSilVEPQGi6llFJKKaWUaiTah0sppZRSSimlGok2KfQgKirKJCYmejsMAPLz8wkNDfV2GMqNXpfmR69J86TXpfnRa9I86XVpfvSaNE/N6bp89913mcaY6NrKacLlQWJiImvXrvV2GAAkJyczZswYb4eh3Oh1aX70mjRPel2aH70mzZNel+ZHr0nz1Jyui4ik1l5K+3AppZRSSimlVKPRhEsppZRSSimlGokmXEoppZRSSinVSDThUkoppZRSSqlGogmXUkoppZRSSjUSTbiUUkoppZRSqpHosPCnKCcnh4yMDEpLSxt1P23btmXLli2Nug9Vfw19Xfz9/YmJiSE8PLzBtqmUUkoppbxPE65TkJOTw6FDh+jcuTPBwcGISKPtKzc3l7CwsEbbvjo1DXldjDEUFhayf/9+AE26lFJKKaVaEG1SeAoyMjLo3LkzISEhjZpsqdZBRAgJCaFz585kZGR4OxyllFJKKdWANOE6BaWlpQQHB3s7DNXCBAcHN3oTVaWUUkop1bQ04TpFWrOlGpreU0oppZRSLY8mXEoppZRSSinVSDThUkoppZRSSqlGogmXUkoppZRSSjUSTbhUNStXruTqq6+mU6dOBAQEEBkZyYUXXsgbb7xBeXl5g+8vOTmZBx54AJfL1eDbrounnnqK//73vycsf+CBB7RPlVJKKaVUM1FS5mJzeg7FZcbbodSbJlyq0lNPPcXw4cPJyspi7ty5fPHFF7z22mv06tWLW2+9lQ8//LDB95mcnMyDDz7Y7BKuW265hZUrV3ohIqWUUkqp1i07v4RvdmTyyle7mPnO90x6+iv6/fVTLnnmK3Yc9c4z4+nQiY8VAMuXL2fmzJncdtttPPPMM9XWXX755cycOZP8/HwvRWeVlpbi5+fXJDVPcXFxxMXFNfp+lFJKKaVaK5fLkJZVwOYDOWxOz2HLgRw2H8jhwLGiyjIxYYH07RTOmN7R9O0YjjmU4sWIT43WcCkAHnnkESIiInj00Uc9ru/evTtnn302AGvWrGHChAm0adOG0NBQxo8fz5o1a6qVnz59OnFxcaxfv56RI0cSEhJCz549efHFFyvLPPDAAzz44IMA+Pv7IyKVydSePXsQEZ5//nnuvvtuOnXqRGBgIEePHuXw4cP8+te/plevXoSEhNClSxeuu+469u/ff0LcGzZs4IorriAyMpLg4GB69+7NnDlzAEhMTCQ1NZWFCxdW7nv69OmVsbkndjk5Odx222106tSJqKgoevfuzbx58zDmeNV2cnIyIsL777/PbbfdRlRUFNHR0Vx//fUcPXq0PpdEKaWUUqrFKCwpZ31aNm+uTuO+//3AlS98Q/8HPmPM48n8duE6XvhyJ3uzCxjaNYK/XJLEP28ewtr7JrDm3gm8ftMQ/nRxElMGdCI84Mzr8qE1XA3kwQ82sTk9p8G3W15ejq+vb53K9u0Uzl+n9DulfSQnJzN16lSCgoJOWnbjxo2MHj2avn378vrrryMiPPLII4wePZpVq1YxYMCAyrI5OTlcd911zJgxg1mzZjF//nxuvfVWevfuzdixY7nlllvYt28fr776Kl9//bXH43z44YcZPHgwL7/8MuXl5QQFBZGWlkZQUBBz5swhOjqa9PR0nnjiCYYPH87WrVsrj2HNmjWMGTOGHj16MG/ePOLi4ti+fTsbN24E4N133+WSSy5hwIABPPDAAwBER0d7PG6Xy8XkyZNZt24dDz30EN27d2fZsmXMnDmTw4cPM3v27Grlb7/9di699FLefPNNUlJSuPvuu/H19eWNN96o83VRSimllDrTGGM4nFvMJrdaqz2Z+bic36jDAv3o0ymcqwZ1oW/HcPp0DKdnbBuC/Ov2zHum0YRLkZmZSWFhIQkJCbWWfeihhwgMDGTJkiW0a9cOgAsvvJDExEQefPDBav2hcnNzef755xk7diwAo0aNYvHixfzrX/9i7Nix1ZrtDR06FD+/E2/H2NhY3n333Wq1Tb179+bpp5+u/Lu8vJzhw4cTHx/PJ598whVXXAHAnXfeSWRkJKtWrSIkJASAcePGVb5v4MCBBAYGEhUVxbBhw0563B9//DFff/018+fPZ/r06eTm5jJ16lTy8/N54oknmDlzJlFRUZXlR40axbPPPgvAxIkTSUlJ4ZVXXqlMUpVSSimlznSl5S52Hc6vTKq2OEnWkfySyjJx7YPp2zGcywZ0ok/HcPp2DCeufXCreh7ShKuBnErNUl3k5uYSFhbWKNs+FcuXL+fSSy+tTLYAwsPDueyyy/jggw+qlQ0JCalMtgACAwPp2bMnaWlpdd7f1KlTPX4gX3jhBV588UV27txZrW9ZSopt11tQUMCKFSu46667KpOt07F8+XJ8fHy49tprqy2//vrrefXVV1m5ciVTpkypXD558uRq5fr3709xcTGHDh2iQ4cOpx2PUkoppVRTyikqZUt6lcTqQA7bDuVRUmYHsQjw86F3bBjj+8RU1loldQynbbC/lyP3Pk24VGX/ptTU1FrLZmVl0bFjxxOWd+jQgezs7GrL2rdvf0K5wMBAioqKTlheE0/7evbZZ/nDH/7AzJkzeeyxx2jfvj0ul4thw4ZVbjs7OxuXy9VgA19kZWURERFBYGBgteUVyVNWVla15REREdX+rnhffY5dKaWUUqqpGWPYl114wkAW+7ILK8tEhgbQt1M4N12QaGutOoXTLSoUP18dHsITTbgUfn5+jBkzhs8//5zi4uITkoqqIiIiOHjw4AnLDx48eEKS0RA81W699dZbjB8/nieeeKJy2e7du6uVad++PT4+Ph4H0jgVERERZGVlUVJSQkBAQOXyinMRGRnZIPtRSimllGoqRaXlbD+UV5lUbU7PYcvBHHKLygAQgW5RoZzTpR3XDY2nT8dw+nUMJzossFU1CTxdmnApAO655x7GjBnDXXfddcKw8GATmtzcXEaPHs1HH31Uraljbm4uH3zwAWPGjKn3fiuSu8LCwjo3nSwoKCA8PLzasvnz51f7OyQkhBEjRrBgwQJmzZpFcHBwjfsvLCz0uK6q0aNH89hjj/Hvf/+badOmVS5fuHAhAQEBtfYBU0oppZTypsy84so+VhUJ1s7D+ZQ7I1mEBPjSp2M4l5/Tib4d29KnYxi9O4QREqDpwunSM6gAO8jDk08+ycyZM9myZQvTp08nPj6e7OxslixZwiuvvMKbb77J/fffz4cffsj48eP505/+hIgwd+5cCgoKmDVrVr3327dvXwCeeOIJJk2ahK+vL4MGDTrpey6++GLmzp3L7NmzGTJkCEuXLmXRokUnlHv88ccZPXo0559/PnfccQdxcXHs2rWL77//vnJAi759+/LVV1/x4Ycf0qFDB6KiokhMTDxhW5MmTWLEiBH85je/4fDhw3Tt2pXk5GReeeUV/vznP1cbMEMppZRSylvKXYbdmScOZJGRW1xZpmPbIPp2DOeifh0qB7KIjwjBx0drrRqDJlyq0owZMxgyZAjz5s3jzjvvJDMzk7CwMAYNGsRLL73ElClT8PHxITk5mXvvvZcbb7wRYwzDhg3jyy+/rDYkfF1deuml/Pa3v+X555/noYcewhhTbV4rT2bNmsXRo0eZN28eRUVFjB49ms8++4xu3bpVKzd48GBWrFjBrFmz+P3vf09xcTEJCQncdNNNlWXmzJnDL3/5S66++moKCwu58cYbef3110/Yp4+PDx999BF/+ctfmDt3LkeOHCExMZEnn3ySGTNm1Pu4lVJKKaVOV15xGSkHbUK1+UAumw/kkHIwh6JSO5CFn4/QMzaMET2j6OskVn06htM+NKCWLauGJLU93LZGgwYNMmvXrq1x/ZYtW+jTp0+TxNLcRilUVmNdl6a8t1qa5OTkU2rWqhqXXpfmR69J86TXpflpTtfEGMOBY0XHmwQ6SdaeIwWVZdoG+1cmVH072eSqR0wbAvxa1kAWzem6iMh3xpiTN81Ca7iUUkoppZRqNkrKXOzIyKvWHHDLwRyOFpRWlkmMDKFPx3CuPDeuMsHq2DZIB7JopjThUkoppZRSyguOFpRUGX7dNgnckZFLabltgRbo50NSx3AmndWh2txWbQL1Ef5MoldLKaWUUkqpRuRyGdKyCqrXWh3IIf3Y8fk5o8MC6dsxnNG9oiubBHaNCsVXB7I442nCpZRSSimlVAMpLCkn5VButeHXtx7IIb+kHABfH6F7dCiDu0ZU1lr1cea2Ui2TJlxKKaWUUkrVkzGGw7nFbHKrtdqdmY8ztRVhgX706RjOT8+Lo28nm1j1ig0jyN/Xu8GrJqUJl1JKKaWUUidRVu5iV2Z+tVqrLQdyyMwrqSzTuV0wfTuFc+nZnejTMZx+ncKJax+sA1koTbiUUkoppZSqYIxhU3oOn6eW8vGiDWw5kEvKoVxKyuzcVgG+PvTq0IaxvWMqa636dAinbYi/lyNv4bJ2wbbP8Cvt4u1I6k0TLqWUUkop1aoVlJSxYscRlm49xNKtGRzKKQYgIjSDvh3DufH8BGcgi7Z0iw7F37dlzW3VLJWXwt7VsO1T2PYZZG4DoO1ZfwEu9W5s9aQJl1JKKaWUanX2ZRewbGsGS7Zm8M3OI5SUuWgT6MeoXlGMS4rF5/A2rrgSx2q+AAAgAElEQVRorDYJbEoFWbDjC5tk7fgCio6Bjz8kjoBBN0OviRzZmObtKOtNEy6llFJKKdXilbsM3+89ytKth1iyJYOtB3MBSIgM4fqhCYzvE8PgxAgC/GztVXLyDk22GpsxcHjr8VqsvavBuCA0GpKmQO+LodsYCAyr8iZNuNQZbuXKlcybN4+vv/6azMxMwsLCOPfcc7n++uu5/vrr8fVtnqPq7Nmzh65duzJ//nymT5/u7XCUUkop1QzkFJXy1bZMlmw9RHLKYbLyS/D1EQYntufeS/owrk8M3aJCNbFqSqVFkPq1TbC2fQpHnQSqw9kw8k7odTF0Ggg+LafZZpMnXCLSBZgHXAgI8AUwwxhz0nRVRBKAZ4BzgBggH/gRmGuM+cStrKlhMwONMd+f3hG0XE899RQzZ85k3LhxzJ07l4SEBLKzs1m8eDG33nor7dq14/LLL/d2mEoppZRSNdqdmc+SLbYv1prdWZS5DO1C/BnbO4ZxSTGM6hVN22Ad4KJJ5R6E7YttkrVzGZTmg1+wrb0aMRN6XQThnbwdZaNp0oRLREKApUAxcCNggL8Dy0TkbGNM/kne3gbIBO4D9gHhwC+Bj0XkSmPMf93Kvw685LZs22kfRAu1fPlyZs6cyW233cYzzzxTbd3ll1/OzJkzyc8/2eVRSimllGp6peUu1u7JrkyydmXa55VesW24ZWQ3xveJYWCXdvjpQBdNx+WCgxuO12Klr7fLw+NgwDW2FqvrSPAP9m6cTaSpa7h+CXQDehtjdgCIyEZgO/Br4Mma3miM2QTcXHWZiHwE7AZuAtwTrv3GmFUNF3rL9sgjjxAREcGjjz7qcX337t0BOHz4MPfddx/Lli1j3759REZGMnLkSB577DE6d+5cWX769OkkJyezZ8+eatsZM2YMAMnJyQDk5eXx5z//mffee49Dhw7Rrl07+vfvz3PPPUdSUhIAzz33HAsXLiQlJQWXy0VSUhL3338/kydPbtiToJRSSqkzQlZ+CV9uy2DJlgy+3HaY3KIyAnx9GNY9khsvSGRcUgxdIkK8HWbrUpIPu5Kd/liLIe8gIBA3GMbdb5Os2H7QCptvNnXCdRmwqiLZAjDG7BaRFcDlnCTh8sQYUyYix4DShg3zFHxyDxz8ocE3G1xeBr51vEwd+sOkR+q9j/LycpKTk5k6dSpBQUEnLZuVlUVQUBBz5swhOjqa9PR0nnjiCYYPH87WrVtrfb+7P/7xj7z//vvMnj2bnj17cuTIEVasWMHRo0cry+zZs4dbbrmFxMREysrK+OCDD7j00kv5+OOPmTRpUr2PVymllFJnFmMM2w7lsWTrIZZuyWBdWjYuA1FtArnkrI6M6xPDiB5RhAbq8ARN6mja8Vqs3V9BeTEEhkP3cTbB6nkhhEZ5O0qva+q7sh/wnoflm4Cr6rIBEfEBfIAobI1ZL+B2D0VvFZG7gHJgFfBXY8xXpxJ0S5eZmUlhYSEJCQm1lu3duzdPP/105d/l5eUMHz6c+Ph4PvnkE6644op67XvlypVMmzaNm28+Xnnpvo3HH3+88r9dLhfjx49n27ZtvPjii5pwKaWUUi1UUWk5q3YdYelWW5O1/2ghAP07t+X343oyvk8MZ3Vqi49P66sx8RpXOez79vioghmb7fKIbjD4FtsXK/588AvwbpzNTFMnXBFAtoflWUD7Om7jUeAO57/zgGuMMUvcyiwAPgTSgQTgLmCpiFxojEn2tFER+RXwK4DY2NjKJm+etG3bltzc3OoLR9xbx/Drp7y8vH4jA7rHVQd5eXkAlJSUnHhcHrzyyiu89tpr7N69u1q/ro0bNzJhwgQASktLMcacsL3y8nInTLv8nHPOYf78+YSFhTFu3DgGDBhwwvGuX7+e2bNns27dOjIzMzHGjonSs2fPyu1UHENRUVGdjuF0lZeXN8p+ioqKTnrvqZrl5eXpuWuG9Lo0P3pNmie9LtbRIhcbMsvZkFHOpiPlFJdDgA/0i/Llwn4BDIj2pX1QGZBO1o50lu+odZOnTK+J5VeaR/vs9UQeWUvkke/wL8vFJb4ca9uXI91/wZHIQRSGON1K0gykfdOo8ZyJ18Ub9a6eRhCsz08TTwFvAR2AG4A3ReSnxpgPK3dgzM+rlP9KRN7Djmj4d2CEx6CMeRl4GWDQoEGmoq+RJ1u2bCEsLKzG9Q0pNze30fcVHBxMcHAwBw4cqHVfzz77LDNnzmTmzJlcdNFFtG/fHpfLxbBhwzDGVL7f398fETlhexXJVMXyF198kYcffpiFCxfy0EMPERERwQ033MDDDz9MSEgIe/fu5bLLLqNv374899xzxMfH4+fnx/3331/tOrRp0waAoKCgJrk2jXVdgoKCGDhwYINvtzVITk7mZJ9b5R16XZofvSbNU2u9Li6XYVN6jm0quDWDjfuOAdC5XTBXD45hXJ8Yzu8WSZB/009L01qvCcbAkR3Ha7FSvwFTDsER0Hcy9LoIn+7jaB/cjvZAjyYO70y8Lk2dcGVja7nctcdzzdcJjDH7sKMUAnwoIsnA49garZrek+sMsHFzTWVaMz8/P8aMGcPnn39OcXExgYGBNZZ96623GD9+PE888UTlst27d59QLigoiJKSkhOWHzlyhMjIyMq/27Rpw5w5c5gzZw6pqaksWrSIe+65h4CAAObOncunn37KsWPHeOedd4iLi6t8X0FBwakerlJKKaW8qKCkjK+3Z7J0awZLt2aQkVuMCJwb3567LurN+D4x9I4N07mxmlJZia2ZquiPlbXLLo/pB8Nvt/2x4gaBT/Ocj7W5a+qEaxO2H5e7vsDmU9zmWmBGHcoJnmvXFHDPPfcwZswY7rrrrhOGhQebVOXm5lJQUEB4eHi1dfPnzz+hfEJCAocOHSIzM5OoKNtZcufOnaSkpHDBBRd4jCEhIYE77riDhQsX8uOPPwLHEyt//+PzZWzbto0VK1ZUS8CUUkop1Xztyy6o7Iu1ctcRSspchAX6MapXNOOSYhjTO5rINjX/4KsaQd5h2PG5TbB2LIWSXPANhK6jYNhvbX+sdvHejrJFaOqE633gcRHpZozZBSAiicBw4J76bswZQGMEsLOWcuHAZGB1fffRWowaNYonn3ySmTNnsmXLFqZPn058fDzZ2dksWbKEV155hTfffJOLL76YuXPnMnv2bIYMGcLSpUtZtGjRCdu76qqruP/++5k2bRozZ84kMzOTOXPmVCZfFc4//3wuu+wy+vfvT5s2bfjyyy/ZsGEDN954IwATJkzAz8+PG264gTvuuIMDBw7w17/+lfj4eFwuV5OcG6WUUkrVT7nL8P3ebJZssbVYWw/afs+JkSH8fFgC45NiGJQYQYCfzo3VZIyBQz8ebyq4by1goE0HOOsnthar22gICPV2pC1OUydc/wBuA94TkfuwNU5/A/ZSZZJiEUnAJlEPGWMecpY9gG2OuAI4iO3DdTMwBLiuynvvBHoDyzg+aMadTvlpjXp0Z7gZM2YwZMgQ5s2bx5133klmZiZhYWEMGjSIl156iSlTpjBx4kSOHj3KvHnzKCoqYvTo0Xz22Wd069at2rZ69OjBokWLuO+++5g6dSq9evXiySefZPbs2dXKjRo1infeeYdHHnmEsrIyunXrxrx58/jDH/4AQL9+/Vi4cCGzZs3isssuo3v37jzyyCN8+umnZ1yHSaWUUqolyykqZfm2wyzdksGylAyyC0rx8xEGJ0Zw3+Q+jEuKoVt0G2+H2bqUFsLu5ceTrJz9dnmnc2HMn20tVscBrXJurKbUpAmXMSZfRMYB84B/Ypv5LQFmGGPyqhQVwBc7/HuFddimg9cAbbFJ1wZgpDFmRZVyKcAVzqstkINN0m42xqxpjONqSS644IIam/yBHWDjhRde4IUXXqi2vGLkwKqmTp3K1KlTqy2bOHFitb/nzp3L3LlzTxrT1VdfzdVXX11t2TXXXFPt78TERI8xKKWUUqrx7DqcV9lU8Ns9WZS5DO1D/Bnb2w54MbJnNG2D/WvfkGo4x/bD9s9sgrXrSygrBP9Q6D7WJlk9J0JYrLejbFWafJRCY0wacGUtZfbgNnKhMeZ9bJPE2rb/AfDBaYSolFJKKaU8KC138e2eLJZuyWDJ1gx2Z9rpYXrHhvHLUd2Y0CeGc7q0x1fnxmo6Lhekr3NqsT6Fgz/Y5e3i4dwbbC1W4gjw0z5y3qLTcSullFJKqRpl5ZeQnGITrOUph8ktLiPA14fzu0dy0/BExvaOoUtEiLfDbF2KcmDXMluLtX0x5B8G8YEuw2DCg7Y/VnRvbSrYTGjCpZRSSimlKhljSDmUWzngxbq0bIyB6LBAJp/dkXFJMQzvEUVooD5GNqmsXceHbd+zAlylENQWelxoE6we4yHE0+xLytv0k6KUUkop1coVlZazctcRljpJ1v6jhQD079yW28f3ZHxSLP06heOjTQWbTnkZ7F11fMCLzG12eVRvGHarTbK6DAVffZxv7vQKnSJjjE7IpxqUDvqhlFKqKR3KKWLZVttU8OvtmRSWlhPs78uInlH8flwPxibFEBse5O0wW5eCLNixBLZ9Aju+gKJj4ONv+2ANuhl6TYSIbrVvRzUrmnCdAn9/fwoLCwkJ0fbKquEUFhZWm+BZKaWUakgul+HH9GOVTQV/2H8MgM7tgrlqUBzjkmIY1i2SIH9fL0faihgDh1OO12LtXQXGBaHRkDTFDnjRfSwEhnk7UnUaNOE6BTExMezfv5/OnTsTHBysNV3qtBhjKCwsZP/+/cTG6jCtSimlGk5+cRlf78i0TQVTMjicW4yPwLnx7bn74t6MT4qlV2wbfZZpSmXFsOcr2LbYJlpHU+3yDmfDyDttU8FOA8FHJ4VuKTThOgXh4eEApKenU1pa2qj7KioqIihIq/Obm4a+Lv7+/sTGxlbeW0oppdSp2ptVwLIUOzfWyl1HKClzERbkx+he0YzvE8PoXjFEhAZ4O8zWJffQ8bmxdi6D0nzwC4ZuY2DEH+3cWG07eztK1Ug04TpF4eHhTfJwnJyczMCBAxt9P6p+9LoopZRqLspdhvVp2SzZmsHSLRmkHMoFoFtUKDcMS2BcnxgGJ0bg76s1Jk3GGDiw4fiogunr7PLwOBhwja3F6joS/IO9G6dqEppwKaWUUkqdYY4VlrJ822GWbs0gOSWD7IJS/HyEIV0juG9QH8YlxdAtuo23w2xdSvJh15c2wdq+GHIPAAJxg2Hc/TbJiu2nc2O1QppwKaWUUkqdAXYezmPplgyWbD3Et3uyKXcZIkIDGJsUw/ikWEb2iiI8SAdfalJH05xarM9g93IoL4bAcOg+ziZYPS+E0ChvR6m8TBMupZRSSqlmqKTMxdo9Wbap4NYMdmfmA5DUIYzfjO7GuKRYzunSDl+dG6vpuMph39rjowpmbLLLI7rB4FvsqILx54Of9pFTx2nCpZRSSinVTBzJKyY5xTYVXL7tMLnFZQT4+XBB90h+MTyRsUkxxLXXaWmaVOFR2LnUJljbF0NhFvj42cRq4sO2Jiuqh7ejVM2YJlxKKaWUUl6UcjCXD3aW8MzmFazfexRjICYskEsHdGRcUizDe0QSEqCPbE0qO5W4ve/B649D2kpwlUFwhB1NsNdFtslgcDtvR6nOEPrpVUoppZRqYoUl5XywMZ2Fq1LZsM9OQDwgzjBjfC/G94mhX6dwnRurqbnKYfvnsPZV2P45PTAQ0w8u+IOtxYobBD46KbSqP024lFJKKaWayI6MPBauTuU/3+0jp6iMnjFt+OuUvrTP3c3Ui0d4O7zWKS8D1v0ffPcGHEuDNrEw6i5WFfdg2KSfeTs61QJowqWUUkop1YhKylws3nyQBatSWbUrC39f4eKzOnL90HiGdI1AREhOTvV2mK2LMbDna1j7Gmz5AFyl0HUUTPwbJE0GX3+KkpO9HaVqITThUkoppZRqBPuyC/jXmjTe/nYfmXnFxLUP5u6Le3P1oC5EtQn0dnitU+FR2PCWTbQyUyCoLQz5JQz6BUT19HZ0qoXShEsppZRSqoGUuwxfbstgwao0lqVkIMC4pBimDUtgdM9ofHQId+9IXw/fvgo//gdKC6DzeXD5/4N+P4EAHfVRNS5NuJRSSimlTtPh3GLeWbuXN1ensf9oIdFhgdw2tgfXDImnc7tgb4fXOpUUwKb/2kQrfR34BcPZV9narE4DvR2dakU04VJKKaWUOgXGGFbtymLB6lQWbzpIabnhgu6R3Du5Dxf2jcXf18fbIbZOmdttk8HvF0LRMYjqDZMehbN/pkO5K6/QhEsppZRSqh6OFZbyn+/2sXB1KjsP59M22J8bzk/kuqHxdI9u4+3wWqfyUtj6kR3Sffdy8PGHPlNg8M2QMBx0iH3lRZpwKaWUUkrVwYa9R1mwKpUPNqZTVOrinC7tePyqAVx6dkeC/HV+Jq84ts8O577u/yDvILTtAuPuh3NvgDYx3o5OKUATLqWUUkqpGhWUlPH+9+ksXJ3GD/uPERLgyxUD45g2NJ6zOrf1dnitk8sFO5fa2qxtn9oh3nteCIOetv/q5MSqmdGESymllFLKzbZDuSxclcp/1+0nt7iM3rFh/O3yflw+sDPhQf7eDq91yj8C6/8J382H7D0QEgXDb4fzpkP7RC8Hp1TNNOFSSimllAKKy8r59MeDLFydxprdWQT4+nBJ/w5MG5bAoIT2iPYDanrGwN7VdqTBzf+D8hKIv8A2G+wzBfx0PjPV/GnCpZRSSqlWbW9WAW+uSeOdb/dyJL+E+IgQ7pmUxFXnxRGpExR7R3EubHwbvn0NMjZBYLityTrvJojt6+3olKoXTbiUUkop1eqUuwxLt2awcHUqX247jAAT+sQybVgCI3tE6QTF3nLwR9s3a+M7UJIHHc6GKU/DWT+FQB0BUp2ZNOFSSimlVKuRkVPE29/u5V9r0kg/VkRMWCC/H9eTa4d0oWNbnaDYK0qLYPN7NtHauxr8gqDfT+yQ7p3P0yHd1RlPEy6llFJKtWjGGL7ZeYSFq1NZvOkQZS7DyJ5RzJrSl/F9dIJir8naBWvnw/oFUJgFEd1h4sNwznUQEuHt6JRqMJpwKaWUUqpFOlpQwqLv9vHm6jR2ZebTLsSfm4Ynct3QBLpGhXo7vNapvMwO5b72Ndi5BMQXki6BQTdD19Hgo8mvank04VJKKaVUi2GMYf3eoyxclcaHG9MpLnNxXkJ7nhzXg0v66wTFXpNzwE5OvO4NyNkPYZ1gzJ/tBMXhnbwdnVKNShMupZRSSp3x8ovLeO/7dBasSmXzgRxCA3z56XlxTBuaQN9O4d4Or3UyBnZ/aYd0T/kYXGXQfRxMmgu9JoGvPoaq1kHvdKWUUkqdsbYezGHhqjTeXb+fvOIykjqE8fepZzF1YGfaBOpjjlcUZMGGf9lmg0d2QHB7GHarHdI9sru3o1Oqyek3kVJKKaXOKEWldoLiBatSWZuaTYCfD5f278i0YQmcG99OJyj2BmNg/zo70uCP/4GyIogbAle8BH2ngn+QtyNUyms04VJKKaXUGSH1SD5vrk7jnbV7yS4oJTEyhHsv6cNPz4ujfWiAt8NrnUry4YdFNtE6sAH8Q2HAtXZI9w79vR2dUs2CJlxKKaWUarbKyl0s2ZrBglWpfLU9E18f4cI+sVw/LIELukfqBMXekrHVJlkb3oLiHIjpC5c8Dmf/DIK0z5xSVTV5wiUiXYB5wIWAAF8AM4wxabW8LwF4BjgHiAHygR+BucaYT9zKBgF/A64H2gHfA38yxixv2KNRSimlVGM4eKyIt75N4601ezmYU0SH8CD+OKEXPxvchQ5ttXmaV5SVwJb3bd+s1BXgGwB9L7dDuscP0wmKlapBkyZcIhICLAWKgRsBA/wdWCYiZxtj8k/y9jZAJnAfsA8IB34JfCwiVxpj/lul7KvAZOAuYBfwO+AzETnfGPN9Ax+WUkoppRqAy2VYsTOTBatS+WJLBuUuw6he0Tx4eT/GJ8XgpxMUe0d2Knz3Oqz/J+QfhnYJMOEBGPhzCI3ycnBKNX9NXcP1S6Ab0NsYswNARDYC24FfA0/W9EZjzCbg5qrLROQjYDdwE/BfZ9kA4DrgF8aY+c6yL4FNwEPAZQ17SEoppZQ6Hdn5Jfz7u728uTqNPUcKiAgN4JaRXbluSDwJkTpBsVe4ymHHF3ZI9+2Lbe1Vz4ts36zu43WCYqXqoakTrsuAVRXJFoAxZreIrAAu5yQJlyfGmDIROQaUuu2jFHjbrdxbwD0iEmiMKT6dg1BKKaXU6THGsC4tmwWr0vjohwOUlLkYnNieGRN6Mal/BwL9dIJir8g7DOv/D9a+DsfSoE0sjLoTzr0R2nXxdnRKnZGaOuHqB7znYfkm4Kq6bEBEfAAfIApbY9YLuN1tH7uNMQUe9hEA9HD+WymllFJNLK+4jHfX72fhqlS2HsylTaAf1wzuwnVD40nqoIMteIUxkPqNHQRj8/vgKoXEkTDxIUi6FHz9vR2hUmc0McY03c5ESoAnjTH3uC3/O3CPMabWBFBEHgfucP7MA26s2n9LRBYD4caYYW7vmwB8DowyxnzlYbu/An4FEBsbe95bb71Vr2NrLHl5ebRp08bbYSg3el2aH70mzZNel+bHW9ckLaecpXvLWJVeRlE5xIf5MC7ej2Ed/Qjy08EWvHFdfMvy6XAwmU7pnxBasJcy31AOdhhHeqeLKQiNa9JYmiP9/mqemtN1GTt27HfGmEG1lfPGsPCeMrz6fNM+BbwFdABuAN4UkZ8aYz6ssq1678MY8zLwMsCgQYPMmDFj6hFS40lOTqa5xKKO0+vS/Og1aZ70ujQ/TXlNikrL+WjjARasTmV9Wj6Bfj5MOSeOaUPjOaeLTlBcVZN+VtK/t7VZPyyC0gLoNBAm/Am/s64kLiAETbUs/f5qns7E69LUCVc2EOFheXtnXa2MMfuwoxQCfCgiycDjQEXClQXE17CPivVKKaWUaiS7M/NZuCqVRev2cbSglG5Rodw32U5Q3C5EJyj2itJC+PG/NtHa/x34BUP/K+2Q7p3P9XZ0SrVoTZ1wbcL2sXLXF9h8ittcC8xw28cVIhLi1o+rL1AC7EAppZRSDaq03MUXmw+xYHUqK3Ycwc9HmNgvluuHJnB+90itzfKWzB123qzvF0LRUYjqBRc/AgOugeD2tb9fKXXamjrheh94XES6GWN2AYhIIjAcuOck7/PIGUBjBLDTbR8PYgfheMMp5wf8DFisIxQqpZRSDSf9aCFvrUnjrW/3kpFbTKe2QdxxoZ2gOCZcJyj2ivJSSPnYDum++0vw8bODXwy+2Q6GocmvUk2qqROufwC3Ae+JyH3YvlZ/A/YCL1UUEpEEbBL1kDHmIWfZA9jmiCuAg9g+XDcDQ7DzbgFgjPleRN4GnhIRf+w8XbcCXYFpjXx8SimlVIvnchmWbz/MglVpLN16CAOM7hXN7KEJjE2KwddHH+i94th+WPcGfPcG5B2E8DgYdx8MvAHCYr0dnVKtVpMmXMaYfBEZB8wD/okdyGIJMMMYk1elqAC+2OHfK6zDNh28BmiLTbo2ACONMSvcdnUT8DDwd6CdU+5iY8y6Bj8opZRSqpU4klfMO2v38eaaVPZmFRIZGsCvR3fnuiHxdIkI8XZ4rZPLBbuW2WaDKZ+AcUGPCTD4Keg5EXx0PjOlvK3JRyk0xqQBV9ZSZg9uowoaY97HNhesyz4KgZnOSymllFKnyBjDt3uyWbAqlU9/PEhJuYshXSO466IkLuoXqxMUe0v+Edsva+1rkL0bQiLhgt/DedMhoqu3o1NKVeGNYeGVUkop1czlFJXy7rr9LFydyrZDeYQF+nHd0HimDY2nZ2yYt8NrnYyBvWvsSIOb/gflxRB/Poy9F/peBn6B3o5QKeWBJlxKKaWUqvTj/mMsWJXKe9+nU1haTv/ObZl7ZX+mDOhESIA+NnhFcS5sfMfWZh36EQLC4Nyfw6BfQKynwZ+VUs2JfnMqpZRSrVxhSTkfbExn4apUNuw7RpC/D5cN6MS0oQkM6NLO2+G1Xoc22ZEGN74DJbkQ2x8unQf9r4JArWVU6kyhCZdSSinVSu3IyGPh6lT+890+corK6B4dyl+n9OUnA+NoG+Lv7fBap7Ji2PyeTbT2rgLfQOh3hR3SPW6wDumu1BlIEy6llFKqFSlzGT7cmM6CVams2pWFv69wUb8OTBuawLBuETpBsZcEFR6Ez2fB+gVQcAQiusHEv8M50yAkwtvhKaVOgyZcSimlVCuQX1zG69/s4aXkQnJK1tO5XTB3XdSbqwd1ITpMB1vwCpcLdnwOa15m2I4vQHyh9yRbm9V1DPj41LoJpVTzpwmXUkop1YIVlZazcHUazy/bwZH8EvpH+fLHSwcyupdOUOw1hUdtTda3/4DsPdCmA3sSriHxJ7OgbWdvR6eUamCacCmllFItUGm5i3+v3cezS7dz4FgRF3SP5M6LepOzawNjkmK9HV7rdGgzrHkZNr4NpQXQZRiMnwVJU9jz9TckarKlVIukCZdSSinVgpS7DO9v2M9TX2wn9UgBA+Pb8cRVA7igRxQAybu8HGBrU14GKR/bRGvPV+AXBP1/CkN+BR0HeDs6pVQT0IRLKaWUagGMMXy26SBPfr6NbYfy6NMxnFdvHMS4pBgdCMMb8o/Autfh29cgZx+07QITHoBzb9RBMJRqZTThUkoppc5gxhiWb8/kicUpbNx3jG7RoTx33UAuOasjPtpHq+mlr4c1/4AfFkF5MXQdBZPm2sEwfHy9HZ1Sygs04VJKKaXOUGt2Z/H4Zyms2ZNF53bBPPrTs/nJwM74+erodk2qrAS2vA+rX4J9a8A/BAZOs80GY/p4OzqllJdpwqWUUkqdYX7Yd4zHFqewfNthosMCeejyfvxscBcC/bQGpUnlHoS18+G7+ZB3yM6dddEcOOc6CG7n7eiUUs2EJlxKKaXUGWLboavUJeMAACAASURBVFyeXLyNTzcdpF2IP3+elMQN5ycSHKCJVpMxBvZ9a2uzNv8PXGXQ40IY+mvoPl7nzlJKnUATLqWUUqqZSz2Sz1NfbOd/3+8nNMCPGRN6cvOIroQF+Xs7tNajtAh+/A+seQkObIDAcNtkcPAtENnd29EppZoxTbiUUkqpZurAsUKeWbKDf6/di5+v8KuR3fjN6O60Dw3wdmitx9G9sPZV+O4NKMyC6CSY/AScfQ0EtvF2dEqpM4AmXEoppVQzk5lXzAvJO/nnqlSMMVw3NJ7bxvYgJjzI26G1DsbYObPWvAxbP7LLel9ia7S6jgIdZl8pVQ+acCmllFLNxLHCUv6xfBevrdhNUWk5V54bxx/G96RLRIi3Q2sdSvJh49t2WPeMzRD8/9m77/iq6vuP469vQkJI2CuBQMIIe0NkiMhWLAriFnHV1Vattrb9aWXjHmjFqjiqVlGsCxEtMsNShmwChJ2EEVYgJCH7fn9/nNCmkXGBm5yb5P18PHgkOffcc97xPLz3fvL9ns+3Flz6MMTeA7Wi3U4nImWUCi4RERGXZebk88GPe5i6aCcnsvO5umMD/jC4Jc3racpaqUjdBaveg7UfQXYaRHSAYa9DhxsgqIrb6USkjFPBJSIi4pLsvAKmrUjizbgdHMnIZWDr+vzxipa0a1jD7Wjln8cDuxbAirdh+xxnUeI2w5xug417aNqgiPiMCi4REZFSllfg4YvVe3lt/nYOpGVzafM6TL29Fd2ia7kdrfzLPgHrPoFV78DRHRBWDy7/M8T+Gqo3cDudiJRDKrhERERKSYHH8u36/bwybxuJR0/SJaomL9/YiUtj6rodrfw7nOA0wVg/HXIzIDIWrnsH2g6HSpXdTici5ZgKLhERkRJmreWH+INMnpvAtoMZtI6oxnt3xjKgdX2Mpq6VHE8BbPvBWTtrVxwEBkP766H7fRDZze10IlJBqOASEREpIdZaFm8/wstzEtiwN41mdcOYcmsXhnZoQECACq0SczLVaYCx6l04ngTVGsKA0dD1Lqhaz+10IlLBqOASEREpAav2pPLiDwms3J1KZM0qvHBDR67rEkmlwAC3o5VfKRudaYMbPof8LIjuDYMnQeurIVAfeUTEHXr1ERER8aGNe9N4aU4Ci7Ydpl61ykwc3o6bL2lM5UqBbkcrnwryYOssp9tg0o9QqQp0vMlZpDiivdvpRERUcImIiPjC9oPpvDxnG7PjU6gZGsQTV7Xmjl5NqBKsQqtEZByG1R/Az/+A9P1QM8oZzeoyCkJru51OROQ/VHCJiIhchMSjmfxt3na+XrePsOBKPDKwBff0aUr1kCC3o5VP+1Y7o1nxX0FBLjTrD1dPhhZXOGtpiYj4GRVcIiIiF+BAWhZTFuzgX6uSqRRouL9PMx7o25zaYcFuRyt/8nMgfobTbXDfagiuCt3ugkvug3ot3U4nInJWKrhERETOw9GMHN6I28lHyxOx1jKyRxQP9Y+hfvUQt6OVPyf2O1MGV38AmYehTgxc9QJ0uhVCqrudTkTEKyq4REREvJCWlce7S3bx3tLdZOcVcF3XRjwysAWNa4e6Ha18sRaSljujWVu+ddbSanml0wSjWX8IUJdHESlbVHCJiIicxcncfN5ftoepi3ZyIjufoR0b8IdBLYmpX9XtaOVLXhZs/Nxp656yEUJqQI/fwCX3Qu2mbqcTEblgKrhEREROIzuvgE9WJPFG3A6OZOQysHV9/nhFS9o1rOF2tPLlWKKzQPHajyDrGNRvC1e/6rR2Dw5zO52IyEVTwSUiIlJEXoGHL1bv5bX52zmQls2lzesw9fZWdIuu5Xa08sNa2L3I6Ta47d+AgdZDoccDzmLFxridUETEZ1RwiYiIAB6P5dsN+3ll7jb2HD1J58Y1eenGTvSOqet2tPIjJwPWfwor34EjCRBaBy77A8T+Gmo0cjudiEiJUMElIiIVmrWWOZsPMnnONhIOptM6ohrv3hHLwDb1MRpp8Y2jO50ia900yDkBDTrDtW9Cu+sgSN0dRaR8U8ElIiIVkrWWJduP8PKcBNbvTaNZ3TCm3NqFoR0aEBCgQuuieTywY57TbXDHPAgIgnbXQvcHoFGspg2KSIVR6gWXMaYx8AowGDDAPOBRa23SOZ4XC9wPXA5EAUeAJcBoa+3uYvvuAaJPc5gR1toZF/s7iIhI2bZqTyov/pDAyt2pRNaswgs3dOS6LpFUClTL8YuWddwZyVr5DhzbDVUjoN9fnYWKq4W7nU5EpNSVasFljAkFFgA5wJ2ABZ4CFhpjOlprM8/y9FuAdsBrQDwQCYwBfjbGdLbWJhfb/wdgfLFtCRf9S4iISJm1aV8aL81JIC7hMPWqVWbCsHbc0r0xlSsFuh2t7Du0xWnpvn465J2Exj1hwGhoMwwqBbudTkTENaU9wnUf0AxoZa3dAWCM2QBsBx4AJp/luc9baw8X3WCMWQbsLjzu2GL7H7HWLvdVcBERKbu2H0xn8txt/HtTCjVDg3j8qtbc2asJVYJVaF2Ugnyny+CKqbBnCQRWhg43Qvf7oGFnt9OJiPiF0i64hgHLTxVbANba3YWF03DOUnAVL7YKtyUaYw7jjHaJiIj8j6SjJ3l13jZmrNtHaHAlHhnYgnv6NKV6SJDb0cq2zKOw5kP4+R+Qlgw1GsOg8dDlDgir43Y6ERG/UtoFVzvgm9NsjwduPN+DGWPaAPWBLad5+BpjzEkgEFgLPKf7t0REKoaUtGymLNjOZ6uSCQww3NenGQ/0bU7tME1tuyj71zn3Zm38HApyoEkfGPIstLwKAtWHS0TkdIy1tvROZkwuMNla+3ix7U8Bj1trvX61NsZUAuYDbXCmKB4r8tgUYBXOdMNw4CGgL3C7tfbjMxzvfpymHISHh3ebPn36+fxqJSYjI4OqVau6HUOK0XXxP7om/qm0r8uJXMt3u3JZkJSPx0LfxpW4plkQtULUDOOU870mxpNHvcM/EbnvO2qc2EpBQGVSIvqzL3IoJ8OiSjBpxaLXMP+ja+Kf/Om69O/ff7W1NvZc+7nx56jTVXgX0hv2deBSYGjRYgvAWvvw/xzcmK+B5cCzwGkLLmvt28DbALGxsbZfv34XEMn34uLi8Jcs8l+6Lv5H18Q/ldZ1ScvK490lu/jH0t1k5RVwXddGPDKwBY1rh5b4ucsar69J+kFY/T6seR8yUqBWU7jyWQI7jySySk3N5fcxvYb5H10T/1QWr0tpF1zHgNqn2V6r8DGvGGOexRmNutNaO+dc+1trC4wxnwPPG2MaWGsPeHsuERHxXydz83l/2R7eXryLtKw8hnZswB8GtSSmvn/89bPMsRb2/uysnRU/Azx5EDMYuk+BmEEQoJFCEZHzdT5T+DoCo3HWwaoN9LTWrimcDrjYm8IH516tdqfZ3hbY7GWOJ4HHgd9baz/yKnzhUwu/lt4cShERKRE5+QV8siKJvy/cyZGMHAa2rs8fr2hJu4Y13I5WNuVlQ/xXTrfBA+ugcnW45F6n22Cd5m6nExEp07wquIwxl+LcL5UEfIXTwv2UAOA3gDcF10zgJWNMM2vtrsJjNwF64xRR58rxe5x1u5601k7xJnvh8yrhNOVIstamePs8ERHxL3kFHr5cvZfX5m9nf1o2vZrVYert3egWXcvtaGVT2l5Y9Z7TcfDkUajbCoa+DB1vgcoaJRQR8QVvR7iexym4hvHfAuuUn4HbvDzOOzgNLL4xxozGGW2aBCQDU0/tZIyJBnYCE621Ewu33QK8CswGFhhjehY57glr7ebC/W7FaTH/feFxw4EHgW7ArV7mFBERP+LxWL7dsJ9X5m5jz9GTdG5ckxdv7ETvmLpuRyt7rIU9S53RrK3fAdbpMtjjfmjaF8yF3FYtIiJn4m3B1Q243lrrMeYXr8RHcIqac7LWZhpjBgCvAB/hTPObDzxqrc0osqvBaededLL4kMLtQwr/FbUI6Ff4/W6cVvEv4kx9PInTsXCItfYHb3KKiIh/sNYyd/NBXp6zjYSD6bSOqMa7d8QysE19fvl2JGflKYCNXxD789OwKBGq1IJLH4LYe6BWtNvpRETKLW8LrhygyhkeiwDSvD2htTYJuP4c++yhWOdCa+1dwF1eHH85MMDbPCIi4n+stSzdcYSX5mxjffJxmtUNY8qtXRjaoQEBASq0zou1sH0uzBsPh+IhLBqGTYEON0LQmd7aRUTEV7wtuJYCvzfGFF04+FTziV8DC32aSkREKqyf96Ty4g8JrNidSmTNKrxwfUeu6xpJpUB1yDtvyatg3jhIXOa0db/+PX4+Upt+XfV3SRGR0uJtwTUWp+haC3yOU2yNMsa8APQEupdMPBERqSg27UvjpTkJxCUcpl61ykwY1o5bujemcqVAt6OVPYe3wfwJsHUWhNWDX70EXe+ESsEQF+d2OhGRCsWrgstau9YY0w94CRiPM93vUeBHoL+1dktJBRQRkfJt+8F0Js/dxr83pVAzNIjHr2rNnb2aUCVYhdZ5O7Ef4p6FtR9DUCj0fxJ6/k4dB0VEXOT1OlzW2lVAX2NMKFAXOGatTS+xZCIiUq4lHT3Jq/O3MWPtPqoEBfLIwBbc06cp1UOC3I5W9mQdg6Wvwoq3nOYY3R+Ay/8EYeriKCLiNm/X4XobeMZau8daexJnPa5Tj0UBo62195dQRhERKUdS0rKZsmA7n61KJjDAcG+fZvymb3NqhwW7Ha3sycuClW/DksmQnQYdb4L+f4VaTdxOJiIihbwd4boXeBfYc5rH6gH3ACq4RETkjFIzc3kzbgf//CkRj7Xc2j2KhwbEEF49xO1oZU9BPqz/1Jk+eGIfxAyGQeMgooPbyUREpBivpxSeRTiQ5YPjiIhIOXQiO493F+/ivaW7ycor4LqujXhkYAsa1w51O1rZYy0kfA/zJsCRBIjsBiOmQtM+bicTEZEzOGPBZYwZDgwvsmmMMeZwsd2qAH2BNSWQTUREyrCTufnM2pXLI4sWkpaVx9AODfjD4JbE1FcDhwuS+KOzllbyCqgTAzd9BG2uAS0ALSLi1842wtUMGFz4vcVp/Z5bbJ8c4Gfg/3wfTUREyqLk1JN8sjKJf61K5mhmHgNa1+ePg1vSPrKG29HKpoObnRbv22ZD1Qi4+lXocjsE+mKSioiIlLQzvlpba18BXgEwxiQDV1tr15dWMBERKTsKPJaFWw/x8YpEFm07jAEGtgmne7U07htxidvxyqbjybDwGedercrVYeBY6PFbCNZUTBGRssTbdbgal3QQEREpew6lZ/PZymQ+XZnE/rRs6lerzMMDWnBr98Y0qFGFOC2ye/5OpsKSl2HlO87Plz4El/0RQmu7m0tERC7Iec1HMMZUB2KAX7SUstb+6KtQIiLiv6y1/LTzKNNWJPFDfAr5HstlMXUZe01bBrYJJygwwO2IZVNuJix/E5b9DXIzoNNI6Pc41NTfPEVEyjJv1+GqDLwD3Aqc6Z000FehRETE/6SdzOOLNXuZtiKRXYczqRkaxN29mzCyRzRN64a5Ha/sKsiDtR9B3HOQcRBa/cqZPli/jdvJRETEB7wd4RqN00DjXuB94Pc4DTPuwlmH648lEU5ERNxlrWVd8nGmrUji2/X7ycn30DWqJpNv6sSvOjQgJEh/a7tg1sLmb2D+REjdCY17wo0fQnQvt5OJiIgPeVtw3QhMBD7GKbh+tNauAd4xxnwFDARmlUxEEREpbZk5+cxcv5+PlycSv/8EYcGB3NCtEbf1iKZtw+puxyv7di+GueNg/xqo1xpu+RRaXaUW7yIi5ZC3BVcUEG+tLTDG5AFF5468C/wD+IOvw4mISOlKSEln2opEvl6zj/ScfFpHVGPSte0Z0SWSqpXVhvyiHdjgrKW1cz5UbwTD34BOt0CARgpFRMorb989jwKnVqrcC3QElhT+XAtnAWQRESmDcvILmL0phY+XJ7JqzzGCKwVwdYcG3NYziq5RtTAadbl4qbth4dOw8XMIqQlXPAWX3AdBv+hBJSIi5Yy3BdcKoBPwPfAVMMkYEwrkA38BlpVMPBERKSmJRzP5ZGUSn/+8l9TMXKLrhPLXX7Xmhm6NqR0W7Ha88iHjMCx+EX7+BwRUgsv+AL0fhSo13U4mIiKlxNuC6wUguvD7p4CWwLM4HQt/Bn7n+2giIuJr+QUeFmw9xMcrkli87TCBAYbBbcK5rWcUvZvXJSBAo1k+kZMOP/0dfpwCeVnQ9Xbo+zhUb+B2MhERKWXeLny8ElhZ+H0aMNwYUwUIsdYeK8F8IiLiAwdPZDN9ZTLTVyVxIC2biOohPDqoBbdcEkVEDU1r85n8XFj9ASx6Hk4egTbDnBbvdVu4nUxERFxyzoLLGBMMLAWetNbOPbXdWpsFZJVgNhERuQgej+XHnUf5eHkic7ccpMBjubxlPcYPa8fA1vWppAWKfcfjgfivYMEkOLYHmvSBQeOhUazLwURExG3nLListbnGmJZAQSnkERGRi3QsM5cvVu/lk5VJ7D6SSa3QIO69rCkje0QRXUcLFPuUtbBzgdN5MGUDhLeH276EmIFq8S4iIoD393DNAwYBC0owi4iIXCBrLWuSjjNteSKzNh4gN9/DJU1q8cjAFgxpH6EFikvCvtVOobV7MdSMghFvQ4cbIUAjhyIi8l/eFlyTgU+MMQHADOAAYIvuYK1N8nE2ERE5h4ycfGas3ce0FUlsOXCCqpUrcXNsY27rGUXrCC1QXCKO7oT5E2HzDAitA0Oeh9i7oVJlt5OJiIgf8rbgWlr49S/An8+wj/58KiJSSrYcOMHHyxOZsXYfmbkFtG1QnWdGdGB454aEaYHikpGe4jTDWP0hVAqBvv8HvR6CEBW2IiJyZt6+K99PsREtEREpXdl5BXy/8QAfL09kTdJxKlcK4OqODRnVM4rOjWtqgeKSkp0Gy16D5W9AQS7E/hr6/gWq1nc7mYiIlAHetoV/t6SDiIjI6e0+ksknKxL5fPVejp/Mo1ndMEYPbcMN3RpRM1QLFJeY/BxY9S4sfgmyUqH99dD/SajT3O1kIiJShmjeiYiIH8ov8DBvy0E+Xp7E0h1HqBRguKJdOKN6RNOreR2NZpUkTwFs+BcsfBrSkqFZfxg0Dhp2cTuZiIiUQSq4RET8yIG0LD5dmcxnq5I4eCKHhjVCeGxwS26+pDH1q2uB4hJlLWyf43QePLQZGnSGYVOgeX+3k4mISBmmgktExGUej2XJjiNMW57I/K2H8FhL35b1ePraaPq1qqcFiktD8iqYNw4Sl0HtZnDD+9D2WrV4FxGRi6aCS0TEJUczcvh89V4+WZFEUupJ6oQFc//lzRjZPYrGtUPdjlcxHE5wWrxvnQVh9WHoy9D1TggMcjuZiIiUEyq4RERKkbWWnxOPMW15It9vTCG3wEP3prX505WtuLJdOJUraYWNUpG2D+KehXXTICgM+o+Gnr+FylXdTiYiIuXMeRdcxpgqQG3goLU23/eRRETKn/TsPL5eu49py5NIOJhOtcqVGNkjipE9omgZXs3teBVH1jFY+gqsmArWAz1+A30eg7C6bicTEZFyyuuCyxhzFTAB6Fq4qTuwxhgzFVhorZ1eAvlERMq0TfvSmLYiiW/W7eNkbgEdImvw/PUduKZTQ0KDNcmg1ORlOUXW0smQfQI63gz9/wq1ot1OJiIi5ZxX7/bGmGuAGUAcMBp4psjDycBdgAouERGcBYpnbXAWKF6XfJyQoACGdWrIbT2i6dS4ptvxKpaCfFj/CSx8FtL3Q4srYOA4iGjvdjIREakgvP3z6njgn9bau40xlfjfgmsj8BtfBxMRKWt2Hs7gkxVJfLF6L2lZeTSvF8a4a9pyXZdG1AhVE4ZSZS1s/c5piHEkASJj4fp3oMllbicTEZEKxtuCqy3weOH3tthjxwCvJ78bYxoDrwCDAQPMAx611iad43mxwP3A5UAUcARYAoy21u4utm8A8H/AA0AEkABMtNZ+6W1OERFv5BV4mLv5IB8vT+THnUcJCjRc2S6C23pE07NZbS1Q7IbEH2HuONi7Euq0gJs/htZXg66FiIi4wNuCKx2oc4bHooHD3hzEGBMKLABygDtxirengIXGmI7W2syzPP0WoB3wGhAPRAJjgJ+NMZ2ttclF9p0E/Al4Elhd+NzPjTFXW2u/9yariMjZ7DuexfSVSUxflczh9Bwia1bhz1e24qbYxtSrVtnteBXTwXiYNwG2/wDVGsA1r0Hn2yBQ98qJiIh7vH0Xmg88boz5HjhVFFljTDDwIPCDl8e5D2gGtLLW7gAwxmwAtuOMRk0+y3Oft9b+T2FnjFkG7C487tjCbfVxiq3nrLUvFe660BgTAzwHqOASkQtS4LEs3n6YacsTWbD1EBYY0Ko+t/WMom/L+gQGaATFFceTYOEzsH46hFSHQeOh+wMQrLXMRETEfd4WXH8FVgJbge9wRqb+DHTCGfm6wcvjDAOWnyq2AKy1uwsLp+GcpeAqXmwVbks0xhzGGe065UogGPi42O4fA/8wxjQtPgVRRORsjmTk8K+fk/lkRRJ7j2VRt2owv+3XnFu7R9Golj7UuybzKCx5GVa9Axi49GG47A8QWtvtZCIiIv/hVcFVWBTFAhOBawo3DwZm49xDtdfL87UDvjnN9njgRi+P8R/GmDZAfWBLsXPkADuK7R5f+LUtzqiYiMgZWWtZuTuVj1ckMXvTAfIKLL2a1eHxq1pzRdsIgisFuB2x4srNhOVvwLLXIDcDOo+Efk9AjUZuJxMREfkFY23xHhin2cmYMCDXWpt3USczJheYbK19vNj2p4DHrbXnsy5YJZypjm1wpigeK9z+NjDMWhtRbP8YnKmLd1hrPzrN8e7HacpBeHh4t+nT/aPLfUZGBlWrVnU7hhSj6+J/fHVNTuZZlu3PZ2FyHvszLKGVoHdkJfo3DqJhVRVZ58uX/68YTz4NDswlOvEzKuce40idHuxqNoqTYVE+OX5Fodcv/6Tr4n90TfyTP12X/v37r7bWxp5rv3MWOMaYICANuA6Y6YNsp6vwLuTGh9eBS4Ghp4qtIsc673NYa98G3gaIjY21/fr1u4BIvhcXF4e/ZJH/0nXxPxd7TTbuTePj5YnMXL+frLwCOjWuyaNDorimY0OqBAf6LmgF45P/V6yFzTNg/iRI3QlRvWDQBOpG9fC+Ra78h16//JOui//RNfFPZfG6nLPgstbmGWMOAfk+ON8x4HST62sVPuYVY8yzOKNRd1pr5xR7OBWoZYwx9n+H72oVeVxEhKzcAr5dv59pKxJZvzeNKkGBDO/sLFDcoVENt+MJwK5FMG887F8D9drArZ9ByyvV4l1ERMoMb6fwfQLczcV3+IvHucequLbAZm8OYIx5EmdNsN+fbmpg4TkqA8353/u42hZ+9eo8IlJ+7TiUzsfLk/hyzV7Ss/NpUb8qE4a1Y0TXSKqHaIFiv3BgvdPifed8qN4Irn0TOt4MARptFBGRssXbgmsbcLMx5iecphcHKDZtz1r7Ty+OMxN4yRjTzFq7C8AY0wTozX8XVj4jY8zvcdbtetJaO+UMu80GcoHbgAlFto8CNqlDoUjFlJvv4Yf4FKatSGT5rlSCAg1XtW/AqJ7RXNKklhYo9hepu2HBU7DpC6hSC654Gi65F4JC3E4mIiJyQbwtuN4q/BoJ9DjN4xbwpuB6B3gI+MYYM7rweZOAZGDqqZ2MMdHATmCitXZi4bZbgFdxCqoFxpieRY57wlq7GcBae8gY8wrwhDEmHVgD3AwMwGk9LyIVSHLqST5dmcS/fk7mSEYujWtX4f+GtObG2EbUraoFiv1GxmFY/AL8/D4EVII+j0HvRyBEUztFRKRs87bgauGLk1lrM40xA4BXgI9wGlnMBx611mYU2dUAgUDRlmBDCrcPKfxX1CKgX5GfnwQygEeACCABuMla+60vfg8R8W8FHktcwiGmrUhiYcIhDDCgdTijekZxeYt6BGiBYv+Rkw4/vg4/vQ55WdD1Duj7f1C9gdvJREREfMLbdbh2+uqE1tok4Ppz7LOHYl0FrbV3AXd5eY4CnKmHT11IRhEpmw6lZ/OvVcl8ujKZfcezqF+tMg/3j+GW7lE0rFnF7XhSVH4urH4fFr0AJ49A2+EwYCzUjXE7mYiIiE95ve6ViIi/2rQvjTfWZbNmzgLyPZbeMXUYPbQNg9qGExSotbP8iscDm76EhU/BsT3QpA8MmgCNurmdTEREpER4VXAZY7Zz+rWt/sNa29IniUREvHT8ZC4vzUlg2ookQivBXZc2ZWSPKJrV848FEaUIa52Og/PGQ8pGCO8Ao76E5gPV4l1ERMo1b0e4VvDLgqsO0BM4ASz2ZSgRkbMp8Fg+W5XMiz9sJS0rjzt7NeGSKocYOrjtuZ8spW/faqfQ2r0YakbDde9C++shQKOPIiJS/nl7D9eo0203xtTG6Rr4nS9DiYicydqkY4ybGc+GvWl0b1KbCcPb0aZBdeLiDrsdTYo7soO28S9A3DIIrQtXvQDd7oZKwW4nExERKTUXdQ+XtTbVGPMCMBH4zDeRRER+6UhGDi/M3sq/ft5L/WqV+dstnRnWqaHWz/JHGYcg7jlY/QF1TBD0fRwufQgqV3M7mYiISKnzRdOMk0CUD44jIvIL+QUePl6eyMtzt5GVW8ADlzfj4YEtqFpZPX/8Tk6G09592WtQkAOxv2Z50GX07n+t28lERERcc8GfWIwxAUBbYCywxWeJREQKrdh1lHEz49maks5lMXUZP6wdMfXVEMPvFOTBmn86o1qZh5wW7wPHQZ3m5MXFuZ1ORETEVd52Kczjl00zAnDWysoAhvo4l4hUYAdPZPPs91uYsW4/DWuE8OZtXRnSPkLTB/2NtbB1FsybAEe3Q9SlcMsn0PgSt5OJiIj4DW9HuJ7nlwVXNpAIfGetPebTVCJSIeXme/jgx938bd528gosDw+I4Xf9YqgSByDQhQAAIABJREFUHOh2NCkuaQXMHQPJK6BuK7jlU2h1lVq8i4iIFONtl8LRJR1ERCq2pduPMG7mJnYezmRA6/qMvbotTeqGuR1Lijuy3WnxvnUWVI2Aa/4GnUdBoO6pExEROR29Q4qIq/Ydz+KpWZv596YUomqH8t6dsQxsE+52LCku/SAseg5WfwhBodB/NPT6HQSrKBYRETmbMxZcxpi3z+M41lr7gA/yiEgFkZ1XwLtLdvH6wh0APDa4Jfdd3oyQIE0f9Cs5GfDjFOdfQQ5ccg9c/heoWs/tZCIiImXC2Ua4fsUv79s6E2/3ExFhwdaDTPh2M4lHT3JV+wieHNqGRrVC3Y4lRRXkwZoPIe75ws6D18LAsVCnudvJREREypQzFlzW2kalGUREyr/Eo5lM/HYz87ceolm9MD66pzt9WmikxK9YC1u+hfkT4OgOiO4Nt34KjWLdTiYiIlIm6R4uESlxWbkFvBm3g7cW7yIowPDEVa25u3dTgisFuB1NikpaDnPGwN6VUK813DodWg5R50EREZGLcLZ7uBoCh6y1+YXfn5W1dr9Pk4lImWet5Yf4FCbN2sK+41kM79yQJ65qQ0SNELejSVGHtzkjWv/pPPgadL5NnQdFRER84GzvpslAL2AlsJdz36elO91F5D92HMpgwrfxLNl+hNYR1fjs/p70aFbH7VhSVHoKxD0Ha/7pdB4cMBp6qvOgiIiIL52t4Lof2FnkezXGEJFzysjJZ8r87by3dDdVggMZf01bRvWMplKgpg/6jZz0Ip0Hc+GSe6HvXyCsrtvJREREyp2zNc14r8j375ZOHBEpq6y1zFy/n2e+38LBEznc2K0R/3dVa+pWrex2NDmlIA9WfwCLnofMw9BuBAwYo86DIiIiJUgT9EXkom1NOcHYb+JZuTuV9pHVeXNUN7pG1XI7lpxiLWyZCfMmQOpOiL4Mbv0MGnVzO5mIiEi553XBZYypC9wMtAKK3/GuhY9FKqC0rDxembuNj5YnUi2kEs+M6MDNlzQmMEBd7fxG4k8wdwzsXVXYefAzaHmlOg+KiIiUEq8KLmNMS+AnnEIrBDgG1AQCgDQgvaQCioj/8XgsX67Zy/Ozt3I0M5fbekTx2OBW1AoLdjuanHI4wRnRSvgOqjWAYVOg00h1HhQRESll3r7zvgisAYYDGcAVQDxwJzAaGFoi6UTE72zcm8bYmZtYm3ScLlE1+eDu7rSPrOF2LDklPQXini3sPBjm3KPV83cQHOp2MhERkQrJ24LrEuB3QHbhzwHW2hzgbWNMbeBVYGAJ5BMRP3EsM5cX5yTw6cok6oQF89KNnbiuSyQBmj7oH3LSYdlr8NPrTnOM7vfD5X9W50ERERGXeVtwVQeOWms9xpgTQNF38JU4o1wiUg4VeCzTVyXx4g8JpGfnc/elTXl0cAuqhwS5HU3gv50H456Dk0eg3XUwcAzUbuZ2MhEREcH7gmsPEF74fQJwPTC78OergOO+jSUi/mB14jHGzdzEpn0n6NG0NhOHt6dVRDW3Ywk4nQc3fwPzJ0DqLmjSBwZPgEh1HhQREfEn3hZc84BBwBfAK8AnxphLgXygPfBsycQTETccTs/h+dlb+WL1XsKrV+a1W7twTccGGHW28w+JP8KcMbDvZ6jXBkZ+Di0Gq/OgiIiIH/K24HocqAJgrZ1ujMnBaREfCkwF3iqZeCJSmvILPPzzp0RembuN7PwCftO3OQ8PiCGssjrb+YXDCTBvPCR8D9UawrDXofNICAh0O5mIiIicgVefoqy12fy3YQbW2q+Br0sqlIiUvuW7jjLum3gSDqbTp0Vdxg9rR/N6Vd2OJQAnDjidB9d+BMFVYeBY6PFbdR4UEREpA85YcBljBgArrbUZpZhHREpZSlo2z3y/hZnr9xNZswpvjerGle3CNX3QH2SfgB9fgx9fB08+dH+gsPNgHbeTiYiIiJfONsI1F+iF04UQY0wAEAfcY63dXvLRRKQk5eZ7+Mey3bw2fzv5HsvvB7bgt32bUyVY09Ncl5/rdB5c9LzTebD99c56WrWbup1MREREztPZCq7if942wGWAWpSJlHGLtx1m/Lfx7DqcyaA24Yy9ui1RdTQ9zXXWwuYZMG8CHNtd2HlwIkR2dTuZiIiIXCDdCS9Sgew9dpKnZm1hdnwK0XVCef+uS+jfur7bsQRgzzKYOwb2rYb6bdV5UEREpJxQwSVSAWTnFfD24l38feEOjIE/X9mKey5rSkiQpg+67tBWp/Pgtn87nQeH/x063arOgyIiIuXEuQquSGNMs8LvA4ts+8VCx9baXT5NJiI+MW/zQSbO2kxS6kmGdmjAX4e2IbJmFbdjyYkDEPcMrP24sPPgOOj5WwjStRERESlPzlVwfXGabTPOsK/+HCviR/YcyWTirM0s2HqImPpVmXZvD3rH1HU7lmSfgGV/g5/+7nQe7PEb6PMndR4UEREpp85WcN1dailExGdO5ubzxsKdvL14F0GBhid/1Ya7ejchKDDA7WgVW34urH6/sPPgUWh/AwwYrc6DIiIi5dwZCy5r7YclcUJjTGPgFWAwTufDecCj1tokL577DBALdANqA3dbaz84zX5xQN/THOIP1tpXLzi8iB+z1vLvTSk8NWsz+9OyGdElkieuak396iFuR6vYrIX4r2H+RHUeFBERqYBKtWmGMSYUWADkAHcCFngKWGiM6WitzTzHIR4G1gGzgDvOse8G4IFi2/acb2aRsmDHoXTGzYxn2Y6jtI6oxqu3dKF709pux5I9S2HOGNi/Buq3g9u+gJhB6jwoIiJSgZR2l8L7gGZAK2vtDgBjzAZgO05xNPkcz69hrfUYY2I4d8GVbq1dfrGBRfxZRk4+r83fzj+W7iY0OJCJw9sxsnsUlTR90F2HthR2HpwN1SNh+BvQ6RZ1HhQREamASrvgGgYsP1VsAVhrdxtjlgHDOUfBZa31lHA+kTLBWss36/bzzPdbOJSew82xjfnzkFbUrVrZ7WgV24n9sPBpWPcJBFeDQeOdphjqPCgiIlJhlXbB1Q745jTb44EbfXyuLsaYNCAU2AL8zVr7no/PIVLqNu8/wfiZ8azck0rHRjV4+45YOjeu6Xasii07rbDz4BtgC6DHb+HyP0GopnWKiIhUdMZaW3onMyYXmGytfbzY9qeAx621XhWAhVMKt3PmphkTgWRgG1ATZ/rhdcAYa+1TZzjm/cD9AOHh4d2mT5/u7a9VojIyMqhatarbMaQYN65LZp7lq+25LEjKJywIbmwZTJ9GlQjQ/UCAO9fEePJouH82TfZ8RlB+OgfrX87upqPIrhJeqjn8mV7D/I+uiX/SdfE/uib+yZ+uS//+/Vdba2PPtV9pj3CB0yijOJ9+YrTWji226RtjzNfAk8aYV621Gad5ztvA2wCxsbG2X79+vox0weLi4vCXLPJfpXldPB7LF6v38vzsrRw7mc+ontE8dkVLaoYGl8r5y4pS/X/F44HNpzoP7oGml8PgiYQ37IJKrf+l1zD/o2vin3Rd/I+uiX8qi9eltAuuYzjt3IurVfhYSfoUuBboAPxUwucS8YkNe48z5pt41icfp1t0LT4c1p32kTXcjlWx7V4Cc8fA/rUQ3h5u+xJiBqrzoIiIiJxWaRdc8Tj3cRXXFthcwuc+9Wmo9OZQilyg1MxcXvxhK9NXJVMnrDKTb+rEiC6RGH2od8/BzTBvHGyfA9UbwbVvQseb1XlQREREzqq0C66ZwEvGmGbW2l0AxpgmQG/g8bM8zxdGAlnAxhI+j8gFK/BYPlmZxEs/JJCRk889vZvyyKAWVAsJcjtaxZW2DxY+A+tPdR6cAD0eUOdBERER8UppF1zvAA/h3FM1Gme0aRJOg4upp3YyxkQDO4GJ1tqJRbb3BeoBEYWbYo0xGQDW2i8K9+mDU7x9hbPQcQ2cRZaH4TTmONfiyiKuWJ2YypgZ8Ww+cIJezeowYXg7WoZXcztWxZWdBktfheVvgPVAz99Bn8fUeVBERETOS6kWXNbaTGPMAOAV4COcaX7zgUeLNbIwQCBQfPXWCUDfIj8/WPjv1HMADhQ+byJQF8gDNgAjrbWf+u63EfGNQ+nZPPfvrXy1Zh8NaoTw+sguDO3QQNMH3ZKfAz//Axa9AFmp0OEmGDAaakW7nUxERETKoFLvUmitTQKuP8c+ezhN50JrbT8vjr8DuOoC44mUmrwCDx/+uIdX520nJ7+A3/VrzoP9Ywir7EbzUMHjgfivnM6DxxOhaV8YPBEadnY7mYiIiJRh+mQn4oIfdx5h/Mx4th3MoG/Leoy7pi3N6vnHmhIV0u7FMGcMHFjndB4c9SU0V+dBERERuXgquERK0YG0LJ7+bguzNhygUa0qvH17Nwa3Ddf0QbccjIe542DH3MLOg29Bx5vUeVBERER8RgWXSCnIyS/gvaW7mTJ/Bx5reXRQC37TtzkhQfpg74q0vU7nwXWfQEh1Z+pg9wcgKMTtZCIiIlLOqOASKWGLth1mwsx4dh3J5Iq24Yy5ui2Na4e6HatiyjoOy16F5W86nQd7PajOgyIiIlKiVHCJlJDk1JNMmrWZOZsP0rRuGB/cfQn9WtV3O1bFlJ8Dq96DxS9A1jFnweL+T6rzoIiIiJQ4FVwiPpadV8Bbi3byZtxOAozhL0Nacc9lTalcSdMHS53HA5u+hAUT4XgSNOvnTB9s0MntZCIiIlJBqOAS8RFrLfO2HGLirHiSU7O4umMDnhzahgY1qrgdrWLatQjmjoED6yG8A4z6CmIGup1KREREKhgVXCI+sPtIJhO+jScu4TAt6lflk/t6cGnzum7HqphSNsG8cbBjHtRoDCOmOosXBxRfR11ERESk5KngErkIJ3PzeX3BDt5dspvKlQIYc3Vb7ugVTVCgPtyXtsrZh+Hr38L6Tws7D06C7ver86CIiIi4SgWXyAWw1vLdhgM89d1mDqRlc13XSB6/qjX1q+nDfanLToMlk+mx4u8QYODSh+CyP6rzoIiIiPgFFVwi52n7wXReWJXNltQ1tG1QnSm3diG2iT7cl7r8XFj9PsQ9B1mpHArvR8StU6BmlNvJRERERP5DBZeIl7LzCpiyYDtTF+2icqBl0rXtGdk9isAA43a0isVa2PKtc59W6i5o0geueIqt244ToWJLRERE/IwKLhEv/LjjCH/9eiN7jp7kuq6R9Kt5jGE9tYZTqUteBXNGQ/JyqNcaRv4LWlwBxsC2OLfTiYiIiPyCCi6Rs0jNzOXp77bw5Zq9RNcJZdq9PegdU5e4uDi3o1Usqbtg3gTYPAPC6sM1f4POoyBQL2EiIiLi3/RpReQ0rLXMWLePSbO2cCIrjwf7N+fhAS0ICdLixaXqZCosfhFWvgOBQdD3cbj0Yahc1e1kIiIiIl5RwSVSTOLRTEbP2MSS7UfoElWTZ6/rQOuI6m7HqljysmHl27DkJchJhy6joN9foXoDt5OJiIiInBcVXCKF8go8vLtkN6/O20ZQYACThrdjZI9oNcUoTR4PxH/lTB9MS4KYwTB4IoS3dTuZiIiIyAVRwSUCrE06xhNfbWRrSjpXtgtnwrD2RNTQmlqlas9SpyHG/rUQ0QGGzYDm/d1OJSIiInJRVHBJhZaencfLc7bx4U97CK8WwtTbu3Fluwi3Y1Ush7c5Ld4TvofqkXDtW9DxZggIcDuZiIiIyEVTwSUV1pz4FMZ+E8/B9Gzu6BnNn65sRbWQILdjVRwZhyHuWVj9AQSFwsCx0PN3EFTF7WQiIiIiPqOCSyqclLRsxs+MZ3Z8Cq0jqvHGqK50jarldqyKI/ckLP87LH0V8rIg9tfQ9/+gaj23k4mIiIj4nAouqTA8Hsu0FYk8PzuBvAIPfxnSivv6NCMoUFPXSoWnANZPhwVPQfp+aH01DBoPdVu4nUxERESkxKjgkgohISWdJ77awJqk41wWU5enR7Qnuk6Y27Eqjp0LYM4YOLgJIrvBDe9B9KVupxIREREpcSq4pFzLzitgyoLtTF20i+pVgph8UydGdInEGLV6LxUpm2DuWNg5H2pGwQ3/gHbXgf77i4iISAWhgkvKrR93HOGvX29kz9GTXN+1EU8ObUPtsGC3Y1UMJ/bDwqdh7TQIqQFXPA3d74NKld1OJiIiIlKqVHBJuZOamcvT323hyzV7aVInlGn39qB3TF23Y1UMOemw7G/w4+tgC6DXg9DnMQit7XYyEREREVeo4JJyw1rLjHX7mDRrCyey8niwf3MeHtCCkKBAt6OVfwX5sOZDp8175mFn2uDAsVC7qdvJRERERFylgkvKhcSjmYyesYkl24/QJaomz17XgdYR1d2OVf5ZC9t+cO7TOpIAUb3g1unQKNbtZCIiIiJ+QQWXlGl5BR7eXbKbV+dtIygwgEnD2zGyRzSBAWrKUOL2r3U6D+5ZAnVi4OZp0HqoGmKIiIiIFKGCS8qstUnHeOKrjWxNSWdIuwjGD2tHRI0Qt2OVf8eTYP4k2PgvCK0Dv3oJut0FgUFuJxMRERHxOyq4pMxJz87j5Tnb+PCnPYRXC2Hq7d24sl2E27HKv6zjsHQyLH/LGcW67I9w2aNOF0IREREROS0VXFKmzIlPYew38RxMz+aOntH86cpWVAvRyEqJys+Fn9+DRS9A1jHodAsMGA01GrmdTERERMTvqeCSMiElLZvxM+OZHZ9C64hqvDmqK12iarkdq3yzFjZ/A/PGw7Hd0LQvXDEJGnRyO5mIiIhImaGCS/yax2OZtiKR52cnkFfg4S9DWnFfn2YEBQa4Ha18S1oBc0bD3pVQrw3c9gXEDFJDDBEREZHzpIJL/FZCSjpPfLWBNUnHuSymLk+PaE90nTC3Y5VvR3c6I1pbZkLVcLjmNeh8GwTqpUJERETkQuhTlPid7LwCpizYztRFu6heJYjJN3ViRJdIjEZXSs7JVOcerVXvQmAw9HsCej0Elau6nUxERESkTCv1gssY0xh4BRgMGGAe8Ki1NsmL5z4DxALdgNrA3dbaD86w733AY0BTYA/wirX2LR/8ClKCftxxhL9+vZE9R09yfddGPDm0DbXDgt2OVX7lZcOKt2DJZMhNh653OMVWNXV9FBEREfGFUi24jDGhwAIgB7gTsMBTwEJjTEdrbeY5DvEwsA6YBdxxlvPcB0wFnsUp6AYCbxhjjLX2zYv+RcTnUjNzefq7LXy5Zi9N6oQy7d4e9I6p63as8svjgU1fwPyJkJYMLa6EwROgfhu3k4mIiIiUK6U9wnUf0AxoZa3dAWCM2QBsBx4AJp/j+TWstR5jTAxnKLiMMZWAp4GPrLVPFm5eaIxpCEwyxrxrrc3zwe8iPmCtZca6fUyatYUTWXk82L85Dw9oQUhQoNvRyq/dS5yGGAfWQURHGP53aNbX7VQiIiIi5VJpF1zDgOWnii0Aa+1uY8wyYDjnKListR4vztELqAd8XGz7R8DdwGXAwvMJLSUj8Wgmo2dsYsn2I3SJqsmz13WgdUR1t2OVX4cTYO5Y2DYbqjeCEVOhw00QoI6PIiIiIiWltAuudsA3p9keD9zow3MAbDrNOQDaooLLVXkFHt5dsptX520jKDCAScPbMbJHNIEBaopRIjIOwcJnYM0/ITgMBo6Dnr+FoCpuJxMREREp90q74KoNHDvN9lTAV6vY1i78Wvw8qcUe/x/GmPuB+wHCw8OJi4vzUZyLk5GR4TdZfGHn8QI+iM8lOd1Dt/BARrUJolbOHpYs3uN2tPNSFq5LQEE2jZO/oXHyVwR48tjfcAiJ0TeTV1ADlq1wO57PlYVrUhHpuvgfXRP/pOvif3RN/FNZvC5utIW3p9nmy6GNU8c63XnOyFr7NvA2QGxsrO3Xr58PI124uLg4/CXLxUjPzuOlHxL454pEwquFMPX2dlzZrux2wvPr6+IpgHWfwMKnIf0AtLkGBo6nUd0YGrmdrQT59TWpwHRd/I+uiX/SdfE/uib+qSxel9IuuI5x+hGmWpx+5OtCFB3JOlBke+1ij0spmROfwthv4jmYns0dPaP505WtqBYS5Has8mnHPJgzFg7FQ2Qs3PgBRPV0O5WIiIhIhVXaBVc8/73Hqqi2wGYfnoPC8xQtuNoWfvXVeeQcUtKyGTdzEz/EH6R1RDXeHNWVLlG+mjkq/yNlI8wZA7sWQq0mTqHV9lrQYtEiIiIirirtgmsm8JIxppm1dheAMaYJ0Bt43Efn+Ak4AtyGswbXKaNwRreW+eg8cgYej2XaikSen51AXoGHvwxpxX19mhEUqG54Ppe2z5k6uO4TCKkBVz4Ll9wDlSq7nUxEREREKP2C6x3gIeAbY8xonPusJgHJOAsVA2CMiQZ2AhOttROLbO+L0/L91M0/scaYDABr7ReFX/OMMWNwFjreh1N0DQB+DTxsrc0t2V+xYktISeeJrzawJuk4l8XU5ekR7YmuE+Z2rPInJx2Wvgo//R1sAVz6EPR5DKpoBFFERETEn5RqwWWtzTTGDABewVkXywDzgUettRlFdjVAIFB8SGQCUHSF1gcL/516zqnzvGWMscBjwJ+BJOAha+0bPvx1pIjsvAKmLNjO1EW7qF4liMk3dWJEl0iMprT5VkEerPkQ4p6DzMPQ/gYYOMaZRigiIiIifqfUuxRaa5OA68+xzx5O07nQWtvvPM4zlSKjZlJylu04wpNfb2TP0ZNc37URTw5tQ+2wYLdjlS/WQsK/nYWLj26H6N4w8jOI7OZ2MhERERE5Czfawks5kZqZy9PfbeHLNXtpUieUaff2oHdMXbdjlT/7VjsNMRKXQZ0WcMun0OoqNcQQERERKQNUcMl5s9by9dp9PPXdFk5k5fFg/+Y8PKAFIUGBbkcrX44lwvyJsOkLCK0LQ1+GrndCoFrqi4iIiJQVKrjkvCQezeTJrzexdMcRukTV5NnrOtA6orrbscqXrGOw5GVYMRVMIPT5E/R+BEL031lERESkrFHBJV7JK/Dw7pLdvDpvG0GBAUwa3o6RPaIJDNC0Np/Jz4VV78LiFyDrOHQeCf2fhBqRbicTERERkQukgkvOaW3SMZ74aiNbU9IZ0i6C8cPaEVEjxO1Y5Ye1sHkGzBsPx/ZAs/5wxSSI6OB2MhERERG5SCq45IzSs/N46YcE/rk8kfBqIUy9vRtXtos49xPFe0nLYc5o2LsK6reFUV9CzCC3U4mIiIiIj6jgktOaE5/C2G/iOZiezZ29mvDYFS2pFqJmDT5zdCfMGwdbvoVqDWDY684UwgA1HhEREREpT1Rwyf9ISctm3MxN/BB/kNYR1XhzVFe6RNVyO1b5kXkUFj0PP78HgZWde7R6PQjBYW4nExEREZESoIJLAPB4LNNWJPL87ATyCjz8ZUgr7uvTjKDAALejlQ95WbDiLVgyGXIznPbu/Z6AauFuJxMRERGREqSCS0hISeeJrzawJuk4l8XU5ekR7YmuoxEXn/B4YOO/YP4kOLEXWg6BQROgfmu3k4mIiIhIKVDBVYFl5xUwZcF2pi7aRfUqQUy+qRMjukRijFq9+8SuRTB3DBxYDw06w4i34P/bu+94qcpr/+OfBRxEqhQBC0UFFVBERBC4GjAWrkQUe2yYWGJUNNdEo5dEUbHd5GoEjYImYsFoLKjRRLBhodgACxZAOghKkV7PWb8/nn3ymzvO4ZSZOXvmzPf9eu3XcPbsPbOeWUxZ+3n2s/c5Mu6oRERERKQaqeAqUJPnrmTY+E9ZsGoTp3bfm2EDO9GsQd24w6oZvv0SXr0B5kyAJm3glAfhoNOgloZnioiIiBQaFVwFZvXGbdz68hc8O30J7ZvXZ9xFvejboUXcYdUM61fApNtg+qNQtxEcezP0/AUU6ZplIiIiIoVKBVeBcHfGz1jKiJe/YN3m7Vzefz+GHt2RekWahjxt2zbClHth8j1QvBV6XgJHXQsNmscdmYiIiIjETAVXAVi4aiPDxn/Gu3NXcmjb3bj9lIM5sHXjuMPKfyXFMONxePM22LAcOp8EP74Rmu8Xd2QiIiIikiNUcNVg24tLePCdedzz2hyKatfilpO6cE6vdtSqpUkx0uJOs1UfwQPXw7efw9494YxHoW2vuCMTERERkRyjgquGmrFoDdc/9ylfLl/PgC6tGT6oC62b6FyitLjDvDfh3bvpOv9taLoPnP5I6NnSzI4iIiIikoIKrhpm/Zbt/HHCVzw6bSGtGtVj9HmHcXyX1nGHld+Kd8Cs8TDlHlj+KTRsxZwOF9HxrNuhjmZ2FBEREZGyqeCqQSbMWs6NL8xixfotDOndnl8ftz+N6hXFHVb+2roBZjwGU/8MaxdBi/1h0L3Q9QyWvjuVjiq2RERERKQcKrhqgOVrt3Dji58xYdYKDmzdiPvP7c6hbZvGHVb+2vAtvDcaPngItnwPbXvDCf8DHY/XtbREREREpFJUcOWxkhJn3HsLufOVr9heXMK1Aw7g4iP3pai2ioIqWTkXpo6CmX+D4m3Q6SfQ5ypoc3jckYmIiIhInlLBlae+XL6O65/7lBmLvuc/OrTg1sEH0a55g7jDyk+L3w/X0PryZahdF7qdDb2vgBYd4o5MRERERPKcCq48s2V7MaPemMPot+bReNci7jrjEAYfuhemWfIqp6QEZr8SCq3F06DebnDUb8JFixu2jDs6EREREakhVHDlkclzVzJs/KcsWLWJU7vvzbCBnWjWQBM3VMqOrfDJUzBlFKycDU3awoA74dBzYZeGcUcnIiIiIjWMCq48sHrjNm59+Quenb6E9s3rM+6iXvTt0CLusPLL5jXw4V/DZBgbVkDrrnDqX6DzyVBbbwMRERERyQ790sxh7s7kpdv5r7cnsX7LDi7vvx9Dj+5IvaLacYeWP75fDNPuh+mPwLYNsN/RMHg07NtPFysWERERkaxTwZXDRr89jwc/3cahbXfj9lMO5sDWjeMOKX8s/wymjITPngV3OOhU6DMU9ugad2QiIiIiUkBUcOWw0w8eDjujAAAXPElEQVTbm2UL5zH83D7UqqXemHK5w/y3YPJI+Pp1KGoAPX8BR/wSdmsTd3QiIiIiUoBUcOWw5g134ei2RSq2ylO8Az5/PvRoffMxNGgJP74BevwcdtUFoEVEREQkPiq4JH9t2wgzHoep98L3i6B5BzhxJHQ9E4rqxR2diIiIiIgKLslDG76D98fABw+G2Qfb9IIBd8D+/wm1asUdnYiIiIjIv6ngkvyx6uvQmzXziXA9rQMHQp8roW2vuCMTEREREUlJBZfkviUfwuR74It/QO26cMhZYcbBFh3jjkxEREREZKdUcEluKimBORNDobVoCtRrAkdeHWYdbNQq7uhERERERCpEBZfklh1b4ZO/w5RRsPIraNIGjr8dup8HuzSKOzoRERERkUpRwSW5YfP38NHDMO0B2LAcWh0MpzwIXQZD7aK4oxMRERERqZJqn9LNzNqY2TNmttbM1pnZc2bWtoL71jOzP5jZN2a22cymmtlRKbZbYGaeYjk58y2StKxdChOGwd0HwWvDoeWBcO5zcOk70PUMFVsiIiIikteqtYfLzOoDbwBbgSGAAyOAN82sq7tvLOch/gIMBK4B5gGXAxPMrLe7z0zadgIwPGndV+m1QDJmxawwbPDTp8E99GT1vRL2OCTuyEREREREMqa6hxReDOwLHODucwHM7BNgDvAL4K6ydjSzQ4CzgZ+7+8PRureAWcDNwKCkXVa6+7SMt0Cqzh0WvAOTR8LcV6GoPhx+ERxxGTRtF3d0IiIiIiIZV90F1yBgWmmxBeDu881sMnASOym4on23A08l7LvDzJ4ErjOzXdx9a5bilnQU74AvXoQpI2HZDGiwOxz9O+hxIdRvFnd0IiIiIiJZU90FVxfghRTrZwGnV2Df+e6+KcW+dYEO0b9LnWhmm4DawAzgDnd/vkpRS9Vs2wQzx4Whg98vhGb7wU/+BIf8FIrqxR2diIiIiEjWmbtX35OZbQPucvfrktaPAK5z9zILQDObCDR29yOS1h8DvAoc5e7vROtGAR8A84FWwBXAj4Dz3P3xMh7/EuASgFatWh325JNPVq2RGbZhwwYaNmwYdxiVUrRtLXst/Sd7LX2Zoh3rWdv4ABa3GczKFj3BascdXkbkY15qOuUkNykvuUc5yU3KS+5RTnJTLuWlf//+H7l7j/K2i2Na+FQVnlVgP6vovu4+9P9sYDYemAbcDqQsuNx9DDAGoEePHt6vX78KhJR9kyZNIldiKdfqeTD1PpjxOOzYAgecAH2upEnbI2hiFUlx/sirvBQI5SQ3KS+5RznJTcpL7lFOclM+5qW6C641QKqTdppG9+3MaiDV9PFNE+5Pyd2Lzexp4E4z28Pdv6lIsFJBSz+CyffAF/+AWnWg65nQZyjsfkDckYmIiIiIxKq6C65ZhHOxknUGPq/AvoPNrH7SeVydgW3A3NS7/VtpF0v1jaGsydxhzquh0Fr4LuzSBPpeBb0uhUat445ORERERCQnVPeFj18EjjCzfUtXmFl7oG90X3n7FpEwuYaZ1QHOBCbubIbCaLvTgUXuvryqwQuwYxvMGAd/7g1PnA5r5sNxt8LVs+CY4Sq2REREREQSVHcP14OECSxeMLPfEXqbbgEWA6NLNzKzdsDXwM3ufjOAu880s6eAP5lZEWFCjF8C+wDnJOz7U8IU8/+MHrcV4QLJhwE/zXYDa6wta+GjsTDtAVi/DFp2gcFj4KBToHZR3NGJiIiIiOSkai243H2jmR0N3A08Rhjm9zrwK3ffkLCpEaZzT+6B+xlwKzAC2A34GBjg7tMTtpkPtAT+QDhfbBNhxsIB7j4h442q6dYtg2n3h2Jr6zrY5yg4aRTs92OoYRNhiIiIiIhkWrXPUujui4BTy9lmAalnH9wMXB0tZe07DTg6vSiFb78I18/65O/gxdD5ZOh7Jex5aNyRiYiIiIjkjTimhZdc5Q4LJ8PkkTBnAtTZFXr8DHpfDk3bxx2diIiIiEjeUcElUFIcpnSfMjJM8V6/OfQfBodfBPVTzeIvIiIiIiIVoYKrkG3fDDPHwZR7w2yDTfeBgXdBt7OhaNe4oxMRERERyXsquArRxlXwwUPw/mjYtAr2OgyOvQkO/AnUqh13dCIiIiIiNYYKrkKyej5MvQ9mPA47NsP+A6DPldCuj2YcFBERERHJAhVchWDp9HB+1ucvgNWGrmdCn6HQ8sC4IxMRERERqdFUcNVU7jD3dZj8J1jwDuzSOBRZvS6FxnvGHZ2IiIiISEFQwVXTFG+Hz54NU7t/Owsa7QnH3gKHXQD1GscdnYiIiIhIQVHBVVNsWQfTH4Fp98O6pdCyM5x8Pxx0GtSpG3d0IiIiIiIFSQVXvlv3Dbz3AHz4MGxdC+2PhBPvgQ7HaCIMEREREZGYqeDKV999FSbC+Pgp8GLoNAj6XhmmeBcRERERkZyggiufuMOiqeH8rNn/gjq7hnOzel8GzfaNOzoREREREUmigisflBTDly+HHq0lH8CuzaDf9XD4xdCgedzRiYiIiIhIGVRw5bLtm9lj2Stw79Ww+mto2h5O+CN0Owfq1o87OhERERERKYcKrlw27c8cMPt+2LM7nD42nKdVq3bcUYmIiIiISAWp4Mpl3S9g5sq6dDv5Cs04KCIiIiKSh2rFHYDsRIPmfN/0YBVbIiIiIiJ5SgWXiIiIiIhIlqjgEhERERERyRIVXCIiIiIiIlmigktERERERCRLVHCJiIiIiIhkiQouERERERGRLFHBJSIiIiIikiUquERERERERLJEBZeIiIiIiEiWqOASERERERHJEhVcIiIiIiIiWaKCS0REREREJEtUcImIiIiIiGSJCi4REREREZEsUcElIiIiIiKSJebucceQc8zsO2Bh3HFEWgAr4w5CfkB5yT3KSW5SXnKPcpKblJfco5zkplzKSzt33728jVRw5Tgz+9Dde8Qdh/xfykvuUU5yk/KSe5ST3KS85B7lJDflY140pFBERERERCRLVHCJiIiIiIhkiQqu3Dcm7gAkJeUl9ygnuUl5yT3KSW5SXnKPcpKb8i4vOodLREREREQkS9TDJSIiIiIikiUquERERERERLJEBVdMzKyNmT1jZmvNbJ2ZPWdmbSu4721mNtHMVpmZm9kFWQ63IFQ1J2bWw8zGmNmXZrbJzBaZ2Tgz26c64q7p0shLOzN7wcwWmtlmM1tpZpPM7D+rI+6aLJ3Pr6THuT76DHs3G3EWkjS/U7yMpVu2467p0n2vmFknM3s6+vzabGZfmdlV2Yy5pkvjO2X4Tt4rW6oj9poszc+wtmb2SPT7a5OZzTazEWbWINtxV5TO4YqBmdUHPga2Ar8DHBgB1Ae6uvvGcvZfD8wE5gHnAz9z97HZjLmmSycnZvZHoDcwDpgF7AX8HmgJdHP3xdmNvuZKMy9dgKuBScASoDFwMTAQONXdn8tq8DVUup9fCY+zL/AJsBGY4+7/kZ2Ia74MfKc4MBYYnXTXJ+6+KeMBF4gM5KUH8AbhM+yvwFqgI9DQ3e/KXuQ1V5rfKXsDeyetbgC8Aox39zOyEnQBSDMvDYAZQBEwHFgEHA7cBLzo7mdmNfiKcnct1bwAVwHFQIeEdfsAO4CrK7B/rei2A+E/5QVxtynfl3RyAuyeYl07oAS4Oe625fOS7nslxePVARYD/4i7bfm6ZConwATCD/xJwLtxtyuflwx8pzgwIu521LQlze+VWoQDeOPjbkdNWrLwnXJe9P4ZGHfb8nlJ871yXJSD45LW3xHtXz/u9rm7hhTGZBAwzd3nlq5w9/nAZOCk8nZ295IsxlaoqpwTd/8uxbqFwHeE3i6purTeK8ncfQfhKPH2jEVYeNLOiZmdDXQHrs9KhIUno+8TyZh08tIP6AyoJyuzMv1eGQKsIBxAkqpLJy91o9t1Seu/Jxy4sEwFmQ4VXPHoAnyWYv0swgesVL+M5sTMOhGGFH6RZlyFLu28mFktM6tjZq3N7PfA/sB9GYyx0KSVEzNrCtwNXOvuqzMcW6HKxOfXL81sa3T+wxtmdmTmwitY6eSldIhtPTObZmbbzexbMxtpZrtmNMrCkrHv+miIYX9gXHQwT6ounby8BswB7jSzzmbW0MyOJvSaPeAVHOaebSq44tEMWJNi/WqgaTXHIkHGcmJmdYAHCD1cf0k/tIKWibz8D6FH6xvgWuAsd389M+EVpHRz8gdgNuGcIcmMdHPyOHAZcAxwCdAceMPM+mUqwAKVTl72jG6fAiYCxxI+yy4CnshUgAUok7+/ziP8jn4k3aCk6nlx9y2EAxSlw3DXA68DLwFXZDbMqqsTdwAFLNVsJTnR7VnAMpWTe4E+hDHdqT5ApHLSzcufgCeB1oRJZp4ws9Pc/aVMBFegqpSTqNfkfKC7R4PsJWOq/D5x9/MS/nzHzF4gHG0ewf/vaZGqqWpeSg+IP+7uN0T/nmRmtYE7zKyzu3+ekQgLT6a+688HZrj7J2nGI0FVv1fqEQ5MtCQUwYuAnsANhHO4fpnBGKtMBVc81hCq+WRNSV3hS/ZlJCdmdjvhCPEQd5+YodgKWdp5cfclhFkKAV4ys0nAHwlHv6Ty0snJaEKv7xIz2y1aVweoHf292d23ZizSwpHR7xR3X29mLwMXphtYgUsnL6ui21eT1k8kTAbQDVDBVXmZ+q7vCRwI/CpDcRW6dPJyIeGcxw7u/nW07m0zWwuMMbMH3P3jjEVaRRpSGI9ZhPGqyTqjD9C4pJ0TMxsGXAdc5e6PZTC2QpaN98qHhBk+pWrSyUkn4FLCF2jp0hc4Ivp3ThyJzEPZeJ8YqY84S8Wlk5dZ0W1yDkqP+GvyrKrJ1HtlCKH3RMM7MyOdvBwMrEkotkq9H912SjO2jFDBFY8XgSOi69AAYGbtCT88XowppkKXVk7M7ErC8Jth7j4qSzEWooy+V8ysFmGIVPIHs1RcOjnpn2L5mDB8rT/wTObDLQiZfp80Jlyv7r0MxVeo0snLvwjXJBqQtP746PbDzIRYcNJ+r5hZXeAs4J+pZimWKkknL8uBpmaWfCC1V3S7NEMxpifueekLcSFcKG8u8ClhustBhB8d8wgXNCzdrh3hCMoNSfv/CDiNcDKgE84ZOg04Le625euSTk4IH7wlhC/II5KWznG3LZ+XNPMyHBgJnBm9Z84kDMcpIUycEXv78nFJ9/MrxeNNQtfhii0nwG+AB4GzCcNyhkSPsw04Mu625fOSge/6G6P1txEmNLkO2AyMjbtt+bpk4vMLOCX67XVK3O2pKUuan2HtCVPCz44+v/oD10TrPiS6dm3ci87hioG7b4ymrLwbeIwwROB14FfuviFhUwNq88OeyJsIPyBLXR4tpftIJaWZkwHR+gH88GjkW4QfMVIFaeZlOmF8/VlAE8JRsI8JPyInV0P4NVIGPr8kw9LMyVfA4GhpQviRMhm40N3fR6osA++Vmwkzrl1GKIy/IczyeUuWQ6+xMvT5NYQwe57OA86QdPLi7gvM7AjCQdYRQAtgMTAGuNVz5Nq1FlWHIiIiIiIikmE68igiIiIiIpIlKrhERERERESyRAWXiIiIiIhIlqjgEhERERERyRIVXCIiIiIiIlmigktERERERCRLVHCJiEilmNlDZuZmdlfcsVSGmQ2PrvVS0MysffRa7Bt3LCIihUAFl4iIVJiZ7QqcHv15jpnViTOeSroRKPiCC2hPeC1UcImIVAMVXCIiUhmDgcbAP4GWwIB4wxEAM9sl7hhERCQ1FVwiIlIZQ4A1wAXAZuD8VBuZ2SFmNt7MVpnZZjP7ysyuT9pmsJlNNrMNZrbOzN43s0EJ99cxs+vN7Esz22pmy8zsf82sXsI27aPhjZeZ2V1m9q2ZbTKzl8ysfcJ2Hv1zWLS9m9nw6L7DzewZM1uSEOttUW9eYryTzOxdMzvGzKZHz/OZmZ1cxfafYmbTosf53syeNrO25SUgIY4TzWyGmW0FLovuu8LMpprZ6ugxp5nZwIR9+wFvRn++mvBa9EvY5mIz+9jMtpjZSjP7i5k1Ky8uERFJLZ+GgoiISIzMbE/gGGCMu39nZs8Dp5hZU3dfk7BdT2ASMBf4L2AJ0BHomrDNUGAk8DyhiNsAdCcMdyv1OHAicCcwBegE3BJtc2pSeNcDM4GfEXrebgMmmlkXd98O9AamAmOB0dE+S6LbttG+Y4H1QBfgBsKQu7OSnmc/4B7gdmAl8GvgGTM70N3nVqL9lwL3Aw8DNwONgOHAW2bW1d3Xs3P7E16/W4B5wOpofXvgIWAB4Tv+ROAlMzvB3f8FTAcuB+4DrgQ+iPb7PIrrjqhNI4FrgL2AEcBBZtbH3YvLiUtERJK5uxYtWrRo0VLuAvwWcKB39Pfx0d+XJm33NrAYqF/G4zQmFDbP7eS5jowe+/yk9edE67tFf7eP/v4cqJWwXd9o/YUJ6xwYUU4bjVConAuUAM0T7psEbAc6JqxrCRQD/12J9jcE1gJ/TVrfHtgG/KqcGCdFsXUrZ7taUVsmAi8krO8XvRbHpHj+YuCGpPWlr+XJcf8f1KJFi5Z8XDSkUEREKup8YI67T43+fg1YRsKwQjOrT/iBPs7dN5XxOH0IRceYnTzXAELx8Ww0tLBONEHHxOj+o5K2f8bdS0r/cPfJhJ6l3uU1yswam9mdZvY1sJVQVD1GKL46Jm0+x93nJDzPt8C3hF6yira/N6HoHJfUtiXAlynalsoCd5+Zoi2HRcMpVwA7orYcCxxQgcc8llCkJcf1HrCugnGJiEgSDSkUEZFymdnhQGfgTjPbLeGu54ArzGx/d58NNCX8aF+S4mFKNY9ud7ZNS6AuYajhzh6j1IoU26wgDIkrz8OEoZI3EIYWbgR6Eobd1UvadjU/tDVhu4q0v2V0+1oZ968pY32ib5JXmFkb4HVCb99QYBGh6LqFMByzPKVxzS3j/uTXXEREKkAFl4iIVMSQ6Pa30ZLsfOB3hGKhhJ0XOiuj272Az8rYZhWwhTC0MJVlSX+3SrFNK0IBVaZoAo6TgOHufk/C+oN3tt9OVKT9q6LbC4BZKe4v7/wtCEP8kg0AmgBnuPu/C76o160iSuM6jtRF36oU60REpBwquEREZKfMrC5h8oj3gOtSbHI3cJ6Z/d7dN5nZu8C5Znazu29Osf0UQs/VJcCEMp72FUJh18TdX69AmKeZ2fDSYYVm1hfYmzBRRqltwK5J++0C1CYMvUt0QQWe8wcq0f71QAd3f6Qqz1OG0sLq320xs/0JQxwTe9y2RrfJr8WrhGKxrbu/msG4REQKmgouEREpz08Iw8l+7e6Tku80s9GEGff6EaYc/w3wFjDVzP6X8GN/X8IkD0PdfX00RfooM3sWGEcoQLoBW9x9lLtPMrO/EWYAvAt4n1AMtAdOAH4bDWEs1Qh4Popld8IsgnOARxO2+RwYaGavEHpwlrn7MjObBvzazL4h9L79nIoNRSxLee1fZ2bXAPeZ2e7AvwiTaOwF/AiY5O5PVOF5XyMMIXw0et49gJsIQwsTz9meHW33czNbTSjAvnL3r83sTuBeMzsgasMWoA3h/K6H3P1NRESkUjRphoiIlGcIoSB6uoz7/0a4JtcQAHf/gNCrshgYRbhI8jUk9LK4+73A6YReqHHAs8BpwPyExz2XMFX6acALwDPAFYRCKvmcrdsJ5x6NBf5MmP78eA9Twpe6gnB+1j8I06FfEq3/KfAR4ZytscBy4KoyX41yVLD9o4FBhMksHiMUXTcRDoTudBjkTp53FmEWx3bAi8C1hB7Jt5O2W0V4LQ4hFFUfAIdF9/034XU5Cvg74XX/LaFAnYOIiFSauacaBi4iIpL7oosbzwcudveH4o1GRETkh9TDJSIiIiIikiUquERERERERLJEQwpFRERERESyRD1cIiIiIiIiWaKCS0REREREJEtUcImIiIiIiGSJCi4REREREZEsUcElIiIiIiKSJf8PWDBWdlqnHoAAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1008x504 with 1 Axes>" ] @@ -1002,16 +1037,89 @@ } ], "source": [ - "f_rates = np.zeros(0)\n", + "f_rates_cont = np.zeros(0)\n", + "#f_rates_caus = np.zeros(0)\n", + "x_vals = np.arange(1, 9) / 10\n", "\n", "for r in range(1, 9):\n", - " f_rates = np.append(\n", - " f_rates,\n", - " contraction(simple_train, 'judgeID_J', 'decision_T', 'result_Y',\n", + " f_rates_cont = np.append(f_rates_cont,\n", + " contraction(s_train_labeled, 'judgeID_J', 'decision_T', 'result_Y',\n", " 'probabilities_Y', 'acceptanceRate_R', r / 10))\n", + " print(r)\n", + " #f_rates_caus = np.append(f_rates_caus, \n", + " # np.mean((s_train.result_Y[s_train.decision_T==1] == 0) & (cdf(s_train.X[s_train.decision_T==1], logreg, 0) < r/10)))\n", + " \n", + "plt.plot(x_vals, f_rates_cont, label=\"Contraction\")\n", + "plt.plot(x_vals, f_rates_caus, label=\"Causal\")\n", + "plt.title('Failure rate vs. Acceptance rate, simple data')\n", + "plt.xlabel('Acceptance rate')\n", + "plt.ylabel('Failure rate')\n", + "plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAHICAYAAABajeu4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0VVXa+PHvk4Q0EkoaIQkkFKkiqLSEBBAE9EUp44ggqDgyY1debNgQdKQogjOwFGd0xFdRLD97nVGJBAgCjopU6S2UNEhCerJ/f5yTS3JzQ24gDXg+a90V7jn77LNPuZfz3N3EGINSSimllFJKqdrn0dAFUEoppZRSSqnzlQZcSimllFJKKVVHNOBSSimllFJKqTqiAZdSSimllFJK1RENuJRSSimllFKqjmjApZRSSimllFJ1RAMupZTbROSvImJEJL7csivtZU80ZNmUUsodje07q6HK09jOg1LnMw24lDrPiEiM/Z9oVa/jDV3G88WF/MAiIt/Yx/5LQ5elNl3I17Q2iMgqESlu6HKo+qGfF6Xc49XQBVBK1ZntwHIXy/PPIs8XgbeAfWeRhzrHiUgUcCVggJ4icqkx5ucGLpZS7loDdAVSG7ogSqkLgwZcSp2/thljZtZmhsaYNCCtNvNU56TJWC0kXgAeAP4E3NuQBVLKXcaYXGBbQ5dDKXXh0CaFSl3ARMRHRO4XkW9F5JCIFIpIioi8JSIdXKSv1Ierinw72uledXediBwUkZ0iEiwi/xCRwyJS6tRf7CIReaNcWQ+IyGIRCXHzeL3sfX8rItEislxEUu1lUXaa60TkPRHZLSL5IpIpIv8RkSHO5wL4j/32mXJNNoud0rW2y7hHRApE5IiI/J+IRLtRXhGRfXYZm1SRZpddRm/7vZ+ITBeRTSKSIyInRGSbiPxLRFq7c57cMBnIBB4HdgM3iojPaY7jShH5wj6OfBHZKyJvikh3p3QtRORZEdkiInkikiEiP4rItCry/MpOk29v87CIeDmlm2Jfl0kiMl5EfrHzPiQiz4uIf7m01V5TEekjIi/Z+8sWkZMi8pOI3OGijOXvt9b25ypdRHJF5HsR6VXF+eokIq+LyH77njksIl+LyEindB4icoeIrLOvdY6IrBaR0VVdCxf7cnymReR2Edlon89X7fVRIvKMiKwXkTS7PDtE5DkRCXA+VmAA4CkVmzE/4bTPcSLyg31v5onIf0VkirtlruZ4xtvnIM0+z3tF5CMRiSuXplIzOKdr1Uas74AMETkuIu+KSKidboCIrLCv/TH7HvJ0KoPb95wbx3O5iHxg76tArM/7bBFpWoM8mojIU/a5yBeRzSLy59Okr7XvwJp8XpQ6n2kNl1IXtlCsWoofgE+BLKALMB64WkQuM8bUZ/NBXyAR68eg94EmQDaAWIHXl4AP8AmwF6tZ0F3AcBHpa4xxt39aKJAMHATeBFoCRfa6uUAO1jk5CrQGxgD/EZE/GGM+sdN9D7QFbgJWACvt5aVlOxGRzvbxhAFfAB/Y20wARohIf2PMnqoKaYwxIvI2MB0YbufhICL9gfbAP40xhfbit+3yJgHf2MtigOuAfwCHqzs5pyMig4AOwCvGmAIReQuYAYwG3nOR/mFgHnAC+NjefxusJok/ApvtdK3tMnewly8C/IAe9vEvKJfnVPv9MTvPTGCgvZ8+wPUuij4BGIrVzPZrYATwINBLREYYY0px45oCt9vbrgQ+A5rZ718WkY7GmAdd7DsIWG2X9w2s6zEW+F5EuhhjjpU7tivsfH2Bz4GtQAgQC9yKfQ+IiAfW+b4O2AQsxfrcjAQ+FpF7jTGLXZSlKo8Dcfa+vwJS7OWDgfuB7+xjMEB/4CEgQUQSjDHF9jmahVXbGQU8XS7vsvOIiCwEpgJ7sK5FPjAM+KeIdDbGPFSDMlcgIvdjNXveCbwDnAQigUFY98caN7IJto9zD/A6cBkwDogSkelY985XwD+Bq7HuoePAsy7ycueeO93x/BHr85yP9Z13BOgNPAoMEpHBxpii02RR5g27LNuBv2N93y3A+o5zpda+Azmzz4tS5x9jjL70pa/z6IX1MGewmszMdPHqUi6tL9DaRR5DgBJgidPyv9p5x5dbVtaX54lyyzray151kbfLdVjBj8F6gPZ2WucDHADSgc5O6ybY273oxrnxstMaYDEgLtK0c7GsNdYD6Dan5ZWO3Wn9OqyHpQFOy+OBYuBjN8p8sb2Pt12sW2SvG2i/D7bfv+cirR/QtBbur6X2PgbY7y+y33/lIm1vrIevnUC407omQFi595/a+TzkIp+ocv++xD53q4Fm5ZYL8LKdx5hyy6fYy0qd7lsPrAdAA9xcg2saDXi4uK/+Y5cryml52f22oPz9BjzjfLz2NToCFDrfM/b6yHL/vtve/m/lywMEABvs+y7c1TE45Vn2mc4EOrlYHwb4u1g+095uvNPyVUBxFfsaaW/zAeBTbrl3uWtx6Vncmxux+pf6OS0XIOh019jpWs122vZLe3kGMKLcukCsIDoV8KzNew5ohRX07HC+jlgBlwGmunFOhttpk53OeQ+gwNW9Tu1+B7r9edGXvs7nlzYpVOr81Rl4ysWrS1kCY0y+MaZSjYcx5nusX0OvrJ+iVvCIOVVbU2Y01q/mzxhjtpdfYYx5B/gVq1bOXXlYDwjGeYVxUeNkn6OPgc5iNz2sjoj0xaptWWKMWe2U3yqs2otryjfLcsUYswnrQXJU+WZEYjWduwHYj1UzBNaDT9nxOeeTZ4w56U7ZqyIigcAfgT1lx2SM2YFVIzVcRCKdNrkd64F1ujHmiFN5ioxds2Of02uB37BqXJ3LfrDc2zsAT+BuY0xWuTQGeMx+6+pe+NI+72XpS7FqdQAmne64ncqyzzjVTBirhuefdrkGu9gsm8r321L7b+9yy/6A9aD9D+d7xt7PoXJv78bqT/lg+fIYY3KwgigfrFoJdy0xxvzuYp/HjNXnydlL9t+afEfcjRWE3G6MKSi3j0LgSfvtDTXIz5VCrAd5B2PJcHP7E1jBsGNbTtXcrjfGfFNuXTZWMBYCRLjI62zuuVuAplgB+RGndc9hBX/ufOeV7ecpp3P+G7DM1Qa19R1ob3cmnxelzjvapFCp89cnxphqH7hEpA9W86ABWL9ml/9ecPWgVZdynAMqWz/77yUiMtPFeh+glYi0MO41K9xVVTq7adtjWM1e2mDVApbXGqs2rjplZW5bRZlbYT1wdASqG1r9LayHrDGcekgahtU0cm7Zg7wxJkNEvgVuFquP2CdYwdjPxpgSN8pcnXFYD4FvOS1/E+t4bwFml1vex/7772ryLQs6vnV+OHOhH1bt61gRcXV/51PuR4VyVjkvMMZsFJEsoGc1+3QQEV+sJnbjgE5YNUrlueont91F0FIWPLUot8yt8yUizbCa0+4BHhcR5ySt7L+uzkNVNpxmfzcAfwF62eUt/2NtTfoF9sMKaO51UeayPoA1KbOzd7GCzU0i8i5Wk7jkKgLGqvxujHH+waIs4PnVRfqydRFYtfDlnc09V/b9MVBc9/UrxL1zVbafJBfrVmE1U62gFr8Dz/TzotR5RwMupS5gdn+csqYd32A1/crFqin5E65/ta1Lx6pYHmT/rfRw4KQpVn+KM9qP3TF+PdZxr8Tqq3EC61f5IUACpx4Mq1NW5rH2qyrudH5/B6tfxY2cCrgm2n+dg5+xWH2qJnCq31OqiCwA5rmq1auBsvPvvM93gYVYg2mUD7iaAyfL10RVobn9N+W0qSxBWIHqjNOkcXVOqxoC/BhW7am7PsZ6EN2C1b8mFevz0x6rL4ur++OEi2VltTDlB1xw9zy0tP+2w6q1rorbAytQ9WfiUaxrehSrNucgVlM0D6xaKXc/D2CVW6i9MjubjdXs+A6ssj0J5InIO8ADbv4Y4+peLXZjnatBbc7mniv7/vjf06RxZ76z5lg/ZFWq9ca6phXU8ncgnNnnRanzjgZcSl3YHsN6UIg3xqwrv0JEJrrexC1ltRSeLtY1O812VQUDZQ86VxhjEs+0UG7sZwpWJ/uHjTHPl19hN5dLqME+ysp8qzFmaY1LWI4x5qCIrMRqtheCFRSPAX41xmx2SpsDPAw8bA/aMRS4D5iDNYjAojMpg4h0wqoFBdjuooYC4CJ7EIWyX9OPAzEi0qyaoKvsQdidAD8La4CTpsa9AQPKhFaxPAzXD9KViEgs1sPj58Do8rVx9uflphqUxxV3z0NZeX8wxgw+y32WqfSZEGvky8ewam56lW+WZ38ennTephrZQKYxJuYsylkl+8eEJcASEQnHGizjNqwfj1pgDTBSn87mnitb384Ys/csynACiBYRPxdBVysX6WvtO7AePi9KnTO0D5dSF7YOwFEXwVYE1uAbZ6rswdG5Tw/ApWeQX1n5+p9ZcdxWNhT+Z+UXihVdxLpIX9ZMz1VgWdtlXob1I9k4rGDLVdO+Cowx240xLwFX2YtGncX+y2q3vgdec/H6zCkdWL+Ug9Vx/3Q2YD3wD7VH3zuddVg/ElzuXrEdKk1lICKXYP0AUL6p2Omuadn98YWLpo8DnBOfAbfOlzEmE6s2ukdNhhg/A2FYTcDWuOgDVdXxlmDPaOBi3TqsJrZ1XnNujDlijHkX697fDYwUp+Hb64G795wrtfX9UbYfV4GSq+k9avM7sK4/L0qdMzTgUurCth8ItWsvAGtuLqwR/M64Btx+ONuLNXRxdLm8W3FqYIOa+BCrmdVjItLbeaWI+ItIv8qb1dh++6/zw8CDQHcqK3sIdRVYrgH+C0wRkf9xXmnPjXPa+cycvI/VlGui/SrFampYPs9WIuIqECn7JTuvXFp/EekiIm2q27H9oHozVlOgCcaYKc4vrKHYM4Hryw0E8opdzrl2jUP5PL1EJAwcg0F8hjUCoas5t8qf35fsPF9yztNOGy4irvq2/I9UnNPNg1NDeZcPXE93TV3eHyIyAKsm5Wx9hNXM6y9Sbt6ocvspH6gswmp2tlhczIEmIheLm/PTnUbZiImX231xypfD1TDoYJ0/D1z3zVmE1aTwNbsfmnOZ2zt9X5TNjeVO0zlEZISLoKopVtBYWEv9GGvC3XvOlX9h1Ug/J67nRGxRRd8uZ2X7mVX+PhGRHpxqllxebX4H1vXnRalzhjYpVOrCthi4Aki2O5mXYo065oE1Yly3s8j7Rfu1VkQ+wBryehRW5+32NcnIGJMnItdj9SH5UUT+jdUnoAlWP5ZBWP0NrjmL8oI1X81DWHPEDMUK8spGG/wScA6ctmD1x5goIvl2+lJjzHPGGCMi47Hmp/nCbhL4C9Y5jsb6xfko1rDv1TLGnBCRL7D6aJUCiU6j1oHVwX29iPxi7+swVvO0sVjB0t/LpY3D6r/3HdWPNDfCzucTU27OKKfyFdh9Ze7CCr5eN8b8JCKPYfU/2yYiH2I9xEfa+5yDdQ+C1e/mYuB5EbkO6z7xwXrI64EdNBpjfhZrvqW/Ab+LyJdYwX0Q1hD1CVjzdm1zKuJXWPMIvWuXYThWbeu3VHz4rfKaYgXRPwOT7KDjJ6xf8UdhDWv/h2rO42nZ9/kErCZYK0Xkc7s8wVg1HTuwRokE67zFYdUoDhGRFVj3UwRW4NoT675NO4vyFIvIK8C9wM/2uQ7CGlEyEWvAF2crsGpg3xeRb7ACtpXGmDXGmE9F5Hmsz9hO+3N8EKsmrSvWQBHjsIZ2h1M/CrsVcAH/D8gQkTV2Hk2xvhPCsIaxr2/u3nOVGGMOi8hNWD+qbLHP/U6sY2qPNbrfq8A91eTzb/tzOQH4VUQ+xWpeOQHr8z/SaZNa+w6kjj8vSp1TTCMYm15f+tJX7b04NQ9XtXM82eknYD2c52I9FPwL6wGl0nw6uDkPV7l1D2A15ykEfsfqS1Q2b5Orebh2VlPWaKwajt1YtT0ZWEOm/w3o7caxls218+1p0lyOFYQct19f2csqHbudPt4+Vyft9c7nLBRrQt6tWDVMWfa/X8Xqk1aTa/sHTs0VdKuL9S2xHiyT7GtZgPUr8wdAH6e0ZdetynNRLu37OM1vVUW63na6JKflV2ENypKJNYrgHuD/gK5O6YLsc7XDLns6sBa438W+BmA9YJfVwhzBmmvoCSrOhVU2J9IkrGG0f7HLkALMx/UcU1VeUyDcLvthrM/MBjvf083tVOkcV7OuK9bIj4ftY0vBeti92imdYPWDSbTv1XysQONrrCH5Kx2bi325vK/Lrfex76mddv47sQYs8XNVfqw5tRZifZ6Lnc+JnWYk1ucqzT6+Q/YxTAOCy6W7zN5+qZufj7uxgtV9dlmP2vleX8W97+61Ot13nKvvxBrdc9Xkf7F9vx2wz1UqVuAyB6c5CU9zXprY17DsvGwB/lzVfqnF70Bq8HnRl77O55cYczYDVimllFKNl4hMwZrz5yZjTHXNuFQjIiL3YQVv3Y0xzjWWjZbec0opZ9qHSymllFKNUTzw0bkUbCmllCvah0sppZRSjY4xZlxDl0EppWqD1nAppZRSSimlVB3RPlxKKaWUUkopVUe0SaELISEhJiYmpqGLAcDJkydp2rRpQxdDOdHr0vjoNWmc9Lo0PnpNGie9Lo2PXpPGqTFdl59++inNGBNaXToNuFyIiYlhw4YNDV0MABITExk8eHBDF0M50evS+Og1aZz0ujQ+ek0aJ70ujY9ek8apMV0XEdlXfSrtw6WUUkoppZRSdUYDLqWUUkoppZSqIxpwKaWUUkoppVQd0YBLKaWUUkoppeqIBlxKKaWUUkopVUc04FJKKaWUUkqpOqLDwp+hrKwsjh07RlFRUZ3up3nz5mzdurVO96FqTq+Le5o0aUJYWBjNmjVr6KIopZRSSjUIDbjOQFZWFkePHiUyMhI/Pz9EpM72lZ2dTWBgYJ3lr86MXpfqGWPIy8vj0KFDABp0KaWUUuqCpE0Kz8CxY8eIjIzE39+/ToMtpc5lIoK/vz+RkZEcO3asoYujlFJKKdUgNOA6A0VFRfj5+TV0MZQ6J/j5+dV501ullFJKqcZKA64zpDVbSrlHPytKKaWUupBpwKWUUkoppZRSdUQDLqWUUkoppZSqIxpwKaWUUkoppVQd0YBLVZCcnMy4ceOIiIjA29ub4OBghg0bxhtvvEFJSUmt7y8xMZGZM2dSWlpa63m748UXX+TDDz+stHzmzJna90gppZRSqpEoNaVsTt9MkTn3BuLSgEs5vPjiiwwYMICMjAzmzZvHt99+y7/+9S86derEnXfeyeeff17r+0xMTGTWrFmNLuCaMmUKycnJDVAipZRSSikFcOTkET7a8REP/fAQg94dxPjPx7Mzf2dDF6vGdOJjBcDKlSuZNm0a99xzD3//+98rrBs9ejTTpk3j5MmTDVQ6S1FREV5eXvVS8xQVFUVUVFSd70cppZRSSllyi3LZcHQDa1LWsCZlDXtO7AEg1C+UgVEDiY2IRfacey2QtIZLATB37lyCgoJ47rnnXK7v0KEDl1xyCQDr1q3jyiuvJCAggKZNmzJ06FDWrVtXIf3kyZOJiori559/JiEhAX9/fy666CKWLFniSDNz5kxmzZoFQJMmTRARRzC1d+9eRISXXnqJhx9+mIiICHx8fDh+/DipqancfvvtdOrUCX9/f9q0acONN97IoUOHKpX7119/ZezYsQQHB+Pn50fnzp2ZM2cOADExMezbt49ly5Y59j158mRH2ZwDu6ysLO655x4iIiIICQmhc+fOLFy4EGOMI01iYiIiwqeffso999xDSEgIoaGhTJo0iePHj9fkkiillFJKnddKSkvYnLaZf278J7d+fSsDlg/g7u/u5v/9/v+ICIjgwd4P8uGoD/nu+u94Nv5Zrml/DU09mzZ0sWtMa7hqyazPNrMlJavW8y0pKcHT09OttN0imvHUtd3PaB+JiYmMGTMGX1/f06bduHEjgwYNolu3bixduhQRYe7cuQwaNIi1a9fSs2dPR9qsrCxuvPFGpk6dyowZM3j99de588476dy5M1dccQVTpkzh4MGDvPbaa6xatcrlcT777LP06dOHf/zjH5SUlODr68v+/fvx9fVlzpw5hIaGkpKSwgsvvMCAAQPYtm2b4xjWrVvH4MGD6dixIwsXLiQqKoodO3awceNGAD766CP+53/+h549ezJz5kwAQkNDXR53aWkpI0eO5L///S9PP/00HTp0YMWKFUybNo3U1FRmz55dIf3999/PNddcw9tvv8327dt5+OGH8fT05I033nD7uiillFJKnW8O5xwm+XAya1LWsPbwWk4UnACga1BXbu52M7ERsVwadik+nj4NXNLaowGXIi0tjby8PKKjo6tN+/TTT+Pj48N3331HixYtABg2bBgxMTHMmjWrQn+o7OxsXnrpJa644goABg4cyL///W/eeecdrrjiigrN9vr164eXV+XbsVWrVnz00UcVaps6d+7M3/72N8f7kpISBgwYQNu2bfnqq68YO3YsAA8++CDBwcGsXbsWf39/AIYMGeLY7tJLL8XHx4eQkBD69+9/2uP+8ssvWbVqFa+//jqTJ08mOzubMWPGcPLkSV544QWmTZtGSEiII/3AgQNZtGgRAMOHD2f79u28+uqrjiBVKaWUUupCcLLoJOuPrCc5xQqy9mbtBSDML4zBUYOJi4ijX+t+BPsFN2xB65AGXLXkTGqW3JGdnU1gYGCd5H0mVq5cyTXXXOMItgCaNWvGqFGj+Oyzzyqk9ff3dwRbAD4+Plx00UXs37/f7f2NGTPGZYDy8ssvs2TJEnbt2lWhb9n27dsByM3NZfXq1Tz00EOOYOtsrFy5Eg8PDyZMmFBh+aRJk3jttddITk7m2muvdSwfOXJkhXQ9evSgoKCAo0ePEh4eftblUUoppZRqjEpKS9iSvsVRi/XrsV8pNsX4evrSO7w34zqPIy4ijvbN218wP0JrwKUc/Zv27dtXbdqMjAxat25daXl4eDiZmZkVlrVs2bJSOh8fH/Lz890um6t9LVq0iPvuu49p06bx/PPP07JlS0pLS+nfv78j78zMTEpLS2tt4IuMjAyCgoLw8alYvV0WPGVkZFRYHhQUVOF92XY1OXallFJKqXNBSk4Ka1LWkJySzNrDa8kqtLrZdA3qyi3dbyEuIo5eYb3w9vRu4JI2DA24FF5eXgwePJj//Oc/FBQUVAoqygsKCuLIkSOVlh85cqRSkFEbXP3ysXz5coYOHcoLL7zgWLZnz54KaVq2bImHh4fLgTTORFBQEBkZGRQWFuLtferLouxcBAefv9XgSimllFLl5RTmsP7Iekc/rLJmgq38WzGk7RBHM8Eg39p/NjwXacClAJg+fTqDBw/moYceqjQsPFgBTXZ2NoMGDeKLL76o0NQxOzubzz77jMGDB9d4v2XBXV5enttNJ3Nzc2nWrFmFZa+//nqF9/7+/sTHx/PWW28xY8YM/Pz8qtx/Xl5etfscNGgQzz//PO+//z4TJ050LF+2bBne3t7V9gFTSimllDpXlZSWsDl9s6MWa2PqRopNMX5efvQJ78MNnW8gLiKOds3bXTDNBGtCAy4FWIM8LFiwgGnTprF161YmT55M27ZtyczM5LvvvuPVV1/l7bff5sknn+Tzzz9n6NChPPLII4gI8+bNIzc3lxkzZtR4v926dQPghRde4Oqrr8bT05PevXufdpurrrqKefPmMXv2bPr27cv333/PBx98UCnd/PnzGTRoELGxsTzwwANERUWxe/dufvnlF8eAFt26dSMpKYnPP/+c8PBwQkJCiImJqZTX1VdfTXx8PHfccQepqam0a9eOxMREXn31VR599NEKA2YopZRSSp3rDmYfJPlwsqOZYHZhNoLQLbgbt158K7ERsfQM7XnBNhOsCQ24lMPUqVPp27cvCxcu5MEHHyQtLY3AwEB69+7NK6+8wrXXXouHhweJiYk8/vjj3HLLLRhj6N+/Pz/88EOFIeHddc0113DXXXfx0ksv8fTTT2OMqTCvlSszZszg+PHjLFy4kPz8fAYNGsQ333xD+/btK6Tr06cPq1evZsaMGdx7770UFBQQHR3Nrbfe6kgzZ84c/vznPzNu3Djy8vK45ZZbWLp0aaV9enh48MUXX/DYY48xb9480tPTiYmJYcGCBUydOrXGx62UUkop1ZjkFOaw7sg6Ry3W/mxrkLPwpuEMix5GbEQs/cL70dK3ch99dXpS3cPthah3795mw4YNVa7funUrXbt2rZeyNLZRCpVFr0vN1MdnJjEx8Yyataq6pdel8dFr0jjpdWl8zvdrUlxazKa0TY5arI2pGykxJfh5+dE3vC+xEbHERcQR0yymUTUTbEzXRUR+MsacvmkWWsOllFJKKaXUBeFA9gGSU6wA68fDP5JdZDUT7B7cnT9d/CfiIuLoGdqTJp5NGrqo55V6D7hEpA2wEBgGCPAtMNUY4/7kTFY+jwKzgdXGmHindR7AI8DtQDiwHXjaGPP/zv4IlFJKKaWUavyyCrNYf9gaTTD5cDIHsg8A0Lppa4bHDHc0E2zh26KanNTZqNeAS0T8ge+BAuAWwAB/BVaIyCXGmJOn275cPu2Bx4FjVSR5BnjQTvMTMB54X0SuMcZ8eXZHoZRSSimlVONT1kxwTcoa1qSsYVPaJkpMCf5e/vRt3ZdJXScRFxFHdLPoRtVM8HxX3zVcfwbaA52NMTsBRGQjsAOrNmqBm/m8DCwDOuN0DCIShhVszTXGzLcXrxCRjsBcQAMupZRSSil1XjiQdcARYK07so6cohw8xIOLgy9mSo8pxEbEcknoJTTx0GaCDaW+A65RwNqyYAvAGLNHRFYDo3Ej4BKRG4HLgAnAhy6SjAC8gbeclr8F/EtE2hlj9lTeTCmllFJKqcYtqzCLdYfXOYKsQzmHAIgMiOSqdlcRFxFH3/C+NPdp3sAlVWXqO+DqDnziYvlm4PrqNhaRllj9vx42xmRUURXaHavJ4k6n5Zvtv90ADbiUUkoppVSjV1RaVKmZYKkppWmTpvQN78vk7pOJi4ijTWAbbSbYSNV3wBUEZLpYngG4M6j/88DvwNJq9nHcVB7vPqPc+kpE5C/AXwBatWpFYmJilTto3rw52dnZbhT37JWUlNTbvpS4x4z9AAAgAElEQVT79LrUTH5+/mk/U7UhJyenzvehak6vS+Oj16Rx0uvS+DTUNTHGkFqcyrb8bWzL28aO/B3km3wEIdo7muHNhtPVtyvRPtF4iiccgd1HdrOb3fVe1oZwLn5WGmJYeFcTf1UbjotIAnAzcJmLYMo5rxrvwxjzD+AfYM3Ddbrx/bdu3VpvczDpfE+Nk16XmvH19eXSSy+t0300pnk51Cl6XRofvSaNk16Xxqc+r8mJghP8ePhHx5xY5ZsJXnvRtVYzwdZ9aebdrF7K05idi5+V+g64MnFdw9QS1zVf5b0CvAYcFJGysSu9AE/7fZ4xpgC7tkxExCkwK6tBy0AppZRSSqkGUlRaxMbUjaxJWcPalLVsSreaCQY0CaBf637c2v1Wq5lgszYNXVRVC+o74NqM1cfKWTdgSzXbdrVfd7hYlwn8L/CivQ8foAMV+3F1s/9Wtx+llFJKKaVqjTGGfVn7rPmwUpJZd2QducW5eIonPUJ6cMcldxAbEcvFIRfj5dEQDdBUXarvK/opMF9E2htjdgOISAwwAJhezbZXuFj2IuAJ3Mup4OproBCYCMwql3YSsElHKDy95ORkFi5cyKpVq0hLSyMwMJDLLruMSZMmMWnSJDw9PRu6iC7t3buXdu3a8frrrzN58uSGLo5SSimlLnAnCk6w9vBaklOSWZOyhsMnDwPQJrAN13a4ltjWsfRp3UebCV4A6jvg+idwD/CJiDyB1dfqGeAAVpNBAEQkGtgFPG2MeRrAGJPonJmIHAe8yq8zxhwTkYXAoyKSDfwXuAEYgjX0vKrCiy++yLRp0xgyZAjz5s0jOjqazMxM/v3vf3PnnXfSokULRo/WU6iUUkop5ayopIhfU3911GJtTt+MwRDYJJB+rfs55sRqE6jNBC809RpwGWNOisgQrKHd38QayOI7YKoxJqdcUsGqufI4w109DuQA9wPhwHZgnDHmszMt+/lu5cqVTJs2jXvuuYe///3vFdaNHj2aadOmcfLkyQYqnVJKKaVU42KMYU/WHpJTkh3NBPOK8/AUTy4JvYQ7e91JXEQc3YO7azPBC1y9X31jzH7gumrS7MWNkQuNMYOrWF4C/NV+KTfMnTuXoKAgnnvuOZfrO3ToAEBqaipPPPEEK1as4ODBgwQHB5OQkMDzzz9PZGSkI/3kyZNJTExk7969FfIpG1WmbDjPnJwcHn30UT755BOOHj1KixYt6NGjB4sXL6ZLly4ALF68mGXLlrF9+3ZKS0vp0qULTz75JCNHjqzdk6CUUkopdRqZ+ZmO0QTXpKzhyMkjAEQ3i2ZUh1HERcTRJ7wPgd46krE6RcPt2vLVdDjyW61n61dSDJ5uXqbwHnD13Brvo6SkhMTERMaMGYOvr+9p02ZkZODr68ucOXMIDQ0lJSWFF154gQEDBrBt27Zqt3f2v//7v3z66afMnj2biy66iPT0dFavXs3x48cdafbu3cuUKVOIiYmhuLiYzz77jGuuuYYvv/ySq6++usbHq5RSSinljqKSIn5J/cXRTHBL+harmaB3IP1b9+cvl/yF2NaxRAVGNXRRVSOmAZciLS2NvLw8oqOjq03buXNn/va3vznel5SUMGDAANq2bctXX33F2LFja7Tv5ORkJk6cyG233eZY5pzH/PnzHf8uLS1l6NCh/P777yxZskQDLqWUUkrVqv1Z+0k6lMRnxz7j4eUPk1ech5d4cUnoJdzV6y5HM0FPj8Y5kJhqfDTgqi1nULPkjrxGOMHuyy+/zJIlS9i1a1eFfl3bt2+vcV59+vRh6dKlhISEMHz4cC699NJKIyH+9NNPPPXUU6xfv57U1FTKplfr3Lnz2R2IUkoppS54BSUFbDiygaRDSaw6tIp9WfsACPUKZUzHMdZoguF9CPAOaOCSqnOVBlyK4OBg/Pz82LdvX7VpFy1axH333ce0adN4/vnnadmyJaWlpfTv35/8/Pwa73vRokWEh4fzr3/9i8cff5ygoCBuvvlmnn32Wfz9/Tlw4ABDhw6lW7duLFq0iLZt2+Ll5cWTTz7J1q1bz+RwlVJKKXWBO5h9kFWHVpF0KIl1h9eRX5KPr6cvfcL7MLHrROIj49n10y4G9xvc0EVV5wENuBReXl4MHjyY//znPxQUFODj41Nl2uXLlzN06FBeeOEFx7I9eypPbebr60thYWGl5enp6QQHBzveBwQEMGfOHObMmcO+ffv44IMPmD59Ot7e3sybN4+vv/6aEydO8N577xEVdap9dG5u7pkerlJKKaUuMIUlhfx09CdHLdaeE9azS5vANvzhoj+QEJVA71a98fU61Rd9F7saqrjqPKMBlwJg+vTpDB48mIceeqjSsPBgBVXZ2dnk5ubSrFnFCfpef/31Sumjo6M5evQoaWlphISEALBr1y62b99OXFycyzJER0fzwAMPsGzZMjZt2gScCqyaNGniSPf777+zevXqCgGYUkoppVR5KTkpjlqsHw//SF5xHt4e3vQJ78MNnW8gPjKe6GbV919X6mxpwKUAGDhwIAsWLGDatGls3bqVyZMn07ZtWzIzM/nuu+949dVXefvtt7nqqquYN28es2fPpm/fvnz//fd88MEHlfK7/vrrefLJJ5k4cSLTpk0jLS2NOXPmOIKvMrGxsYwaNYoePXoQEBDADz/8wK+//sott9wCwJVXXomXlxc333wzDzzwAIcPH+app56ibdu2lJaW1su5UUoppVTjV1RSxM/HfnbUYu08vhOAyIBIRnUYxcCogfQJ74Ofl18Dl1RdaDTgUg5Tp06lb9++LFy4kAcffJC0tDQCAwPp3bs3r7zyCtdeey3Dhw/n+PHjLFy4kPz8fAYNGsQ333xD+/btK+TVsWNHPvjgA5544gnGjBlDp06dWLBgAbNnz66QbuDAgbz33nvMnTuX4uJi2rdvz8KFC7nvvvsA6N69O8uWLWPGjBmMGjWKDh06MHfuXL7++mvHXF5KKaWUujAdPXnUUYuVnJJMbnEuTTyacHmryxnbcSzxUfG0a9YOkWqnd1WqzmjApSqIi4ursskfgJ+fHy+//DIvv/xyheVlIweWN2bMGMaMGVNh2fDhwyu8nzdvHvPmzTttmcaNG8e4ceMqLBs/fnyF9zExMS7LoJRSSqnzR1FpEb8e+9VRi/V75u8AtG7ampHtR5IQmUC/1v3wb+LfwCVV6hQNuJRSSimlVKOVmptaoRYrpygHL/HislaX8cDlDxAfGU+HFh20Fks1WhpwKaWUUkqpRqO4tJjf0n4j6aBVi7U1w5oGJsw/jBExIxy1WDov1oXBGMPRrAJ2Hsthx7FsWhace334NeBSSimllFINKi0vjdWHVrPq0CpWp6wmuzAbT/GkV1gvpl42lfjIeDq17KS1WOexklLDwcxcO7DKYaf92nUsh+yCYke6qZdVPX1RY6UBl1JKKaWUqlclpSVsSt9E0sEkkg4lsSV9CwAhfiEMbTuUhMgE+kf0p5l3s2pyUueawuJS9qaftAKroznsTLUCq92pORQUn6q9Cgv0oWNYAGMvi6RjWIDjtXlDcgOW/sxowKWUUkoppepcRn6GoxZrTcoajhccx0M86Bnak/suvY/4yHg6B3XGQzwauqiqFuQWFrPr2El2HMt21FbtTM1hX3ouJaXWQGciENXSj46hAcR3DOaisEA62IFVc78mLvPdcg7WcmrApZRSSimlal2pKWVL+hZHLdamtE0YDEG+QQyMGkhCZAKxEbE092ne0EVVZ+F4bmGlZoA7j+Vw6HieI42XhxAT0pROYYH8z8WtuahVAB1CrZeft2cDlr5+aMCllFJKKaVqxfH846xJWePoi5WRn4Eg9AjtwV297iIhMoGuwV21FuscY4zhWLY9cMXRbEczwJ3HckjLKXSk823iQYfQAHrHtGR8aBsuamXVVkUHN6WJ54V7zTXgUkoppZRSZ6TUlLItY5ujFuu3tN8oNaW09GlJXGQcCZEJxEXE0dK3ZUMXVbmhtNRwMDOPnanZVv+qY6f6WGXnnxq4opmvFx3DAhjSJYyOYQFcFBZIx7AAIlv44eFx7jX5q2sacCmllFJKKbedKDhB8uFkVh1cxapDq0jPTwfg4uCLuf2S24mPjKd7cHc8Pc7/pmLnqsLiUvaVDVxRfkRAp4ErQgN96BgawJhekVZtVahVYxUa6KMjRtaABlxKKaWUUqpKxhi2Z263Jh8+mMSvqb9SYkpo5t2MAREDSIiyarGC/YIbuqjKSW5hMbtTTzrmsCoLrPal51JsD1wB9sAVYQHEdQh2NAPsGBpIc3/XA1eomtGA6wLnzq8T0dHR7N27t+4L0wgtWbKEO++8k8OHDxMeHl4n+5g/fz6dOnVi1KhRFZZPnz6dF198kfz8/DrZr1JKKVWV7MJs1h5ey6pDq1h1cBXH8o4B0DWoK7f1uI2EyAQuDrkYLw99lGwMTuQWsTM1u9JQ6wczKw5cER3sT8ewAK66ONzRDLB9aFP8vfU61iU9uxe45OSKcxmMHTuWnj17MnPmTMcyH59zb4K5c8n8+fO55pprKgVcd999N3/4wx8aqFRKKaUuJMYYdhzf4ajF+uXYLxSbYgKbBBIbEUtCVALxkfGE+IU0dFEvWMYYUssGrig/ImBqDqnZBY50Pl7WwBWXtW3JDb3bOOavig5uirfXhTtwRUPSgOsC179//wrvfXx8CAkJqbS8KgUFBRqQ1ZE2bdrQpk2bhi6GUkqp89TJopOOWqykg0kczT0KQOeWnZl88WTiI+PpGdpTa7HqWWmp4dDxvErNAHc4DVwRaA9cMbhTaIVmgJEt/fDUgSsaFQ1zldvGjx9Px44dWblyJf3798fPz48ZM2aQn5+PiDB37twK6bdt24aIsHz58grLv/32WwYPHkxAQAABAQGMHDmSrVu3ulWG6rb905/+RJs2bSgtLa2wXW5uLoGBgUyfPh2AkydPct9999GtWzeaNm1KREQEY8aMYceOHafdf9mxLliwoNpjTU5OZuzYsURFReHn50eXLl146qmnKCg49StUeHg4R48e5bXXXkNEEBHuuOMOwGpS6OvrW2E/x48f58477yQ8PBxvb2+6dOnC4sWLK6T5+uuvERG+/vprbr/9doKCgggLC2Py5MlkZWVVd4qVUkqdp4wx7Dq+izc2v8GUb6YQvzyeqSum8tWer+gR0oNZcbP49o/f8sGoD7j/svu5vNXlGmzVoaKSUnYey+brTYdZ9N0O7l/+MyP/nkS3p74m4bkV3Lp0PbO/3Mb321Lx9vJgdK8IZo3qzrIp/fjxsaFsfGo4H901gOev78lfBnZgSJdWtA3212CrEdJPUS2Zt24e2zK21Xq+JSUleHq6N8pPl6AuPNL3kVovQ3lpaWncdNNNPPLII45gpSY+/PBDrr/+esaOHcvbb79NSUkJc+bMYeDAgWzcuJHWrVuf1bY333wzr7/+OomJiQwZMsSx7UcffUROTg433XQTYAVgBQUFzJw5k1atWpGWlsbixYuJjY1l+/btBAeffcffvXv30qdPH2677TYCAgL47bffePrpp9m3bx9Lly4F4Msvv2TYsGHEx8fz6KOPAtCqVSuX+RUXFzNixAi2bNnCX//6V7p06cInn3zCvffeS0ZGBjNmzKiQ/q677mLMmDG8++67bNq0ienTp+Pj48Mrr7xy1semlFLq3JBblMu6I+sctVgpJ1MA6NiiIzd1vYmEqAR6hfaiiacOjlBX8gpL2JVqjQBYfqj1vWknKwxcEdnCGrgitn2woxlgx7AAWvh7N2DpVW3QgEvVyIkTJ3j33XcZMWKEY5m7gzqUlpZy//33M2LECD744APH8kGDBtG+fXv+9re/Vaolq+m2gwYNom3btrz55psVAq4333yTSy+9lO7duwMQGhpaIfAoKSlh+PDhhIaG8t5773HnnXe6d0JOY8KECY5/G2OIj4/Hz8+PO+64g0WLFhEYGMhll11GkyZNCA0NrbYZ58cff8y6det45513GD9+PAAjRowgKyuLuXPncv/999O8eXNH+mHDhjlq4oYNG8bmzZt55513NOBSSqnzmDGGvVl7HQHWhqMbKCotws/Lj/6t+zPlkinER8TTOqDqHzjVmTmRV2QNrV6+KWCqNXCFseMqz7KBK0IDGNG9laMZYIcwHbjifKZXtpbUVc1SdnY2gYGBdZL3mfD3968QbNXE5s2bOXjwIPPmzaO4uNzkec2a0adPH1auXHnW24oIEydOZPHixbz00kv4+flx5MgRvv32W+bPn18hz2XLlvHiiy/y+++/V2hqt3379jM6PmeZmZn89a9/5aOPPuLgwYMUFRU51u3atYtevXrVKL+VK1fi7e3N9ddfX2H5pEmTWLZsGevWrWPYsGGO5SNHjqyQrkePHrz22mscP36cFi1anMERKaWUaozyivNYf2Q9SQeTWHVoFQdzDgLQvnl7JnSZQEJUApeFXYa3p9aUnC1jDKk5BacGrCjXv8p54Ir2oQH0atOS6y8/NXBFjA5ccUHSgEvVyNkMjX7smDWk7MSJE5k4cWKl9Z06daqVbW+++WbmzJnDxx9/zIQJE3j77beBijVO77//PpMmTWLKlCk8/fTTBAcH4+HhwZVXXllrw7BPmjSJ5ORkZs2aRc+ePfH39ycpKYlp06ad0T4yMjIICwur1MS07JpkZGRUWB4UFFThfdngJjrMvFJKnfv2Z+0n6VASSYeS2HBkAwUlBfh6+tKvdT8md59MfFQ8kQGRDV3Mc1ZpqSE1t5QV24+xs1wzwB1Hs8kqP3CFjxcdwgIY1CmUi8o1A4xqqX2pap0xkLkXKS2qPm0jowGXqhFX83Y1adIET09PCgsLKyxPT0+v8L6sX9QLL7zAwIEDK+XjPEDEmW7bpUsXevfuzVtvvcWECRN46623GD58eIW+UcuXL6d79+7885//dCzLzc3lxIkTVZYB3D/W7OxsvvrqK5577jnuvfdex/L169efNv/TCQoKIjU1ldLSUjw8Tv06duTIEYBa6XemlFKqcSooKWDDkQ0kHbJqsfZl7QMgplkM13e6noTIBC4PvxwfTx05+EwYY9iddpI1u9JJ3pVG8q50MnOLYKX1/3ZIgDcdQgMY1SuCjqEBdAwL5KJWAYQF+rg1p6k6Q1kpsCcJ9qy0Xif207znM8CwajdtTDTgUmfN09OTyMhINm3aVGH5F198UeF9jx49iIiIYOvWrUybNq1G+6jptjfddBMPPPAA33//PT///DPvvPNOhfW5ubk0aVKxg3DZQBanU3aszqMqOh9rbm4uxpgK+zDG8MYbb1TK08fHh7y8vErLnQ0aNIhFixbx0Ucfcd111zmWL1u2DD8/P/r06VNtHkoppc4dB7MPWn2xDiWx7vA68kvy8fH0oU94H27sciMJkQm0aabTh5ypQ8fzWLPTCq7W7ErnSJbVAqR1c1+GdGlFYMExRiZcTsfQAFo21eaY9eJkOuwtF2Cl26NH+7aAdgkw4D5yM8+9H5g14FK1Yvz48SxYsIB58+bRu3dvVqxYwfvvv18hjaenJ4sXL+b6668nNzeX6667juDgYI4cOcLq1avp1KkT99xzj8v8a7rthAkTeOCBB7j55psJDAxk9OjRFfK76qqrmDp1Ko888gjDhw/nxx9/5OWXXyYgIKBWjrVVq1b06tWLuXPnEhISQosWLfjHP/5BWlpapfy6devGihUr+PLLLwkLCyMsLIy2bdtWSjd69Gj69u3Ln/70J1JSUujcuTOffvopb731FrNmzaowYIZSSqlzT2FJIT8d/clRi7XnxB4AogKiGHvRWBIiE+gT3gdfr6pbhKiqpWYXkLzbqsFasyudfem5AAQ39Sa2QzBxHUKI6xBMdLA/IkJiYiJ9YoKqyVWdlfws2J9sB1g/wJHfrOXeARAdB5ffAu0GQqseYLfuKUxMbLjynqF6D7hEpA2wEKsuUIBvganGmP3VbBcN/B3oBYQBJ4FNwDxjzFdOaU3lHAC41Bjzy9kdgXLlqaeeIjs7m4ULF5Kbm8u1117L0qVLiY+Pr5Bu7NixrFixgtmzZ3PbbbeRl5dH69atiY2NZdKkSafdR022DQ0N5aqrruLzzz/n1ltvxc/Pr8L6u+++m5SUFP7v//6PxYsX069fP8cQ7e4ca3p6erXH+v7773PXXXdx++2307RpUyZMmMDkyZP5wx/+UCHdc889xx133MEf//hH8vLyuP3221myZEml/Xp5efHNN98wffp0nn32WTIyMmjfvj2LFi2qMlBVSinVuB3OOUzSoSQ+PvYxDy9/mLziPJp4NKFPeB/GdRpHfGQ80c2itdnaGTiRV8SPu63aqzW70vj9aA5g9bvq1z6YW2JjGNAxhE6tAvT81peiPDjw46karEP/BVMCnj7Qth8MeQLaDYKIS+E8mqpAjKkqNqmDnYn4A78CBcATgAH+CvgDlxhjTp5m2+7ANCAROAg0A/4MjASuM8Z8WC6tAZYCzuNfbzTG5FZXzt69e5sNGzZUuX7r1q107dq1umxqRWMbpVBZ9LrUTH18ZhITExk8eHCd7kPVnF6XxkevScMqLi3ml2O/OAa82JFpNZkK8gxiWMdhjlos/yb+DVzSc09uYTHr92ayxu6DtenQCUoN+DbxoE9MkKMGq3tEM7w8qx8pUD8rtaC4EFL+eyrAOvAjlBSCeEJUb6v2qt1AiOoLTdyruW1M10VEfjLG9K4uXX3XcP0ZaA90NsbsBBCRjcAO4HZgQVUbGmM2A7eVXyYiXwB7gFuBD502OWSMWVt7RVdKKaWUqrn0vHRWp6xm5cGVrDm0huyibLzEi8taXcYDlz9AQlQC+3/ezxX9r2joop5TCopL+Hn/ccdAF78cOE5RiaGJp3Bpm5bcN/Qi4jqE0LNNc3y8PKvPUJ290hI4svFUgLUvGYpOAgLhPaDvX6warOhY8Llwfriu74BrFLC2LNgCMMbsEZHVwGhOE3C5YowpFpETwLk3PqRSSimlzkulppQt6VtIOmjVYm1K24TBEOIXwpXRV5IQlUBs61gCvE/1Gz4gBxqwxOeG4pJSNqVkOWqw1u/NIL+oFA+BHpHNuS2+PXEdgukd01InEa4vxkDqtlMB1t4kyLdHfA7pDL1utGqwYuLB/8LtD1ffd2N34BMXyzcD17tYXomIeAAeQAhWjVkn4H4XSe8UkYeAEmAt8JQxJulMCq2UUkopdTpZhVmsSVnjmHw4Iz8DQegR2oO7et3FwKiBdAnqgofopLfuKi01bD+a7ajB+nF3BtkF1hxYXcIDmdC3LXEdQujbLojmfudPf59GzRjI3HMqwNqTBCetuVJpEQ1dR1k1WO0SIPDM524939R3H65CYIExZrrT8r8C040x1QaAIjIfeMB+mwPcUr7/lp3mTeBzIAWIBh4CugHDjDGJVeT7F+AvAK1atbp8+fLlVZahefPmdOzYsbqi1oqSkpJKE92qhqfXpWZ27txZ7RxnZysnJ8etUSZV/dLr0vjoNakdxhgOFx1mS94WNudtZnfBbkopxd/Dn66+Xenu152ufl0J8HTvXOt1sc7p0VzD1vQStmSUsC29hGy7DVMrf6FrkCddgz3pGuRJM5+6H+RCr4nFuyCdlpm/0eL4RlpmbsS3IBWAAu+WHG9xCZktL+F4ix7k+7WqJqfa0ZiuyxVXXOFWH66GCLheMMY86rT8WeARNwOuKCDcft2M1Uzxj8aYz0+zTSDWiIYHjDHxVaUro4NmqOrodakZHTTjwqXXpfHRa3LmcotyWXdknaOp4OGThwHo3LIzA6MGkhCVQI+QHnh51LwB0YV6XVKO5zlGEUzelc7hE9ZcWOHNfInraA3VHtshmMgWftXkVPsu1GtS5VxYfi0hJsEe6GIQhFwEDTC6Y2O6Lo110IxMwFUDzpb2umoZYw5ijVII8LmIJALzsWq0qtom2x5g47aq0iillFJKOTuQdYCVh1aSdDCJ9UfWU1haiJ+XH7GtY/nLJX8hITKBVk3r55f980FaToFjouHkXWnstefCCmrqTWz7YGI7BDOgYwgx9lxYqh7kZ8G+NacCrKPVz4Wlaqa+A67NWP24nHUDtpxhnhuAqW6kE6xh6JVSSimlXCoqKWLD0Q3WsO0Hk9ibtReAmGYx3NDlBhIiE7i81eV4e3o3bEHPESfyili3J8NRg7XtSDZQNhdWEDfFxhDXIZjOrQLx8NAAq14U5lacCyvl5wtiLqyGVN8B16fAfBFpb4zZDSAiMcAAYPpptnPJHkAjHthVTbpmWPN1/VjTfSillFLq/Hb05FFWHVrFyoMrWXt4LbnFuXh7eNMnvA/ju4wnITKBts3aNnQxzwm5hcVs2JvpqMH6zZ4Ly8fLmgvr4asiiOsQwsVuzoWlakFxIRz66VSAdXCdNReWhxdEXg4J02o8F5aqmfoOuP4J3AN8IiJlEx8/Axyg3CTFIhKNFUQ9bYx52l42E6s54mrgCFYfrtuAvsCN5bZ9EOgMrODUoBkP2ukn1unRKaWUUqrRKyktYWPaRpIOJrHy4Eq2Z24HILxpONe0v4aEqAT6hvfVyYfdUFhcyi8HjrNmVxprdqbz84FMikoMXh7CpW1bcM+Qi4jrEMylbVvoXFj15XRzYbW+BPrdbtVgte1/Qc2F1ZDqNeAyxpwUkSHAQuBNrGZ+3wFTjTE55ZIK4Ik1/HuZ/2I1HRwPNMcKun4FEowxq8ul2w6MtV/NgSysIO02Y8y6ujgupZRSSjVumfmZpyYfTlnDiYITeIonvcJ6MfWyqQyMGkjHFh2131A1SkoNmw6dcAx0sWFvJnlFJYg9F9af4tsR1yGE3tEtaeqjc2HVi9PNhRXaBS6daNVgRQ+4oOfCakj1/kkwxuwHrqsmzV6soKv8sk+xmiRWl/9nwGdnUcQLztKlS7n11lvZsWPHWQ93P3jwYIqLi1m1alWtlG3y5MkkJiayd+nfn/oAACAASURBVO/eWslv5syZzJo1i/ocnbNsvwMHDmTIkCH1ul+llLpQGWPYmrHVqsU6tJLfUn/DYAjyDWJQ1CASohKIi4ijmXezhi5qo2aM4fejOazZlcbqnen8uCed7HxrLqxOrQK4oU8bYjsE079dMM39tb9Pvag0F9ZKOGkN1a5zYTVO+tODUvVg1qxZPP744xpwKaVUHcopzGHt4bWsPLiSVYdWkZpnPYReHHwxd/S8g4FRA+kW3E0nHz4NYwz70nMrDNWefrIQgOhgf665pDWxHULo3z6IsEDt71NvslIqBlgnDljLA8Kh/RX2UO0J0DKmQYupXNOASymllFLnJGMMe07sIemQ1Rfrv0f/S7EpJrBJIHGRcSREJjAgcgAhfiENXdRG7fCJPNbsPDVUe4o9F1arZj4M7BRKbIdg4joEE9VS+7TVm5NpTnNh7bSWl82FNeD+Bp0LS9WM/sSj3LJ+/Xr++Mc/EhUVhZ+fH507d+axxx4jLy/PZfpPPvmEiy++GB8fH7p06cJ7771XKc2vv/7KqFGjaNmyJX5+fgwYMICkpKRqy5Kbm8sjjzxCu3bt8Pb2pl27djz77LOUlpZWSPfzzz+TkJCAr68vkZGRPPPMM243JSwqKuKJJ54gJiYGb29vYmJieOKJJygqKnKkSUxMRERITEyssO3SpUsREUczyLL+AM8++ywigogwc+ZMR/offviBYcOG0bx5c5o2bUrPnj157bXXalSWvXv3IiIsWbKERx99lPDwcAIDA5k0aRK5ubns3LmTESNGEBAQQMeOHXnjjTcqHbM712P9+vUMGzaM4OBg/P39ad++PXfddZdb51QppWpDfnE+SQeTeHbts1z94dWM/mQ08zfMJyM/g5u638TrI17nh/E/MH/QfEZ3HK3BlgvpOQV8sfEwj3/0G0PmJxI753seeP9Xvt92lF5tW/DMmIv57oFBrH10KAtv6MW43m002Kpr+Vmw/Wv4+jF4eQA83wHenwwb34OgDjD8Wbg9CR7aDTe8CX3/DKGdNNg6R2gNVy05Mns2BVu31Xq+xSUlZHi6N6qPT9cuhD/2WK2XAWD//v306tWLyZMnExgYyObNm3n66afZvXs3y5cvr5B2586d3Hff/2fvvuOjqtLHj3/upPfeeyEBQiBA6ExI6CBtLdhARUFF1766roKCuOs23fZd3UXX8sNdEBugWFYkIQFCNQmhl/RJQkjvZWbO748LswQCBAiZkJz36+VLcufOvc/MzUzmmXPO8zzJihUr8Pb25p133uGuu+7Cy8uLpKQkAH766Se0Wi1Dhw7l3Xffxd7enn/84x9MnjyZnTt3Mnz48A7j0Ov1TJs2jcOHD7N8+XJiY2PZtWsXq1atorKykjfffBOA8vJyJk6ciK+vLx999BE2Njb84Q9/oKCgoFOP9/7772f9+vW89NJLjB8/nvT0dF5//XVycnL4z3/+c1XPXXp6OmPGjOGBBx7gkUceASAwMBBQE9PbbruNcePG8c9//hNPT08OHTpEfn7+NcXyxhtvkJiYyEcffcThw4d54YUX0Gg0ZGRksGTJEn7xi1/wzjvvsGjRIuLj44mJien09aivr2fatGmMHDmSDz/8ECcnJ/Ly8ti5c+dVPR+SJElXS1evM1UU3FO6hxZDC3aWdozyHcWDgx5EG6DFz9HP3GH2WLXNbezJqTRNEzzXC8vB2oJR4R7cMyqYsRGe9PeVvbC6zaV6YVnaQtAomLj8bC+sONkL6zwGg/HKO/VAMuGSOuW22/5X50QIwbhx43B2dua+++7j73//Ox4eHqbbT58+TXp6OqNHjwZg+vTpxMTE8Morr5hGTJ5//nmCg4PZunUr1tZq88hp06YxaNAgVq1axYYNGzqMY+3atWzfvp1t27aRkJAAwKRJkwB1ndQvf/lLvL29+dOf/kRDQwPff/89wcFq75QpU6YQEhJyxcd68OBB1q5dy6uvvmoaiZo6dSoWFhYsX76cF198kbCwsE4/d+eeh4CAANO/zz2PTz31FHFxcSQnJ6M527198uTJVxXL4MGDTftHRESYRq+mTZtGWloaa9asYc2aNSxYsACA+Ph4Nm3axGeffWZKuDpzPY4ePUpVVRW///3v253zgQce6PRzIUmS1BltxjYyyzJJLUolrSiNUzVqu80gpyBuj7odbYCWeN94bCxszBxpz9TUamB/fpVa6OJUBdlF1aZeWPGhbjw/LZoxER7EBrhgJXthdQ/ZC+u6tLUYOLhNR+aWAvzGdm/hs64gE64ucqNGlurq6nByMn+PhNraWn7961/z2WefUVhY2G4624kTJ9olXEFBQe0SCwsLC+644w5+//vfYzQaaWlpYdu2bbz00ktoNBr0er1p38mTJ/Pvf//7knF89913hISEMHbs2Hb3mzp1KsuWLWPXrl3MmTPHlPCdS7YAHBwcmD17Nh9++OFlH2tqaiqAKUE5Z8GCBSxfvpxt27ZdVcJ1KceOHSM/P58XX3zRlGxdSyznJz8zZsxot1///v0BNXk6x83NDW9vbwoL1QW3TU1Nnboe/fr1w9XVlUceeYTHH3+cCRMmEBQUdK0PX5IkqZ3ypnLSitJI06WRXpxOfVs9lhpL4n3iubXfrSQEJhDiHCLLtnegVW8kq6j67DqscjIKqmk1GLHUKMQFufLzpEjGRHgyNNgVWyvZC6tbGA1QkvW/BKsgHdoakb2wrk5rs96UaDXVtRE0wA2oNndYV00mXFKnLFq0iC1btvDaa68RFxeHg4MDe/bs4fHHH6e5ubndvj4+Phfd38fHh9bWVs6cOYNer8dgMLBq1SpWrVrV4fmMRmOHSUhZWRn5+flYWXU8vF5RUQFASUkJgwYN6jCOK6msrATAz6/99BRfX992t1+vc7Gem17YFbG4ubm1+/ncaFVH289dt8rKyk5dDxcXF5KTk1m1ahWPPfYYdXV1xMTEsHLlynYjoJIkSZ1hMBo4WHHQlGQdrjgMgLedN9NCp6EN1DLabzQOVg5mjrTnMRgFh4tr2XGqnJ2nKtibW2nqhRXj78wD40IZE+HBiFB3HGUvrO4hBJQdOa8X1nZoOb8X1gLZC+sqtDbryU4pInNLIc31bQQPdGfErDB8w10uWjt/M5CvQumKmpub2bhxIytWrOCpp54ybc/Ozu5w/9OnT3e4zdraGi8vL5qamtBoNDz++OPcd999HR7jUiM+Hh4ehIWFdViEAyA0NBRQE5RLxXEl7u7qG2FpaSkRERGm7aWlpaYYAGxt1SH/1tbWdvc/l0hdiaenupBbp9NddyzXw9XVtdPXIy4ujs8//xy9Xs++fft44403mD9/PllZWR0muJIkSeeraalhZ/FOUotS2aHbQVVLFRpFwxCvITw59EkSAhOIcouSo1gXEEJwoqyenSfVBGtXTgW1Z3th9fN2ZH58oKlUu6u9tZmj7SMu1wvLLRRi5qojWKFacLryl72SqrVJz4GUIjK3FNDSoCc4xp0Rt6iJ1s1MJlzSFbW0tGAwGC4aVbrU1LzCwkJ27dplmlZoMBj49NNPGTlyJBqNBgcHB7RaLVlZWQwbNuySyVVHpk+fzueff46jo6NpulxHxowZwx/+8AcKCwtN094aGhr46qsr98SeMGECAOvWrePll182bT83te7c2rFz68EOHjzI1KlTTft98803Fx3T2tr6ooqOUVFRhIaG8t577/Hwww93+AGjs7Fcj2u5HpaWlowePZpVq1axadMmjhw5IhMuSZIuIoTgeNVx0nRppBWlkXkmE6Mw4mrjyviA8WgD1ObDrrau5g61RxFCUFB5rheWWqq9vF79ci/I3Y4Zg/wYG+nBmHAPvJ3lep9uU6NrX6r9/F5YERPVEaxQLbhdeb241F5rk54DyYVk/lhIS4OekEEejLglDJ+w3tGYXCZcksl3331nmqp2jouLC1OmTGH06NG8+eab+Pn54enpyfvvv3/JkRkfHx/uvPNOVq5ciZeXF++88w7Hjx/nnXfeMe3z1ltvkZCQwLRp03jooYfw8/OjvLycn376CYPBwG9/+9sOj33vvffywQcfMGnSJJ577jmGDBlCa2srp06dYtOmTWzYsAF7e3ueeeYZ3n77baZOncqKFStMVQrt7Oyu+DzExMRw9913s2LFCvR6PWPHjiU9PZ1Vq1Zx9913M3jwYOrq6vDz82PChAm88cYbeHp64u3tzccff8ypU6cuOubAgQPZvHkz06dPx83NDX9/f/z9/fnzn//MrbfeysSJE3n00Ufx8vLiyJEjlJWVsXLlyk7F0hU6cz2+/vprVq9ezbx58wgLC6OhoYG//vWvODk5MWbMmC6JQ5Kkm19jW6Op+XCaLo2yxjIABrgPYHHsYhICExjkMQgLjVxLdL6qZiNfZhSZ+mHpqtUv6bydbBgf6cnYCE/GRHgQ5C7Ls3cXq9YaOPSl7IV1A7U06TmwtZCsHwtpadQTGutB/C1h+IT2jkTrHJlwSSZPPPHERdtiYmJMlfKWLl3K448/jp2dHfPnz+cvf/kLs2bNuug+kZGRvPDCC7z00kucOHGC0NBQ1q5dayoJDzBs2DD27t3LypUrefLJJ6mpqcHLy4thw4bx6KOPXjJGKysrvv/+e37729+yevVqcnNzcXBwICIigltuucW0ZsnT05Mff/yRp556ivvvvx8PDw8effRR9Ho9r7322hWfi48++ojw8HDef/99Xn/9dfz9/fnlL3/Jq6++2m6/jz/+mKVLl/Lkk09ia2vLgw8+yLJly1iyZEm7/f7v//6PJ598ktmzZ9PS0mKqOjh37lx++OEHVq1axUMPPQSolQaffvrpq47lenTmevTr1w87OztWrVpFSUkJTk5OjBgxgh9++OGy69AkSer98mryTKNY+07vo83YhoOVA2P9/9d82Nve29xh9ji55Q1syNCxObuEk2VNQBYudlaMCffgkQnhjI3wJMLLQU6x7E71ZXDwC8j+lHG6feo2a0d17dXwReools8guIrZOdLFWhrbyPqxkKytRbQ26Qkd7MmIW0LxDuldidY5SmcbwfYl8fHxYt++fZe8/ciRIwwYMKBbYukpVQql9uR1uTrd8ZpJSUkhMTHxhp5DunryuvQ8XXFNWgwt7C/dT6pOLdteUKf2OAx3CSchMAFtgJah3kOxkv2DLlJW18xXWSVszNRxoKgGRYFRYe6EWNWzcOpIBvo5y15Y3a2lHo5uhuz1cCpZ7YflE0uu3WDCJi2SvbC6UHNDG1lbCzlwNtEKG+LJiFvC8Aru/GeqnvR3RVGU/UKI+CvtJ0e4JEmSJEm6otKGUtM0wd0lu2nSN2FjYcNI35EsGLgAbYCWQCc52t2RuuY2vj90mo2ZOnacLMco1GqCL88cwOwh/vi62JKSksKggJu7MMBNxdAGp7bCgfVw7Bu1ZLtLkDpNcPB88B5AfkoKYUEjzB1pr9DcoI5oHdhaSGuzgfChXoy4JRTPwL7x5bVMuCRJkiRJuojeqCfrTJYpyTpRdQKAAMcA5kbMRRuoZYTvCOwsr7w2ti9q1RvZdvwMGzJ1bDl8mha9kSB3Ox5LjGTeUH8ivfvGB80eRQgo2qsmWYe+gMYKsHWFwXeqSVbQaDlVsIs117eRuaWAAylFtDUbiBjmRfzMMDwDHc0dWreSCZckSZIkSQBUNFWwo3gHqUWp7CzeSV1rHZaKJcN8hvHc8OdICEwgzCVMrim6BKNRsC+/ig2ZOr7JLqG6sQ13B2vmxwcxb6g/w4Ld5HNnDmeOq9MFsz+FqjywtIXoGRA7HyIng6Uspd/VmupbyfyhkOyUItpaDUQO8yZ+ZigeAX0r0TpHJlySJEmS1EcZhZEjFUdMo1gHyw8iEHjaeTI5eLKp+bCTtRyNuZyjpbVsyCjmq6xidNVN2FlZMDXGh7lx/mj7eWFlIUdNul1dKRz8XB3NKskERaMWvEh4AQbMBtveWZzB3JrqWsn4oYDsbTr0rQb6Dfdm+MxQPPz7ZqJ1jky4JEmSJKkPaTQ28n3e96QWpbJdt53K5koUFGK9Ynks7jESAhPo794fjSKThMvRVTexKbOYjZk6jpbWYaFR0Pbz5Plp0UwZ6IODjfyI1e2aa+HIV+poVm4qCCP4DYGpv4ZBt4Gzn7kj7LUaa9VE6+C2IgxtRiLjfYifGYq7n4O5Q+sR5LuBJEmSJPVyunodyQXJJBcms690H8ZCI87WzowLGIc2QMv4gPG42bqZO8wer7qxlW+yS9mQqWNPbiUAQ4NdWTknhlsG++HpaGPmCPsgfSuc3KImWce+BX0zuIaA9jl1yqBXlLkj7NUaalrI+KGAQ9t0GPRG+o30IX5GKG6+MtE6n0y4JEmSJKmXEUJwuPKwKck6XnUcgEjXSCY5T2LhuIXEesZiqZEfA66kuc3Aj0fK2JCpI+VYGW0GQbiXA89OiWJunD8hHvKDZbczGqFwNxz4BA5vgKYqsHOHoQvUAhiBI2Qj4husoaaFjO8LOJimw6g3EjXKl/gZobj6yMbcHZHvtJIkSZLUC7QZ2th7eq8pyTrdeBqNoiHOK45fxP+CpKAkgp2DSUlJYaj3UHOH26MZjIKdp8rZkFHM94dKqW/R4+1kw31jQvnZ0ABi/J1l8QtzKDuirsnK/gxqCsDSDvrfolYYjJgoe2V1g4bqFn76Pp9D24sxGgTRo3wYPiMUV2+ZaF2OTLgkSZIk6SZV11rHdt12kguSSdOlUd9Wj62FLWP9x/LzoT8nITABd1t3c4d5UxBCkK2rUYtfHCjmTF0LTjaWzBjky7yhAYwO98BCNiTufrXFaoJ1YD2czlaLX4QnwcRlarJl07eLMXSX+io10Tq8vRijUdB/tC/DZ4Tg4iUTrc6QCZckSZIk3URKG0pJKUwhuTCZPaV70Bv1uNu6MyVkCklBSYz2Hy17Y12F/IoGNmSoxS9yyhuwttCQGO3FvKEBTOzvja2VhblD7HuaquHIJjXJytsOCAgYDtN/B4NuBUdvc0fYZ9RVNquJ1o5iMEL/Mb4MnxGKs6d8j7kaMuGS+PDDD1m0aBEnTpwgMjKy3W16vR4rKyteffVVVqxYYZ4AeyFFUW7oc5qSkkJKSgqvvPIKmvOaOObl5REWFsYHH3zAAw88cEPOLUlS1xJCcKL6BFsLtpJcmMzhisMAhDiHsHDAQpKCkxjsORgLjUwMOqu8voWvs4rZkFlMZmE1AKPC3FmSEM7MQX642Mupad1O3wIn/quuyzr+XzC0gHs4TPilOmXQI8LcEfYpdZXN/PRdPod3nk20xvoxfHqITLSukUy4JKkXSklJYeXKlSxbtqxdwuXn50d6ejoREfIPlyT1ZHqjnoyyDFOSpavXATDYazBPDXuKiUETZQPiq9TQouf7Q6VszCxm+8lyDEbBAD9nfjWjP7OH+OPvKj9IdjujEfJ3qBUGD2+E5hpw8IL4RWqFwYBhsvhFN6utaOKn7/I5srMEgAFj/Rg2PQRnD/n6uB4y4ZKkPsTGxobRo0ebOwxJkjrQ2NbIjuIdJBckk6pLpaalBmuNNaP9R7M4djGJQYl42nmaO8ybSpvBSOrxM2zILOaHw6U0txkJcLXjkYRw5g0NIMpHNnQ2i9KDapKV/TnUFoGVAwyYpY5khSWChfx42t1qy5vY/10+R9NLQIGB4/wZNj0EJ3dbc4fWK8iuhtJVW7FiRYffqj7wwAOEhoaafs7Ly0NRFP7xj3/wq1/9Cl9fX5ycnFiwYAGNjY2cPHmSadOm4ejoSGRkJB999FG74508eZKFCxcSFhaGnZ0d4eHhLF26lKqqqovOGxgYSEZGBlqtFnt7e/r168c//vGPTj2e8vJyli5dSkBAADY2NvTv35/Vq1ebbt+zZw+KovDVV19ddN+lS5fi5eVFW1sbAOvWrWPixIl4eXnh6OjI0KFDL3pcHbnwuTsnMTGRxMRE08/Nzc0888wzDBo0CEdHR3x9fZk9ezZHjx417bNixQpWrlwJgJWVFYqimK7XuWvy4YcftjvPxx9/zJAhQ7C1tcXT05OFCxdSUlLSbp/Q0FAWLFjAunXrGDBgAA4ODsTHx7N9+/YrPj5JkjpW3lTOZ8c/4/EfH0e7TsuzKc+yrWgbCQEJvJX4Fml3pfH3SX/n9qjbZbLVSUII9uVVsmxDNiN/vYWHPtpH2okz3DYskE8fHUPaC0m8ML2/TLa6W3UhpL0Fb4+Bf4yDnf8HPjFw27/g+RNw62qInCyTrW5Wc6aJrWuO8O9XdnF0Vwkx4/1ZuGoME+6JlslWF5K/1V0kbf1xygvru/y4BoMBC4vOzcv3DHJEO//aG/wZDAb0ev1F267XG2+8QWJiIh999BGHDx/mhRdeQKPRkJGRwZIlS/jFL37BO++8w6JFi4iPjycmJgaA4uJiAgMD+fOf/4ybmxs5OTn85je/YebMmaSnp7c7R21tLffccw9PP/00r7zyCh988AFLly4lOjqapKSkS8ZWW1vLuHHjaGpqYsWKFYSFhfH999+zdOlSWlpaeOKJJxg5ciTR0dGsWbOG2bNnm+7b2trK+vXrueeee7CyUuf75+TkcPvtt/Piiy+i0WhITU1l8eLFNDU18eijj173c9nS0kJdXR3Lli3Dz8+PyspK3n77bUaPHs3Ro0fx9fVl8eLFFBUV8a9//Yvt27df8fdn9erVPPLII9x555288cYbFBcX89JLL7F7925++uknHB3/VwEqLS2NY8eOsWrVKmxtbVm+fDmzZs0iLy8PV1fX6358ktQX5NTkmKYKZp/JRiAIcAxgfvR8JgZPZKj3UNkf6xqcOF3HhkwdGzOLKapqwtZKw+QBPsyLCyAhygtrS/kdc7drrFSnCmZ/qk4dBAgcCTP/CDE/Awf5JYK51JxpZN+3+RzbVYpGoxAzIYBhU0NwdJPNu28E+Y4umfTv3/+GHDciIsI0yjNt2jTS0tJYs2YNa9asYcGCBQDEx8ezadMmPvvsM1PClZCQQEJCguk4Y8eOJTIyEq1WS0ZGBkOH/q+PTF1dHW+//bYpuUpISOC///0va9euvWzC9Ze//IX8/Hyys7Pp168fAJMnT6a6upqVK1eydOlSLC0tWbhwIa+//jo1NTW4uLgA8M0331BZWcnChQtNx3vppZdM/zYajSQmJlJSUsI777zTJQmXi4sL7733nulng8HAtGnT8PHxYe3atTzzzDMEBgYSGBgIwKhRo7C0vPTL3GAwsHz5chITE1m3bp1pe//+/dFqtbz//vs8+eSTpu21tbVkZmbi5uYGgK+vLyNGjOCbb77hnnvuue7HJ0m9kcFo4ED5AVN/rLzaPAAGegzksbjHSApKIsotSq7HugYlNU1sylSLXxwpqUWjwPh+Xjw7JYqpMb442siPOd2urQmOfwcHPlWLYBjbwDMKkpZB7O3gHmbuCPu06tON7P82j2N7TqOxUIhNVBMtB1eZaN1I8p2oi1zPyNLl1NXV4eTUPdMevvzyS9MH9XMMBsN1r/mZMWNGu5/PJXbTpk0zbXNzc8Pb25vCwkLTttbWVv74xz/y//7f/yM/P5/m5mbTbceOHWuXcNnb27dLrGxsbOjXrx8FBQWXje27775j1KhRhIWFtRvdmzZtGu+99x6HDx9m8ODBLFiwgOXLl/Ppp5+yePFiANasWUN0dDQjR4403e/EiRO88sorpKamUlpaitFoNMXTVdavX8+bb77JsWPHqKmpMW0/duzYVR/r2LFjlJWV8etf/7rd9vHjxxMSEsK2bdvaJVxjxowxJVsAsbGxAFd8niWpr2nWN5NenE5yYTLbirZR2VyJpcaSkb4juXfAvSQGJeLr4GvuMG9KNU1tfJtdwoZMHbtzKxEChgS58ursgcwa7I+Xk/zg2O2MBshLU5OsI5ugpRYcfWDkw+q6LL8hsviFmVWfbmTfN3kc31OKhaWGwUmBDJ0ajIOLfL10B5lwSSaDBg3qsCz89Tr/AzqAtbX1Jbefn1T96le/4m9/+xuvvPIKY8eOxcnJiaKiIm699dZ2+3V0LFCTnAv3u1BZWRknT540TQm8UEVFBQAhISEkJCSwZs0aFi9eTHV1NZs3b2b58uWmfevr65kyZQr29vb89re/JSIiAmtra9555x3ef//9y8bRWV999RV33nkn999/P6+++iqenp5oNBpmzpx5xcfakcrKSkCtXnghX19f0+3nuLu3b6B6LpG8lnNLUm9T1VzFtqJtJBckk16STpO+CUcrR7QBWpKCkxgfMB4na7lu6Fo0txlIPlrGhkwdyUfP0GowEubpwFOT+jE3LoAwTwdzh9j3CAGlB9ReWQc/h7oSsHaCgXMg9g4ISwDZqsDsqkob2PdNHif2nsbCUsOQSUHETZGJVnfr9oRLUZQg4E/AFEABtgBPCyEu+xW5oighwF+BOMAbaAAOAr8TQnx7wb62wCpgAeAKZAK/FEKkdu2j6ZtsbdVFlK2trabkCf6XnHSVdevWcd9997Fs2TLTtvr6rl0n5+Hhgbe3N3/5y186vD06Otr074ULF7JkyRLy8/PZuHEjra2t3Hvvvabb09PTyc/PJy0tjfHjx5u2dyZptbW1pbW19aLtFRUVeHh4mH5et24dkZGR7YpetLW1XZQYdda5BKq0tPSi20pLS4mPj7+m40pSX1FQW0ByYTJbC7aSeSYTozDiY+/D3Ii5JAUnMcJnBFYWsqfTtTAYBbtzKtiQqePbg6XUNevxcrJhwegQ5g31JzbARU7DNIeqPHVN1oFPofwYaKyg3xSI/Q1EzwArWT68J6gsOZto7TuNpZWGuMnBxE0Jxt7Z+sp3lrpctyZciqLYA1uBFuB+QACvA8mKogwWQjRc5u6OQDmwDCgCnIElwDeKotwmhPjivH3/BdwCPA/kAI8D3yuKMkYIkdnFD6vPCQkJAeDgwYMMGzYMgOrqanbu3Nml0x8bGxsvGnn64IMPuuz4ANOnL6gRTQAAIABJREFUT+dvf/sbwcHBeHtfvnP9HXfcwRNPPMG///1vvv76axISEtpVFmxsbARoF3NVVRUbN268YhwhISGcPn2a8vJyPD3VRcSnTp3i2LFjjB07tt05LlyTtWbNmouKm5wbeWpqarrsNYmOjsbHx4d169bx0EMPmbbv3LmT/Px8nnvuuSvGLkl9iVEYOVR+iORCdT3WyeqTAES5RbEkdglJwUkMdB8oE4FrJITgUHEtGzN1bMoq5nRtC442lkyL8WXeUH/GhHtgaSGLX3S7hgo49IWaaBXuVrcFj4VZf4KB88De/fL3l7pNRXE9+77J4+T+MiytLRg2NZi4ycHYOclEy5y6e4RrCRAORAshTgIoinIAOAE8Arx1qTsKIQ4BD52/TVGUzUAusAj44uy2IcA9wINCiA/ObtsGHAJeA+Z07UPqe2bMmIGLiwtLlixh5cqVtLS08Pvf/75dNbuuMH36dD766CNiY2OJjIzkiy++YOfOnV16jmeeeYZPPvkErVbLM888Q3R0NA0NDRw9epS0tLR2yZKzszNz5szh73//OyUlJbz77rvtjjV27FicnZ15/PHHWblyJQ0NDbz++ut4enq2W2vVkTvuuIPly5dz77338uyzz1JeXs4bb7xhSr7OmT59Ohs2bOCZZ55h1qxZ7N+/n7/+9a8XVQgcOHAgAG+++SYzZszAwsKiw9EqCwsLXnvtNR555BEWLFjAggUL0Ol0vPzyy/Tr149FixZd1fMpSb1Rq6GVPaV7SC5IJqUwhbKmMiwUC4b5DOOFES+QFJREoFPglQ8kXVJBRSMbM3VsyNRx6kwDVhYKE6K8WT7Ln8kDfLC1klPTul1rIxz7Rk2yTm4Box68BsCkV9Qpg67B5o5QOk+Frp69m/M4lVGGlbUFw6aFEDc5CDtHmWj1BN2dcM0Bdp1LtgCEELmKouwA5nKZhKsjQgi9oig1QNsF52gDPrlgv3XAi4qi2AghWq7nQfR1rq6ufP311zzzzDPMnz+fwMBAXnnlFbZs2UJKSkqXnedvf/sbQghefvllAGbOnMnatWvbFam4Xi4uLuzcuZPXXnuN3/3ud+h0OlxdXYmOjua22267aP+FCxfyySefYGtry+23397uNi8vL7788kuee+45br/9dvz9/XnqqaeorKw09cW6lMjISD777DOWLVvGvHnziIqK4q233uI3v/lNu/2WLFlCYWEh77//Pv/85z8ZMWIEX331FT/72c/a7Tdr1iwee+wx3n77bV577TWEEAghOjz3ww8/jL29PX/4wx+YO3cujo6OzJw584Yk0ZJ0s6hpqSFNl0ZyQTI7infQ0NaAnaUd4wPGkxSUREJgAi42LuYO86ZWUd/C5uwSNmTo+KmgGoCRYe48OD6MW2L9cLWXHxS7nUEPudvUdVlHv4bWenDyh9GPqcUvfAbJ4hc9THlRPfs253Iq4wxWthYMnx5C3KRgbB3lVOaeRLnUh7AbcjJFKQU2CiEeuWD728AdQgivThxDg9qw2RN1xGw5MEMI8ePZ29cBQ4UQ0Rfcbz5qEjbo7GjZJcXHx4t9+/Zd8vYjR44wYMCAK4XaJbqzSqHUefK6XJ3ueM2kpKS0axIt9Qw303Upri9WpwoWJLP/9H70Qo+HrQeJQYlMDJ7IKL9R2Fjc/AvNzXlNGlv1/HD4NBsydKSeKMdgFPT3dWJuXABz4vwJcO2763/Mdl2EgOKf1DVZBz+HhjKwcVGLXwyeDyHj+mzxi578/nWmsI59m/PIyTyDta0FgycGMWRSELYOvT/R6knXRVGU/UKIKy547+6EqxV4Swjx4gXbXwdeFEJcccRNUZQ/AucWltQD95+/fktRlP8CzkKI0RfcbzLwA5AghEjr4LgPAw8D+Pj4DD+/J9GFXFxcLqrmd6NcTeNjqfvI63J1Tp48ecVpldervr5ejsj1QD35ugghKGorIrsxm+zGbIraigDwtfIl1i6WWPtYQqxD0Ci9a81Qd18TvVFwqMJAerGen8oMtBrA3VZhtJ8lY/wtCXLqXc/vteru62LbVILP6W34nN6GfVMxRsWSCo94TvskUuk+HKOFHGHsie9fTVWCMwcFdTq1XolHFHhEK1hY952Rx550XZKSkjqVcJmjLHxHGd7V/Jb8GVgH+AL3Af9RFOV2IcTX5x3rqs8hhFgNrAZ1hOtymfORI0e6bXRDjqT0TPK6XB1bW9t2fdNuhJ70jZf0Pz3turQZ29h/ej9bC7aSUphCSUMJCgpx3nHcGXQnScFJhDiHmDvMG6o7rokQgp8KqtmYqWPzgRIqGlpxsbPituEBzIvzZ0SoOxpN3/mA2Bnd8lqpP6MWvziwHnT7AAVCx0Psi2gGzsHLzo0rTjXqQ3rS+1dZfi17N+eRd6AcG3tLRswKYsjEQGzse/+I1oV60nXprO5OuKqAjkrZuJ297YqEEEWoVQoBvlYUJQX4I3Au4aoEOlrJ6Xbe7ZIkSVIfUd9az/bi7SQXJJOmS6OutQ4bCxvG+I9h6ZClJAQm4GHnceUDSVd0sqyejZk6NmYWU1DZiI2lhskDfZgXF8CEKC+sLeVoVrdrqVeLXxz4BE4lgzCoa7GmvAaDbgMXWfClJyvLr2Xv17nkZVdgY2/JyNlhDJ4YhI2dbKV7M+nuq3UIiOlg+0Dg8DUecx/w9AXn+JmiKPZCiMYLztEKnESSJEnq1coay0gpTGFrwVb2lO6hzdiGm40bE4MmMjF4ImP8x2Bn2XfXC3Wl07XNbMosZmOWjoO6WjQKjIv05MlJ/ZgW44OTbd/7Bt7sDG1qcpW9Ho5uhrZGcAmCcU9C7HzwGWjuCKUrOJ1by97NueQfrMDGwZJRc8IZnBSItUy0bkrdfdU2AX9UFCVcCJEDoChKKDAOePEy9+vQ2QIa44FTF5xjJXAH8NHZ/SyBO4H/dlWFQiGE7LMiSZ3QnetEpb5LCMHJ6pOmohcHKw4CEOwUzD397yEpOIk4rzgs+uji/65W29zGd9mlbMjUkZ5TgRAwONCF5bMGMnuwH97OtuYOse8RAor2qUnWwS+gsRxsXdXCF7HzIXgMaOQIY09XmlPD3s25FByqxNbBitHzwolNDMTaViZaN7PuvnrvAj8HNiqKsgx1rdUqoBD457mdFEUJQU2iXhNCvHZ22wrU6Yg7gFLUNVwPASNR+24BIITIVBTlE+DPiqJYofbpWgqEAfd2xYOwsrKiqakJe3v7rjicJPVqTU1NFzWwlqSuoDfqySzLZGvhVpILkimqV2ebx3rG8uTQJ5kYPJFwl3D55VgXadEbSD56ho2ZOn48Wkar3kiIhz1PTOzH3Dh/Irx6xiL2Pqf8hLomK/tTqMoFS1uImq4mWpGTwfLmr6zZF5ScUhOtwsOV2DpaMeZnEQyaECATrV6iW6+iEKJBUZSJwJ+ANaiFLH4EnhZC1J+3qwJYoJZ/P+cn1KmDdwEuqElXFqAVQuy44FSLgF8DrwOuZ/ebLoT4qSseh7e3NzqdjoCAAOzs7OQfc0nqgBCCpqYmdDodPj4+5g5H6iUa2xpJL05na+FWUotSqW6pxkpjxSi/USwatIjEoES87b3NHWavYTQKdudWsjFTxzfZJdQ26/F0tOaekcHMjfMnLshV/g00h7rTagn37PVQnAEoEJYACc/DgNlg62zuCKVOKj5Zzd6vcyk6WoWdkxVjbo1gUIJMtHqbbr+aQogC4OKOsu33yeOCqoJCiE2o0wU7c44m4Nmz/3U5Z2f1jay4uJi2trYr7H19mpubsbWVUzN6GnldOsfKygofHx/Ta0aSrkVFUwXbiraRXJBMekk6LYYWnKydSAhMICkoifEB43GwcjB3mL2GEIIjJXVszNSxKauYkppmHKwtmBbjy9yhAYyL8MDSQk5N63YtdXDkK3U0K3cbCCP4DYGpv1aLXzj7mTtC6SoUn6hiz9d56I6pidbY2yIZlBCAlY2c9twbyfT5Gjk7O3fLh8iUlJQbXk5bunryukjSjZVbk2taj5V1JguBwN/Bn9ujbicpKIlhPsOw0sipql2psLKRTVnFbMjQcaKsHkuNwoQoL341cwBTBvhgZy0/CHY7fSuc+lFNso59C/omcA2B8c+qUwa9os0doXSVdMeq2Ls5F93xauydrRl3eyQxCQFYyddXryYTLkmSJMnsjMLIgTMH1CSrMJncmlwABrgPYOmQpSQFJxHtFi2nr3WxyoZWNmeXsDFDx758tTtLfIgbq+YN4pZYP9wdZPPbbicEFO5Wy7gf+hKaqsDOHYbeqxa/CBoJ8nVwUxFCoDuuTh0sPlGNvYs14+/oR4zWH0uZaPUJMuGSJEmSzKJZ38zukt0kFyaTUphCRXMFlool8b7x3BV9F0lBSfg5ymlSXa3FINiUVczGDB3bjp9BbxRE+Tjy/LRo5gzxJ8hdFoQyB/uGAvjxNbX4RXUBWNpB/5kw+E6ImAgWckT3ZiOEoOhYFXu/zqXkZA0OLtaMn9+PmPEy0eprZMIlSZIkdZvq5mpSdakkFySzo3gHTfomHKwcGB8wnqSgJLSBWpyt5Zq/G+HUmXreS8vly/2NNBsy8HOx5aHxYcyNC2CAn5McPTSH+jLI/gyy1jKy9AAoGghPgqSXof8tYONk7gilayCEoOiIOnWw5FQNDq42aO+MYuB4PyytZKLVF8mES5IkSbqhCusKSS5QpwpmlGVgEAa87b2ZEzGHpKAkRviOwNpCTl27EYQQ7Mmt5N20XLYcOY21pYZRvpY8NjOeUWHuaDQyyep2bc1w/FvIXAsnt4AwgF8cJyIX02/uC+Akq7rerIQQFB6uZO/mXEpzanF0syHhrigGjvPHwkoWmunLZMIlSZIkdSmD0UB2eTapRalsLt5McX4xAJGukTw46EEmBU9ioMdAOaJyA+kNRr47VMq7qTlkFdXg7mDNU5P6sXBMCAf3pTMmwsPcIfYtQkDhHshaC4e+gOYacPKHsU/AkLvBuz+6lBT6yWTrpiSEoOCQmmidzq3F0d2GCfdEM2CMn0y0JEAmXJIkSVIXqG6uZkfxDtJ0aezQ7aC6pRqNoiHcOpzn458nKTiJIKcgc4fZ69W36Fm/t5B/bc9FV91EmKcDr88bxG3DAmWVQXOoyleLX2SthcocsLJX+2QNuQvCJoBGXpObmRCC/IMV7P06l7L8OpzcbUm8N5r+Y/ywsJSJlvQ/MuGSJEmSrpoQgqOVR0ktSiVNl0Z2eTZGYcTd1p2EwAS0AVrG+I8hIz2DxJhEc4fb65XWNPPhzjz+szuf2mY9I0LdeHX2QCYP8JHTBrtbcy0c2aROGczfrm4L1YL2FzBwjlyX1QsIIcjLrmDf5rOJloctSQv6Ez3aVyZaUodkwiVJkiR1Sl1rHbtKdpFWlMZ23XbONJ0BYJDHIB4Z/AjaAC0xnjFoFPmBo7scLa3l3dRcNmXpMBgFMwb5sVgbxtBgN3OH1rcYDZCTAlnr1ObE+iZwj4CkZTDkTnANNneEUhcQQpCbVc6+b/I4U1CHs6ctSQvPJlqyGbh0GTLhkiRJkjokhCCnJoe0ojRSdalknM5AL/Q4WTkxNmAs2gAt4wLG4Wnnae5Q+xQhBNtPlrM6NYe0E+XYW1tw76gQHhofJku6d7eyI+p0wQProa4EbF0g7m51XVbgCNkvq5cQRjXR2vtNLuWF9Th72THxvgFEjfKRiZbUKTLhkiRJkkya9E3sLd2rThUsSqO4QS140c+tH/fH3I82UMsQryFYauSfj+7WqjfyVVYx76blcLS0Di8nG56fFs29o4JxtZdVHrtNQ7mplDslmaBYQL+pMP23EDUdrGzNHaHURYQQnPqpjL2b86jQ1ePibcekBwYQNcIHjUy0pKsg/2JKkiT1cYW1haTq1LVYe0v20mpsxc7SjtF+o1k8eDHaAC2+Dr7mDrPPqmlq4z+7C/hwZy6na1uI8nHkD7cPZk6cPzaWsuhCt9C3wPHv1STrxH/BqAffwWqSNeh2cPQyd4RSFzo3dfDUd4LDNQdx9bFn8qKB9Iv3lomWdE1kwiVJktTHtBpa2X96P2m6NNKK0sirzQMg1DmU+dHz0QZqifeJl72xzKywspEPduTxyd4CGloNjI/05He3DWZClJcsqd8dhADdfjXJOvg5NFWBow+MXqpOGfSJMXeE0g1Qoatn+6cnKDpahbUTTHlwIJHxsviMdH1kwiVJktQHlDaUmhKsXSW7aNI3Ya2xZoTfCO7qfxfaAC3BznJhf09woKia1ak5fHuwFAWYPcSfxdowYvxdzB1a31BTpBa/yFoHFSfA0hb6z1KTrPBEsJAfnXqj5oY29mzK4WCqDms7SxLuiqLceIKokXJ0X7p+8l1DkiSpF9Ib9WSdySKtKI00XRrHq44D4Ofgx5yIOWgDtIzwHYG9lSyy0BMYjYKtR8t4Ny2H3bmVONlYsnh8GA+MC8XPxc7c4fV+LfVqdcGs/0BuGiAgZByMexIGzlWLYUi9ktFg5FBaMbu/yqG1Uc+ghABGzg7H1tGKlJST5g5P6iVkwiVJktRLVDRVqM2Hi9LYUbyDutY6LBVLhvoM5dnhz6IN0BLhGiGno/UgzW0GvszQ8W5aDjlnGghwtWPZLQO4c0QQTrZW5g6vdzMaIC9N7Zd1ZBO0NYJbKCT+CgbPB/cwc0co3WCFRyvZvv4ElcUNBES7oZ3fD48AR3OHJfVCMuGSJEm6SRmFkcMVh00VBQ9VHEIg8LTzZHLwZLSBWkb7jcbJWjZa7WkqG1pZk57P/0vPo6KhlUEBzvzlrjhmxvphJRfl31hnjp8t5f4J1OrAxhli74C4eyBolCzl3gfUnGlkx2cnyc0qx9nTlhmPxhI2xFN+GSXdMDLhkiRJuonUtNSQXpxOmk5tPlzZXImCwmCvwTwe9zjaQC393fvL5sM9VM6Zev61PZfPfyqiuc3IxP7eLNGGMzrcXX7Yu5EaK9XCF1lr1UIYigVEToKpqyB6JljJaZt9QWuznv3f5ZO5pQCNhYbR88IZMikISytZ7VO6sTqdcCmKMhhYBiQA7sBoIcRPiqK8DqQKIf57g2KUJEnqs4QQHK86bip4kXUmC4Mw4GLjwjj/cWgDtYzzH4ebrZu5Q5UuQQjB/vwqVqfm8MOR01hpNNw6LIDF2jAiveXo4w2jb4WTP0Dmf9SS7sY28BkEU3+tjmg5+Zg7QqmbCKPg2J5S0r88RWNNK9GjfRkzLwIHVxtzhyb1EZ1KuBRFGQv8CBQAXwCPnHezBngUkAmXJElSF2hsa2RXyS51qqAujbLGMgAGuA/godiH0AZoifWMxUIjv5XtyQxGwfeHSlmdmkNmYTWu9lb8PCmShWNC8HaSzXFvCCGgOEOtMHjwM2isAAcvGPkwxN0NvrHmjlDqZqW5NaR9coKyvFq8Q52Z8WgsvmGyCIrUvTo7wvU71IRrDv9LsM7ZB9zbxXFJkiT1GUII8mrzTBUF95/eT5uxDQcrB8b6j0UboGVcwDi87b3NHarUCQ0tej7dV8i/duRSWNlEiIc9q+bGcNvwQOyt5Uz+G6JGB9nr1UTrzFGwsIH+M9VS7hGTZCn3PqihuoX0L09xbHcp9i7WTH5gAFEjfVFkPy3JDDr7DjQcuE0IYVQunmReDshxeUmSpKvQrG9m3+l9pBWlkVqUSlF9EQARLhHcO+BeEgITiPOKw8pCVqq7WZTVNvNReh4f7yqgpqmN4SFuvDxzIFMG+mAhP+R1vdYGOPK1ui4rJwUQEDQaZv0ZYn4Gdq7mjlAyA32bgawfC9n3bT5Gg5Fh00MYPj0Ea1uZdEvm09nfvhbgUitKfYGarglHkiSp99LV60yjWHtK9tBsaMbWwpZRfqN4IOYBxgeOJ8AxwNxhSlfp+Ok63k3NYWNmMW1GI9NjfFmsDWd4iFxX1+WMRsjfoSZZhzdCaz24BsOEF2DwneARYe4IJTMRQpCbWc6Oz09QW95MeJwXY2+LxMVLFkSRzK+zCdd24ElFUTact02c/f+DQHKXRiVJktQLtBnayCjLMBW8OFVzCoBAx0Bu7Xcr2kAt8T7x2FrK9Tw3GyEEO09VsDo1h23Hz2BrpeGukUE8OC6MUE8Hc4fX+5SfhAPrIOsTqCkAayeImQdD7oHgMaCRVTn7sgpdPWnrT6A7VoW7vwNzno4jqL+7ucOSJJPOJlyvoCZdGcCnqMnWAkVRfg+MBkbemPAkSZJuLmcaz7Bdt53UolTSS9JpaGvAUmNJvE88t/a7lYTABEKcQ2QJ8JtUm8HI1weKeTc1l8MltXg62vCLqVHcOyoENwdrc4fXuzRVwcEv1HVZRXtA0UB4Ekx6BfrfAtb25o5QMrPm+jb2fJXDwVQd1naWJNwVRYzWH43sZSf1MJ1KuIQQGYqiJAJ/BFYACvA0sBNIEkIcuVEBSpIk9WQGo4Hs8mxSi1LZrtvOkUr17dDH3ocZYTPQBqjNh+2t5IfDm1ltcxvr9hTwwY48SmqaifR25He3xTI3LgBb2cOn6xja4OQWdcrgsW/B0ApeA2DKaxA7H5z9zB2h1AMYDUYOphaz56scWpsNDJoQyMhZYdg6yjWvUs/U6RWEQoi9wARFUewBT6BKCFF3wyKTJEnqoaqaq9hRvIO0ojR2FO+gpqUGC8WCIV5DeGrYU2gDtES5RclRrF5AV93EB9tzWbe3kPoWPWPCPfjNz2KZEOWFRhbC6BpCQOkByFwL2Z9CYznYe0L8QzDkLvAbAvK1JJ1VeKSS7Z+eoLK4gcD+boy/ox8eAY7mDkuSLquzfbhWA78RQuQJIRpR+3Gduy0YWCaEePgGxShJkmRWRmHkaOVRtaKgLpXsM9kIBO627kwInIA2UMsYvzG42MjeLr3FQV0Nq1Nz2JxdAsCswX4s0YYzKEBe4y5TVwoH1qujWWWHwcIaoqZD3D0QORlkhU7pPDVnGtnx2Ulys8px9rRlxqOxhA3xlF9sSTeFzo5wLQbeA/I6uM0LeAiQCZckSb1GXWsd6cXppOnS2K7bTnlTOQoKgzwHsXTIUrSBWgZ6DESjyLUCvYXRKNh2/AyrU3NIz6nA0caSRWNDWTQ+jABXWemsS7Q1wdHNapJ1aisIIwSOgFvehJhbwV4WOpDaa23Ws//bPDJ/LERjoWH0vHCGTArCUk7llW4iXdGUwAdo6oLjSJIkmY0QglPVp9SKgro0Mk5noBd6nKydGOc/Dm2glnH+4/Cw8zB3qFIXa24zsDFTx7tpuZwsq8fX2ZaXZvbnrpHBONvKUZbrZjRCQfr/Srm31IJLEIx/Vp0y6NnP3BFKPZAwCo7tLiX9y1M01rbSf7Qvo+dF4OBqY+7QJOmqXTLhUhRlLjD3vE3LFUU5c8FudsAE4KfOnlBRlCDgT8AU1OIbW4CnhRAFV7hfPOooWgIQjNpwOQ11OmPuBfvmASEdHOZnQogNHWyXJKkPamxrZG/pXlPZ9uKGYgCi3KK4P+Z+EgITGOw1GEuNbJjZG1U1tPLxrnw+Ss+nvL6FgX7O/PnOOG4Z7IeVrHJ2/Spz1AqDWeugOh+sHM6Wcr8LQsbLUu7SJZXm1JD2yXHK8uvwCXNm5tLB+IQ5mzssSbpml/sUEY6aFIFaBn4k0HrBPi3APuCXnTnZ2YIbW8/e7/6zx30dSFYUZbAQouEyd78LiAH+ChwCAoDlwD5FUeKEEIUX7P89akXF8x3rTJySJPVehbWFpOpSSStKY2/pXlqNrdhZ2jHGbwxLBi9hfMB4fB18zR2mdAPlVzTwr+25rN9XSHObkcRoL5Zowxkb4SHXg1yvpmo4vEEtgFG4C1AgfAIkvQQDZoO17FEmXVp9VQvpG05yfPdp7F2smfzAAKJG+qLIAjXSTe6SCZcQ4k+oI1EoilIIzBJCZF3n+ZagJnLRQoiTZ499ADgBPAK8dZn7/k4I0W6ETVGUHUDu2eO+csH+5UKIXdcZryRJN7lWQyv7Tu8jrUhdi5VXmwdAqHMod/a/E22AluE+w7G2kD2Uerv9+VW8m5rD94dLsdJomBvnz2JtONG+TuYO7eZm0KvrsbLWquuzDC3gGQWTXoXB88El0NwRSj2cvs1A5pZC9n+XjzAIhk8PYdj0EKxt5ewCqXfobB+uoC463xxg17lk6+yxc88mTnO5TMJ1YbJ1dlv+2WmOAV0UnyRJvUBpQylpujRSi1LZXbKbJn0T1hprRviN4O7+d6MN0BLk3FVva1JPZjAKfjhcyurUHH4qqMbFzorHEiO4f0wo3s625g7v5lZ6UE2yDqyHhjKwc4fh96tTBv2HyVLu0hUJIcjJPMOOz05SV9FM+FAvxt4aiYuXLFIj9S5X9dWBoijOQCRw0V8pIcTOThwiBtjYwfZDwB1XE8vZeAYA3kBHjZdnK4rSCFgAGcBv5fotSeqdDEYDJ5tPkrE/gzRdGieqTgDg7+DPnIg5JAQmMMJ3BHaW8o94X9HUauCz/YW8tz2X/IpGgtztWDF7IHfEB+FgI781v2b1ZWdLua+D09mgsYKoaTDkbug3FSzlSLHUORW6etLWn0B3rAp3fwfmPB1HUH9ZpVLqnRQhxJV3UhQb4F3gbqDDVa5CiCvW51QUpRV4Swjx4gXbXwdeFEJ0+q+goiiWwI/AANQpilXn3fY3YC/qdEMf4OeoxT0WCiE+vsTxHuZsaXsfH5/h69at62woN1R9fT2OjrKhX08jr0vPUN5Wzq76Xexu2E21oRoNGiJsIoixi2Gg3UB8rXzlmhwz6+7XSk2LYEtBG1sL2mhog3AXDTPCrBjuY4FG/i4AV39NNIZWPCr24Fu6FffKDBSM1Dr147RPEmXeWtqsZTGDrtBX/q7oWwRl2YKqU2qrNe9YBbcIeuQ6rb5yTW42Pem6JCUl7RdCxF9pv84mOMtQC2gsBj4AnkQtfPEAah+uZ68ito4yvGt5lf0fMBa45fxkC0AI8US7gyvKl8Au4A2gw4RLCLEaWA0QHx88oh4SAAAgAElEQVQvEhMTryGkrpeSkkJPiUX6H3ldzKdZ38yWgi18eeJL9pTuQaNoGOc/jsiWSB6e8jCO1j3jTVhSdddr5cTpOt5Ly+XLDB1tRiNTBvjwcEI4w0PcZNJ9gU5dEyGgcLc6ZfDgl9BSA07+MP4pGHwXzt79cQZkQfeu09v/rhgMRg6l6tjzfS6tzQZiEwMYOSsMW4ee23qht1+Tm9XNeF06m3DdAbyGmqx8AOwUQvwEvKsoyhfAJODrThynCuhovNjt7G2doijKG6ijUfcLIf57pf2FEAZFUT4Ffqcoip8QoqSz55IkqWc4XHGYL058wTe531DXWkegYyBPDH2CORFz8HXwJSUlRSZbfYwQgl05lbyblsPWo2XYWGq4Iz6Qh8aHEe4lfxeuSVUeZH2iJlpVuWBlDwPmqOuywhJAI5vNSlev8HAlaZ+eoKqkgcD+boyf3w8Pf/kalfqOziZcwcChs4lLG3B+Xdf3gPeBZzpxnEOo67guNBA43JlAFEV5GXgReFIIsaYz9zl317P/v/IcSkmSeoSalho252zmy5NfcrTyKDYWNkwOmcytkbcS7xuPRpF9fPqiNoORb7JLeDcth4O6WjwcrHlmchQLRgfj4Sibol615lq1IXHWWsjfoW4L1cKEF9RS7jayiqN0barLGtnx2UnyDpTj7Gn7/9m77/AorzPv499ninrvHVWQRO8gOsYFN4rjAnYcp3mzSTaxneyud+NkN07ezbubxHbivOltdwOxHZviigsgTBFgbERVb6DeuzT1vH/MICQhYMCSRuX+XBcXmtEzzxwxSJr7Oef8btZ/ZSZJs8Nk1llMOq4WXE3ApUsRlcAsHE2HwTE75epO9NeBn2ialqyUKgXQNC0RWIajiLomTdO+gaNv13eUUi+6+JyX9nvdD1xQStW6+jghxOizKzvHa4+zo2gHeyv2YrabyQjJ4DuLv8P6pPUEega6e4jCTTp6Lbz80UX+dLicqtYeksN9+dHmmWyaG4uXUWZebojdBqX7Hf2y8t8Eay+EpMDaZ2DWgxCU4O4RinHM3Gvl43fKyd17Eb1ex9JNKcxeG4/eKBfJxOTkasF1DJgNvA3sAH7gbGJsBf4JOOzieX6HI8Bit6Zpz+CYbfoBcBH4zaWDNE2bApQAzyqlnnXe9xDwArAH2Kdp2pJ+521XSp13HrcFR8T8287zRgJfA+bjCP0QQoxBtV217Crexa7iXVR1VuHv4c99U+9jc9pm0kPS3T084UY1bT38+XA5249doMNkZXFSCM9umM6aaRHoxuBG+zGtqYTkkj/Dib+DzlrwCoI5DztSBuMWSJS7+FSUXZF/tJaju0robjeTvjSKJRtT8A2UmWcxublacP0XMMX58Q+BqTgCKHTACeCrrpxEKdWladpaHA2V/xfHMr+9wBNKqc5+h2o44tz7Xwq5w3n/Hc4//R0AVjs/LsMRFf9jHPvFunEkFt6hlHrXlXEKIUaHxWZh/8X97CjewZGqIygUi6MW84253+CWKbfgqZdf0pPZueo2fn+wjDdOVaOA9TOi+PKKZGbHB7l7aONP1Sdw+AU4/zpxms4R4T5nC0y9AwzyfSY+vdrSNg6+XEh9RQeRSQHc+feziEySBEshwPXGx8eB486P24ANmqZ5A16DEwJdONcF4L7rHFPOoORCpdRjOFIRr3f+o8DaGxmTEGJ0FbcUs6N4B2+WvEmLqYVIn0i+POvLbEzdSLy/NCSezJRSHChs4HcHSzlc3ISPh55Hlyby+WWJxIf4uHt444tSjmWDh16AsgPgGQjLn+SobRZZt29y9+jEBNHZYiJnVzGFx+rwDfRg3eczmbowckzGvAvhLtctuDRN8wAO4dg39f6l+5VSPUDPCI5NCDGBdFm6eKfsHXYW7eR042kMOgNr4tewKXUTWTFZ6CX9bFIzWW28nlvN7w+WUVDXQWSAJ0+vT2fLogQCvcdubPSYZLc5QjAOvwA1p8AvCm59FuZ/HrwCMGdnu3uEYgKwmm3kfnCRj/eUo+wwf/0U5t0+BQ8vaSwuxGDX/a5QSpk1TZsK2EZhPEKICUQpxcn6k+wo2sF7Fe/RY+0hJTCFby/4Nvek3EOI11BdIsRk0tptZtuxC/z5SDkNHSbSo/z56f2zuWd2DB4G2WB/Qyy9cGo7HP65I9I9NBXu+bkj0l2WDYphopSi9GQDh18rpqOpl+S54WRtTiUw3NX8NCEmH1cvQ3wArAP2jeBYhBATRGNPI6+XvM7Oop2Ut5fjY/DhzqQ72ZS2iVlhsyQSWHChqZs/Hi7j5Y8u0mOxsSItjOcemM3yVImMvmG9bfDRH+Dor6CrHmLmwa3fh/S7pW+WGFaNlZ0c+lshVQWthMT4suGJOcSly4UzIa7H1YLrOWC7pmk6YBdQw6B+Vs69WUKIScpqt3Ko6hA7inbwYeWH2JSNuRFz+cKML3B74u34GGX/jYCTF1r4/cEy3jlbg16nce/sWL60IomMaNlcf8M6auHoL+GjP4K5A1LWwrInHA2KpWgVw6in08zx18s4d7AKDx8Dq7ZMJXN5DDq9zEIL4QpXC65Dzr//CfjHqxwjl9GEmIQq2ivYWbST10tep6GngRCvEB7NfJSNaRtJDkx29/DEGGC3Kz7Iq+N3B0v5qLwFfy8Dj69M4bGsRKICvdw9vPGnqQQO/8zRqNhuhcyNsPwJiJ7t7pGJCcZms3P2QBUfvVmGudfGjNVxLLo7CS9f2VcpxI1wteB6nEEzWkKIyavH2sP7Fe+zo2gHH9d9jE7TsSJ2BZvSNrEybiVGnfwyFtBjtrHvgoXvP3eAssYuYoO8+d7dmTywMB4/T9lYf8P6Rbuj94C5j0DWP0CIXNgQw+/C+SYOvVJES203cenBLH8gjdAYP3cPS0xgSimwWLCbLSizCWVy/LGbzCizue8+ravL3UO9Ya7Gwv9+pAcihBjblFKcazrHjqIdvFP2Dp2WThL8E/jmvG9yb8q9RPhEuHuIYgyw2xUnKlrYlVvFW6draOuxMCvOm19sncsd06MwyBKkG3OVaHeW/D34yfecGH6t9d0cfrWY8tONBIR7c+ffzyRxluytnOiUUmC1OosbZ7FjNmM3mVD97rObzUPfNpkc95nNjnNcKpbMJpTZ4vJt1PXnd4zf/MYo/IsML7nEKIS4ptbeVt4sfZMdxTsoainCS+/FrVNuZVPaJhZELpBfwgKAgtoOduVW8XpuNVWtPXgZddyWGcV0z2Ye37RM/p/cqCGj3X8A8x8DL9nvJoafucfKiXfKObX3InqDjqWbUpi9Nh69US6SjLQrih2z2Tmz4yx2LINumwcVQ87iSJlNl4udwbcvFVDmq992pdi5Hs3T0/HHwwOdh8cVt/V+/pdve3qgeTg/7+nhvM/Ted/Vb9fX1w/Dv/rokoJLCHEFu7JztPooO4p3sO/CPix2C9NDp/PdJd9lfdJ6/D383T1EMQZUt/bw+qlqdp2sIr+2A71OY3lqGN++fSq3ZUbh62kgOztbiq0bIdHuYpQpuyL/aA05u0rpaTeTvjSKJRtT8A2cnP/flN2Ovb0dW2srhooKuj/55HKx0292Z8Bt5+xO39K3oW5fmg0afNt5Huz2Tz12rV+Bo/PwuOK2zs8PvfO+vmKn7xhncWMcdLvvGOdtZ7HUVwx59juH0TgqP+/VOOwlKAWXEKJPdWc1u4p3sat4FzVdNQR6BvLAtAfYlLqJaSHT3D08MQa0dVt4+2wNu05Wcby8GaVgbkIQ/35PJnfPjiHMb3K+SfvUhox2fxbS75JodzFiakvbOPhyIfUVHUQmBXDXV2cRmThxZlCV3Y69owNbayu2lhasLS3YWlr7bttah7qvta/4CQUqXHwubcBsjhFd38yN87avL/qQkMu3+2ZunMWNh8eVt/vN7lwxW9S/0BnFYkfcHCm4hJjkzDYz+y7uY2fRTnKqcwBYEr2Ep+Y/xZqENXjq5Q30ZNdrsbE3r55duVVkF9RjsSmSw315ct1UNsyJYUqor7uHOH4NFe2+/ElIXCHR7mLEdLb0krOzhMLjdfgGerDu85lMXRiJphu7/+eUUtcunvoXUK2tfZ/DZhv6hAYD+uAgDEHB6IOD8UxJQR8c7LgvOBh9UBDny8uZOX+BYzaor7DxGHjbw8NR7Ohk6aW4Oim4hJikClsK2Vm0kzdL36TV1Eq0bzRfmf0VNqZuJMYvxt3DE25msytySprYlVvFu2dr6TBZifD35NGliWycE8uM2AC5mvppNBbDkZ/BqZck2l2MGqvZRu4HF/h4TwXKDvPXT2He7VPw8Brdt4NKKeydnQOKpSELqJYWbG2tWC8VT1br0Cc0GNAHBWEIDkIfFIxncgr6oKArCijHbccfna/vdX+GmbKz8Vu+bAT+BcRkc8PfYZqmeQMhQJ1S6ir/84UQY1GHuYN3yt5hZ9FOzjadxagzsjZhLZtTN7M4ejF6Wbo0qSmlOFvVzq7cKt44VU19hwk/TwN3zIhi45xYlqaEoh/DV8DHhaqPHYmDeW84o90/C1lfl2h3MaKUUpSebODwa8V0NPWSMjecrPtSCQjzHpZz27u6riiUBsw09c1AtWJtdRRWVy2e9HpHURQUiCEoGI/EJLznBl+zgNL5+ckFIDGmuVxwaZq2Hvg+MM951yLgE03TfgPsV0q9NALjE0J8SkopPq77mJ3FO3mv/D16bb2kBafxzwv/mbuS7yLYK9jdQxRuVtHUxa6T1ew+VUVpQxdGvcaaaRFsnBvL2vQIvIxSiH8qfdHuz0PZh45o9xVPweKvSLS7GHGNlR0ceqWIqsJWQmN92fDEHOLSQ4Y81lE8dQ/Y49RXQPUVVJf3Ol26H4tl6CfX6x2FUVAQ+uAgPBKn4B00Z9Bs08ACSufvL8WTmHBcKrg0TbsH2AVkA88A/9Hv0xeBxwApuIQYQxq6G9hdsptdxbuoaK/Az+jHPSn3sDltM9NDp8svtEmusdPEm6eq2ZVbTe7FVgAWJ4Xw5RXJ3DkjmkAfaV79qdltcH6XY0ar9rREu4tR1d1h4tiOIvKO1uPhqbF4oZ6UsHrU8QIa3mu9vISvX/Fka2lBXa140ukuF0pBQRgT4vGePQt90NVnn3T+/rK3SQhcn+H6d+B/lFKf1zTNwMCC6wzwleEemBDixlnsFg5WHmRn0U4OVh3EpmzMj5zP47Me59Ypt+Jt+PTLR8T41WWy8t75WnadrOZQcSM2uyI9yp+n16dz7+wYYoLk/8ewGCra/d4XYdaDEu0ubopSCtXT02+maeAyvf5pe5bWdspJoSRsJTa9J7FVH5JU/jbGPd3UXjqhpg2YZTLGxeE1c4azWBq6gNIFBEjxJMRNcrXgygSedn48uCtaCxA2bCMSQtywsrYydhbt5PWS12nqbSLMO4zHpj/GprRNTAmY4u7hCTey2Ox8WNjA7txq3j9fR4/FRmyQN4+vTGbjnFimRUlPtWHT0won/gBHfy3R7uKalFLY29qwNjZibWzC2tiI90fHaThzdlDaXtvlmSeTaeiTaRr6wED0wcE0h83gfNQGOgkg0rudeSnNhNw2B33wGkchFexc3hcQgKaX/5NCjBZXC64OHO0IhjIFaBie4QghXNVt6ea9ivfYWbSTT+o/Qa/pWRm3ks1pm1keuxyDTkJIJyulFB9XtLArt4q3TtfQ0m0hyMfI5nmxbJwby/yEYHQSfjF82msc0e4n/uSMdr/FkTgo0e6TyqXkPWtDI7amxgHFlLWpEVtDI9amS7ebrtj3FAA0ahr6gIDLM0/R0XhlZFyeaeofFnGpgAoIoK3RxOHXiik/3UhAuDd3fiaVxFlhsnRciDHC1Xdke4GnNU17G+hy3qc0TfMAvga8OxKDE0IMpJTiTOMZdhTtYE/5HrosXSQGJPLk/Ce5N+VewrxlsnkyK6rrYFduFbtzq6ls6cHLqGNdRiQb58Sycmo4HgZZDjSsBke7T98Ey74p0e4TjL2r63Kh1OAsnq5STA05C6XXYwgNRR8WiiEsDM+0NAxhYRjCw9CHhmIIC8cQFsrRvDxWrl9/QzNP5h4rx3eVcWrfRfQGHUs3pTB7bTx6o3yvCzGWuFpw/StwHMgH3sKxrPAfgdk4Zr4+MyKjE0IA0NLbwhslb7CzeCfFrcV4G7y5dcqtbE7bzLyIeXIVcxKrbevl9VNV7DpZzfmadnQaLEsN48l1U7l9RhR+njLTOewk2n3cs/f2Ym1swtbY4CimGhovF08DiqkmVHf3lSfQNEexFOosohIT0YeFYQh1FFKGMGcxFR6OPjDQpb1P6uJFl4stZVfk5dRwdHcpPe1m0rOiWbIhGd9A2SMoxFjk0m9ipVSZpmkLgGeBe5x33wrsAZ5RSlWO0PiEmLRsdhs5NTnsKNrB/ov7sdqtzAybyfeWfo/1ievx8/Bz9xCFm7T1WHjnTA27cqs4VtaMUjA7Poh/uyeTu2fFEO4vb7qGnVJQsg8OvyDR7mOU3WzGdmkmyvnHNriYcs5E2Ts7hzyHPijIMfMUFob37NmOmaiw0CuLqeBgt+2Bqilp4+DLhTRc6CAyKYC7vjqLyERJvRRiLHM1Ft4XqFZKfW6ExyPEpFfZUcmu4l3sLtlNbVctQZ5BPDTtITanbSYtOM3dwxNu0muxsT+/nl25VezPb8Bss5MU5ss3b0ljw5xYksJ83T3EiWlwtLt/tES7jyJlsWBtbsHa2HC5eGpqctxu7FdcNTVhb2sb8hy6gABH4RQaitf0zMvFU/9iKiwMQ0gImnHstkPobOnlyI4Sij6qwzfQg3Wfz2TqokhZ4SDEOHDdgkvTNCPQBmwGXh/xEQkxCZlsJvZW7GVH8Q6O1RxDQyMrJotvL/g2a+LX4KH3cPcQhRvY7IpjpU3syq3inbO1dPRaCfPz5OElCWycE8usuEB5szVSLL2Quw2OvCjR7sNM2WyOePO+pXtDFVOOz9laWoY8h87X1zHT5NwT5btkSd/MVN9MVKijmNJ5jO+fn1azjZPvX+CTdytQdlhwZyJzb0vAw0uWCwsxXlz3u1UpZdE0rR6wjsJ4hJhU8pvz2VG0g7dK36Ld3E6sXyxfnfNVNqZsJNov2t3DE26glOJcdTu7c6t4/VQ1de0m/DwN3D49ig1zYshKCcWglw3xI2ZwtHvsfIl2d4Gy27G1tWFtaOi3rG/QTJTzfltzM9jtV5xD8/LCEB6OITQUj8REvOfP7wuU6L8nyhAais574veMU0pR8kkDR14rpqO5l5S54WTdl0pA2MT/2oWYaFy9PLId+Dzw9giORYhJod3cztulb7OjaAd5zXkYdUbWJaxjU9omFkcvRqfJm+nJ6EJTtyP8Irea4vpOjHqNVVMj+O7dMazLiMTLKG/2R5REu19BKYW9vb1fqMQ1lvU1N4P1yuuymoeHM50vHGN0NN4zZ16RzucopsLQ+frIjK1TY2UHB18uorqoldBYPzY8OZe4acHuHpYQ4ia5WnAVAg9qmpYD7AZqGNQAWSn1P8M8NiEmDLuyc6L2BDuKd/BBxQeYbCamBU/j6UVPc3fy3QR6Brp7iMINmjpNvHWmhl0nq/jkQisAixJD+D+bZnDnjGiCfcf3UqhxYZJFuyul0Hp6MJeXD+wTdUUx5UjrU4N6RQFgMPSl8+nDw/DMSL+8J2pQMaXz95ci6gb0dJg59nop5w9V4+ljZNXWaWQui0Yns9pCjGuuFly/dv4dCywe4vMKkIJLiEHquurYXbKbnUU7qeysxN/oz8bUjWxK20RmSKa8EZmEus1W3j9fx66TVRwsasRqV0yL9Oef7pjGvbNjiAv2cfcQJ4f+0e4GzwkT7W7v7cVSU4O1thZLdQ2W2v4f12KtqSGiu5uSwQ/U6dCHhjgKpdBQPFNSrkznc+6JcjXmXLjOZrPTVKD4y+6jWEw2Zq6JY+FdSXj5jt0QDyGE61wtuCQaTQgXWWwWDlQeYEfRDg5XH8au7CyMWshX53yVdVPW4W2Q9feTjcVm51BxI7tPVvHe+Tq6zTZiAr340opkNs6NIT1K0u5GxeBod6/xFe2uLBas9fVYamux1NRiqanGWlPruF1bg7W6Bltr6xWP04eFYYyKwjM5Gd9lWVzo7GTa4sWX0/nCwtAHBbkt5nwyM/daKTxex6m9F2mtU8Rn+LP8/qmExEjqqBATiat9uK64GCaEGKi0tZQdRTt4o/QNmnubifCO4IszvsjG1I0kBCS4e3hilCml+ORCK7tzq3jrdA1NXWYCvY1smBPLxjkxLEwMQaeTGc5RYbNC3u4xHe2u7HZszc2XC6m+oqoGa41zdqqh4YqwCV1AAMaoKAzRUXjPnIUxOhpjdBSGqEt/R12R0pefnU3g6tWj+NWJwZprujj7YRUFOTWYe22ExfuRsELj7q1zZOWDEBOQZIoK8Sl0W7rZU76HHUU7ONVwCoNmYFX8KjanbSYrJguDTr7FJpvi+k5251axO7eaC83deBp0rMuIZMOcGFZNC8fTILMIo8bSA7nb4cjPoaUcQtPcEu2ulMLe0YGlphZrbc3lQmrAx7VX7JfSPD0dxVRMNL5ZWY4CKjoaY9TlokrvJzMh44XdZqfsdCNnsquoKmhBZ9BInRfBzNVxRCYFcODAASm2hJigXG18XMSgkIzBlFJTXTxXPPA8cCugAR8ATyilLlzncQuAx4GVQALQCBwEnlFKlQ06Vgf8M/B3QBRQADyrlHrNlTEKcS1KKUp7S9l3eB97yvfQY+0hKTCJb83/Fnen3E2Yd5i7hyhGWV17L2+cqmZXbhVnq9rRabAsNYxv3JLG7dMj8feSfRijqi/a/VfQ1eCIdr/thzDtLhiBvUf23l7njJSzgKp1zkr1fVyLvatr4IP0egyRERijovGeNQvj7bf1zUoZo6MxREc7lvnJG/Bxr6vNxPlD1Zw7WE1Xqwm/EE+WbEwmIysGnwAJxhFiMnD18vsxriy4QoElQDvwoSsn0TTNB9gHmIDPOc/5Q2C/pmmzlFJd13j4Q8B04OfAORwBHt8FTmiaNkcpdbHfsT8Avg18B/jY+di/aZp2t1JKou3FTem2dPNm6Ztsz9tOSVsJ3k3e3JF4B5vTNjM7fLa8MZpk2nst7DlTy+5TVRwpaUIpmBUXyHfvzuSeWdFEBHi5e4iTz5DR7k9C4vKbjnZXVmu/fVP9C6nLe6iGas7bt28qKQnfpVn9lvo5C6rwcNkzNYEppagpbuPMgUpKP2nAblfEZ4awastUpswMk+XEQkwyru7hemSo+zVNCwH2AG+5+HxfBpKBaUqpYuc5TgNFOGajnrvGY/9TKdUw6PkPA2XO837PeV8EjmLr/yqlfuI8dL+maanA/0V6iYkbVNlRyUv5L7GjaAcdlg4yQjLYErKFb97xTXyNspxnMjFZbezPb2B3bhV78+sxW+1MCfXhH9amsWFODCnhfu4e4uTUWASHfwanX76haHellGPf1KU0P+fyvr6Pa2ux1tdfuW/K379vqZ9j39SlQirmqvumxORwKQTj7IFKmqq68PQxMHNNHDNWxhIUKQmkQkxWn2qDiVKqWdO0/wKeBV524SH3AkcvFVvOc5Q5C6cNXKPgGlxsOe+r0DStAcds1yW3Ax7AXwYd/hfgj5qmJQ1egijEYEopjtceZ1veNrIvZqPTdNw65VYezniY2eGzOXDggBRbk4TdrjhW1szu3CrePlNDe6+VMD8Pti5KYMOcGObEy7Ivt6n6GA49D3lvOvZkzXsUln4dQpIAsHV0XBmR3ldU1Tr2TZnNA07Zt28qOhrfpUsHzEoZo6Nl35QYUnNNF2cPVJF/tAaLMwRjzSPppC2MxOgpM5lCTHbDsaO/G8eeKldMx9E4ebBzwP03+sSapmUAEUDeoOcwAcWDDj/n/DsTx6yYEFfotnTzVtlbbM/bTnFrMcGewXxp5pd4YNoDRPlGuXt4YpQopcir6WB3bhWvn6qmpq0XXw89t0+PYsPcWJalhGKQRqTu4Yx2t2f/FGveUSzWACwRm7D4Tsd6tB3Lrh85wiiqa669b2rGDAy3rhswK2WMjkYfHCwFtHCJ3Wan7FQjZw70C8GYH8HMVY4QDPl/JIS4RFPqmlkYV3+gI5giE/g9oFdKLXThMWbgOaXU04Pu/yHwtFLK5QJQ0zQDsBfIwLFEscV5/2+Be5VSUYOOT8WxdPFRpdT/DnG+x3GEchAZGTn/pZdecnUoI6qzsxM/P1mmNNKarE0c7DhITmcO3fZu4oxxrApYxXzf+Ri1KwMP5HUZe4bjNWnotnO0xkpOjZXqToVegxlhepbGGJgbocdTL2+gbtRNvS42G7q2NvTNLehamtG3tKBvbsa7thiPhmrsnVZspitnDWz+/tiDg7GFhDj+Dg7GFhKMPSQEW3Aw9sDAEQnNGG/k59enY+lRtJRAS4nC2gNGHwhO1QhOBoPXzf+MkNdl7JHXZGwaS6/LmjVrPlZKLbjeca6mFFq4MjRDhyNlsBO46wbGNlSFdzM/oX4BZAF3XSq2+p3rhp9DKfVb4LcACxYsUKvHSI+S7OxsxspYJhqlFB/VfsT2/O3sr96PhsYtCbfwcMbDzI2Ye82rk/K6jD03+5o0d5l560wNu09WcaLC8aNkwZRg/n5dLHfNjCbEV/bifBqDX5e+fVOXItKrLy3v6xeRPtS+KQ8welswBHphnD0f4/RlGGLjHBHpMdEYIiPReY5e1Pt4Jj+/bpwjBKOVMweqBoRgzFwVO2whGPK6jD3ymoxN4/F1cXVG6T+5sojpBSqAtwYVPNfSAoQMcX+w83Mu0TTtRzhmoz6nlHpv0KebgWBN0zQ1cPouuN/nxSTWY+3hrdK32Ja3jeLWYoI8g/jCjC/w4LQHZdngJNFjtvF+Xh27T1ZxoLABq10xNdKPf7x9GvfOjiE+RDa33yylFLbGRszl5ZjKy/HNyaH6nT2OVL/aGqy1dSiTacBjNM4KRJAAACAASURBVA+Pvih03yVLMERHYQwLwth2EmPlmxi0RvSJ8xyJgyMU7S7EUCQEQwgxHFxNKXxmmJ7vHI49VoNlAuddOYGmad8Bnga+MdTSQOdzeAIpDNzHlen826XnERNPdWc1LxW8xGuFr9Fubmda8DSezXqW9Unr8TJIhPdEZ7XZOVzSxO6TVbx7rpYus43oQC++uDyJDXNiyYj2lz0XN8De3Y25ogJzWRmm8nLMZeWYy8owl5dj7+zsO85Xp6MrMhJjVBTe02dgWLfucuNeZxDFgH1T7TVw9P/BiR87ot0zPn20uxA3asgQjM86QzA8JARDCHFjhiM040a8DvxE07RkpVQpgKZpicAyHEXUNWma9g0cfbu+o5R68SqH7QHMwMPA9/vd/whwVhIKJxelFCfqTrA9bzv7Lu4D4JaEW9iavpX5kfPlDfYEp5Qi92Iru3OrefN0NY2dZgK8DNwzO4YNc2JZnBQi/XCuQdlsWKqrMZdfLqZMZWWYy8qx1tZePlDTMEZH45GYSOCGDXgkJuKRlIRHYiJHCvJZfcst13+yK6LdNzuj3WeN3BcoRD82m53yU42cOVBJVUGrhGAIIYbNVQsuZ/iEq5RS6u9cOO53wNeB3ZqmPYNjmeIPgIvAb/o99xSgBHhWKfWs876HgBdwFFT7NE1b0u+87Uqp886B1Gua9jzwL5qmdQCfAA8Ca3FEz4tJoNfayztl77AtbxsFLQUEegby2PTHeGjaQ0T7Rbt7eGKElTZ0siu3mtdzqyhv6sbDoGNdRgT3zo5lTXo4nga5Qt2ftaXFMUPVV1g5iitzxYUBsem6gAA8khLxXbzIWVAl4ZGUiMeUKei8rjJLXFx07Sev/BgOXz3aXYiR1tVm4vyhas59WEVXmxm/EE+WbEwmIysGnwDZwymE+PSuNcN1J0OHTwzFpeOUUl2apq0Fngf+F0eQxV7gCaVUZ79DNUCPI5jjkjuc99/h/NPfAWB1v9vfwRHm8U0gCigAHlBKveHi1yPGqdquWl7Kf4nXil6j1dRKWnAa/77037kz+U68Dd7uHp4YQa0mO384VMbu3CpOV7ahaZCVEspX16Ryx4woAryuTJucTOwmE5YLF/pmqPrPWtlaWy8faDTiER+PR1ISfqtWDZit0oeEDM9VfqWgZC8cegHKD4JXIKz4Fiz+CviFf/rzC3EdfSEY2VWUnnSEYCRkhrBq6/CFYAghxCVXLbiUUnEj8YRKqQvAfdc5ppxBqYJKqceAx1x8DhuOpYc/vJkxivFFKcUn9Z+wLW8b+y7sQ6FYE7+GhzMeZkHkAlkGMsEV13fywgeFvHW6B8V5ZsQG8MxdGdwzO4bIgMm1N0/Z7Vjr6gYs/btUWFmqqwck/xkiIvBITMT/9tsds1SJiXgmJWGMjUUzjNBqc5sVzu+Cwy9A7Rnwj4bbfgjzHwNP/5F5TiH6MfdaKTxWy5kDVTRXO0Mw1sYxY4WEYAghRs5o7+ESYtiYbCbeLn2b7fnbyW/Ox9/Dn0czH+XB9AeJ9Yt19/DECLvY3M0LHxSx82QlXkY965OMPLUpi9SIsdGbYyTZOjsds1P991WVV2AuL0f19PQdp/PxwSMxEe/Zsx17q5IuLQFMRO/nO3oDtvRA7jY48iK0lENoGtz7C5j1gGMZoRAjrLm6i7MHKsk/VishGEKIUXetPVwxQL1Syur8+JqUUtXDOjIhrqK2q5ZXCl7h1cJXaTG1kBqUyveWfo+7ku7CxyhXKCe6mrYefrGvmJc/uohep/HF5Ul8ZVUKZ07kTKhiS1ksmC9WDlj6dykR0NbYePlAnQ5jfBweiYn4LlrknK1KwiMpCUNEuHtneHtaSaj4G3z0JehqgNj5jhktiXYXo8Bms1OW28jZA5VUFUoIhhDCfa41w3URWAocByq5/j4tuUQkRoxSityGXLblbeODig+wKzur41fzcMbDLIpaJL84J4GGDhO/yi7hL8cqUEqxZVECX1uTSlTg+F02eKlnlamvoOpXXFVWgtXad6w+JMS5r2olnklJffuqPOLj0TzG2Mb+jlrI+X9w4k8kmzsgdR0se0Ki3cWoGByC4R/ixZKNyWQui8Hbf4x9rwghJoVrFVyP40gKvPSxqwEaQgwbk83EnrI9bMvbRl5zHv5Gfx7JeISH0h8izn9EthmKMaa128xvPyzlT4fLMVltfGZ+HP+wNm1cNSd2tWeV5umJx5QpeE6b1re3yvNSYEVgoPu+AFc1l8GRn8PJbWC3wPRNnPBczoJ7vuDukYkJTilFdVErZw8MCsF4OI4pM0IlBEMI4VbXCs34Q7+Pfz86wxHCob67npcLXubVwldp7m0mJTCF7y75Lncn3y3LBieJjl4LfzxUzu8PltJptnLPrBieWJdGcvjYXDY4uGdV/1mra/aschZUnkmJGKKj0cbjUru6c3DoeTi7A3R6mL3F0UMrNIXO7Gx3j05MYFcNwVgZS1CE/K4QQowNEpohxgylFKcaTrE9bzvvV7yPTdlYFbeKrRlbWRK9RJYNThI9Zhv/nVPOrw+U0Npt4bbMSJ66bSrpUQHuHhrQr2fVpYLquj2rFvfbV3WdnlXjzcXjcPA5KHwHjL6w5O8dPbQCpNedGFmDQzDCE/wlBEMIMWa5XHBpmhaGo4HwNGDwuwVXGx8LcQWzzcy75e+yLW8b55rO4Wf0Y0vGFrZM20J8QLy7hydGiclq46/HLvCL/SU0dppYNTWcb902lVlxQaM+lqv2rCorw9bWdvnAq/WsSkpCHxw8MS8SKAUl+xwzWuUHwTsYVv8LLHocfELcPToxgQ0VgpE2P5IZq2IlBEMIMaa5VHBpmjYVyMFRaHkBLUAQjsbEbUDHSA1QTFwN3Q28UvgKrxS8QnNvM0mBSXxn8Xe4N+VeWTY4iVhsdl79uJIX9xZR3dbL4qQQfvXIPBYmjuyb976eVf33VV3qWVVV5SgsnAwREXgkJeF/xx2j17NqrLHbIO8NR6FVkwv+MXD7f8C8z4Hn2FzmKSaGrjYT5w5Wc/7g5RCMpZtSyMiKlhAMIcS44Oo7hR8DnwAbgE7gNuAc8DngGeCuERmdmJBON5xmW9423it/D5uysTJuJVvTt7IkZgk6bRzuXxE3xWZXvH6qihc+KKKiqZs58UH8+P7ZZKWEDuuValtHx4Bo9b5Zq4qKsdmzaqyxmuHMK3DoBWgqgpBkuOfnMPsh6aElRsylEIwz2VWU5TpDMKZLCIYQYnxyteBaCHwV6HXe1imlTMBvNU0LAV4AbhmB8YkJwmKz8G7Fu2zP286ZxjP4Gf14KP0htqRvISEgwd3DE6PIblfsOVfLc+8XUlzfSUZ0AH/43ALWpkfcdKGlrFb0tbV07NvvLKwcRdU1e1YN2Fs1BnpWjTXmLvjkf+DIL6C9EqJmwmf+BJkbHMEYQowAc6+VgqO1nP3wcgjGrLVxTJcQDCHEOOZqwRUANCml7JqmtQNh/T53HMcslxBXaOxp5G8Ff+OVwldo7GkkMSCRf138r9ybci++xkk8azAJKaXYX1DPT98r5Fx1O6kRfvzy4XncMT3qhq5W200mTIWF9J47T29eHr15eZgKCggzmah0HjOuelaNNT0tcPz3cOxX0N0ECVlwzwuOXlpSkIoR0lTdydkDVRQcrcVikhAMIcTE4mrBVQ5EOj8uAO4D9jhvrwdah3dYYrw723iWbXnb2FO+B6vdyvLY5TyS8QhLY5bKssFJ6HBxIz95r4CTF1pJCPHhuQdms2FOLPrrFFq29nZ68/LpzTuPKS+P3vN5mEpLwWYDHEmAXunpBD/0EGUoZt955/jpWTXW9GtWjLkD0m6HFU9BwhJ3j0xMUFcNwVgdS2SihGAIISYOVwuuD4B1wKvA88B2TdOyACswA/jRyAxPjCcWm4X3K95nW/42TjecxsfgwwNTH2BL+hYSAxPdPTzhBifKm/npe4XklDYRHejFjzbP5DPz4zDqBxbdSims9Q0DCqvevDwslZV9xxgiIvDKyMBv3S14ZWTglZnpCK1wvinLy87Ge/bsUf36JoQhmhWz/EnHEkIhRkBXq4lzhyQEQwgxebhacD0NeAMopV7SNM2EIyLeB/gN8OuRGZ4YDxp7Gnm18FVeKXiFhp4GpgRM4elFT7MhZQN+HpJeNhmdqWzjp+8XkF3QQJifJ/92TyZbFiXgZdSj7HbM5eWO5YDOwqo3Lw9bU1Pf4z2mTMFr5gyCHnjAWVxlYAgNdeNXNAENblY8ZytkfQNCU9w9MjEBKaWoLmzlzIGBIRirH44jQUIwhBATnEsFl1Kql8uBGSildgI7R2pQYnw413SO7XnbeafsHSx2C8til/H99O+zLHaZLBucpApqO3j+/UL2nKslyMfIv9yWyoPhVijKpfW//krv+fOY8vOxd3U5HmAw4Jmait/KlX2FlWd6Ono/KdRHjDQrFqNIQjCEEOIaBZemaWuB40qpzlEcjxjjLHYLeyv2si1vG7kNufgYfPjM1M+wJX0LSYFJ7h6ecJOyxi5+8fZp8g59QmZnDb/zbCOptQrr34qpsVgA0Hx88Jo2jcANGxyFVUYGnmlp6CTEYuRdalZ88DmoOORsVvyvsOjL0qxYjIihQjDWPppO6gIJwRBCTD7XmuF6H1iKI4UQTdN0QDbwRaVU0cgPTYwlzb3NvFr4Ki/nv0x9Tz3x/vH888J/ZkPqBvw9/N09PDHKrC0t9J4/T90np8n/8ATGsiK+0NmIDkezYH1wMB4ZGQR87lE8MzLwysjEY0oCml7eaI2qvmbFz0HNKWlWLEbUpRCMM9mVVBe1ojfoSF0QwcxVcUQk+ksIhhBi0rpWwTX4J6MGLAfk3fUkkteUx7a8bbxT9g5mu5msmCz+LevfWB67XJYNTgJKKaw1NQP3W50/j7W2tu8YP59gLEmp+C27j5A5sxz7rSIj5c2VOw3VrPjeF2HWg9KsWAy7rlYT5w5Wce5QNd1tZvxDnSEYy6Lx9pMZbCGEcDU0Q0wiFruFfRf2sT1vO5/Uf4K3wZtNaZvYmr6V5KBkdw9PjBBlsznCLPqCLM5jOp+Hra3NcYBOh35KImXRaewNX0hxYAyzVi/i8bvnEhPk7d7BC4e+ZsUvQnuVNCsWI+ZyCEYlpbmNKKVIyAxl5sOxEoIhhBCDSMEl+rT0tvBa0Wu8lP8Sdd11xPrF8o8L/pGNaRsJ8Ahw9/DEMHI0Dy6iN8/RPNh0Po/ewkJUTw8AmocHnlOn4n/bbXhlZmBNTuMvDR78/ng1PRYbG+fG8sItU0kIlU3vY8KQzYp/Dqm3SLNiMazMPVYKjtVy5kAVLTWOEIzZa+OYsSqWwHD5eSCEEEO5XsEVq2napSkNfb/7rmh0rJQqHdaRiVGT35zP9rztvFX6Fma7mSXRS3hmyTOsiF2BXq6Kj3u2zk5nb6vzfbNXptJSsFoB0Pn5OZoHP3B/334rz+QkNKORTpOVPx8u47fvlNLea+WuWdE8uS6N1AhZWTwm9DUr/iOYO6VZsRgxVwvBSFsQiUFCMIQQ4pquV3C9OsR9u65yrPzEHUesdiv7L+5nW942Pq77GG+DNxtTN7IlfQupwanuHp64SdaGhiv6W1kuXOj7vD48zNE8eM2avhh2Y1wcmm7gfrxei42/HCzll9klNHeZWZcRyVO3TiUzRmY6xwRpVixGgc1mp/RkA2cPVF0RghGZJD8LhBDCVdcquD4/aqMQo6a1t9WxbLDgJWq7aon1i+XbC77NxtSNBHoGunt4wkVKKSwXLw7Yb9Wbl4etobHvGGNCAl4ZGQRt3oxXZgZeGRkYwsOveV6z1c7LH13gxX3F1HeYWJEWxrdum8ac+KCR/pKEK/qaFb8GOoM0KxYjorPFxPlDEoIhhBDD5aoFl1Lqv0dzIGJkFTQX8Nf8v/Jm6ZuYbCYWRy3mXxb9C6viVsmywTFOWSyYSsscSwKdQRa9+fnYO50t8vR6PFNS8Mtahtf0TLwynM2D/V1f9me12dlxsoqffVBEVWsPCxOD+fmWuSxJDh2hr0rckCuaFX9VmhWLYXXVEIxHYkmYLiEYQgjxaUhoxgRmtVs5cPEA2/K38VHtR3jpvbgn5R62pm8lLTjN3cMTQ7D39GAqKBiwLNBUWIgymwHQvLzwmjaNgHvudiwJzMjEc2oaOs+bi/q22xVvnK7mhQ+KKGvsYnZcID/aPJMVaWES6+5uSkHJXjj4vDQrFiPmihAMXwOzb4lnxsoYCcEQQohhIgXXBNRmamNH0Q5eyn+J6q5qon2jeWr+U2xO2yzLBscQW2vrFfutzGVlYLcDoA8MxDMzg+BHHunbb+WRmDgszYOVUrx7ro7n3y+koK6D9Ch/fvvZ+dyaKf2z3E6aFYtR0FTlDME45gjBiJjiz9pHM0hbECEhGEIIMcyk4JpAilqK2J6/nTdL3qTX1svCqIX808J/YlX8Kgw6eandRSmFtbZ2UHF1Hmt1Td8xhqgovDIyCLjjjsv7raKjh734UUpxoLCBn75XyJmqNpLDfHlxy1zumhktS4bczWqG0y/D4RegqRhCUqRZsRhWVrON0twGyvbaOffScfQGHWkLIpghIRhCCDGi5F34OGez28iuzGZ73naO1x7HU+/J3cl3syV9C9NCprl7eJOOstsxl1c49lr1K7BsLS2OAzQNj8REfObMxWvrVkcMe2YmhuDgER9bTkkTP32vgBMVLcQFe/Pjz8xi09xYDHrd9R8sRo40KxYjSClFXVk7eTk1FH9Uh7nXhtEXCcEQQohRJAXXONVmamNX8S7+mv9XqjqriPKN4ol5T3Bf2n0EeUmi3Giwm82YiooGFFa9BQWo7m4ANKMRz7Q0/G5Z27ffymvaVHS+vqM6zk8utPDce4UcKm4kMsCTH26cwQML4vEwSKHlVj0tcPx3cPRX0NMMU5ZJs2IxbLpaTRQcqyU/p4aW2m4MRh0p8yJIXxpFUc0p5q2Z4u4hCiHEpCEF1zhT0lrC9rztvFH6Bj3WHuZHzudbC77Fmvg1smxwhNm7u+nKyaEz+wAhOTkU1NWBxQKAzscHz8wMgu67r2+/lWdyMpqH+64en6tu47n3CtmbX0+orwfP3JXBI0um4GWUWRO3kmbFYoTYLHbKTjeSn1PDhXNNKAXRKYGs+Ww6qfMi8PB2/I4orpWCXgghRtOov0PXNC0eeB64FdCAD4AnlFIXrvlAx2P/A1gAzAdCgM8rpf48xHHZwKohTvGkUuqFmx68m9jsNg5WHWRb3jaO1hzFQ+fBXcl3sTVjK+kh6e4e3oRmqamhMzubjv376T56DGU2o/Pzw56QQOj69X37rYwJCVc0D3aX4voOnn+/iLfO1BDgZeAfb5/GY1mJ+HpKQe5WzWVw+GeQu93ZrHizs1nxDHePTIxjSikaLnSQn1NL4Ue1mLqs+AZ5Mu/2KaQvjSYoUpIGhRDC3Ub1HZimaT7APsAEfA5QwA+B/ZqmzVJKdV3nFP8A5AJvAo9e59jTwN8Nuq/8RsfsTu3mdva17+M/d/4nlZ2VRPhE8M153+S+tPsI9hr5PT+TkbLb6T17lo79++nMPoApLw9wNBEO3vIQfqtX4zN/PgeOHGHO6tXuHewgFU1d/OyDInblVuFt1PONtal8cUUygd5Gdw9tcpNmxWIEdLebKTzuWDLYVNWF3qAjeU4Y6VnRxKWHSAiOEEKMIaN9yfvLQDIwTSlVDKBp2mmgCEdx9Nx1Hh+olLJrmpbK9QuuDqXU0U87YHd6rfA1drbsZF7EPJ6Y/wRrE9Zi1Mmb5+F2aalgx/79dB44gK2hEXQ6vOfOJeLb38JvzRo8kpPHbFx6dWsPL+4r4pUTlRj1Gl9ekczfrUohxFc2w7vVxeNw8KdQuEeaFYthYbPZqTjTRH5ODRVnmrDbFRGJAazaOo3U+RF4+crvByGEGItGu+C6Fzh6qdgCUEqVaZp2GNjAdQoupZR9hMc3pmxO24yhysBnb/+su4cy4VxtqaDviuX4r1mD74oVo5Ic+GnUd/Tyy/0lbD92AYXikcUJfG1NKhEBXu4e2uQlzYrFCGis7CQ/p4bC47X0dFjwCfBg9i3xTFsaRWiM9GYTQoixbrQLrunA7iHuPwfcP8zPNVfTtDbAB8gDfqaU+sMwP8eICvQMJN4z3t3DmBCU3U7vuXN07t9Px/7sy0sF4+MJeuhB/NeswWf+fLeGXLiqpcvMrz8s4b+PlGOxKe6fH8fX16YSFyx7NdxGmhWLYdbbaaHwozryc2pouNCBTq+RNCuM9KXRJEwPQSftHIQQYtzQlFKj92SaZgaeU0o9Pej+HwJPK6VcKgCdSwqLuHpoxrPARaAQCMKx/HAz8F2l1A+vcs7HgccBIiMj57/00kuuflkjqrOzEz8/ecN2U0wmPPPy8TxzGo8zZ9G3t6M0DUtKMqaZszDNmoktKuqmIrjd8bp0WxTvllt4t9yCyQZLYvRsTPEg0lfeeIF7XhPNbiGy7gAJF17Dp6eabu8YLiRspi5yNUqW/wLyM+xGKLuisxZayxQdVaDs4BUMQUkagVPA4Dk8y5rlNRmb5HUZe+Q1GZvG0uuyZs2aj5VSC653nDtiy4aq8IZ1c4xS6nuD7tqtadpO4Duapr2glOoc4jG/BX4LsGDBArV6jAQiZGdnM1bGMh5YamsvLxXMOTpwqeDq1fiuXDksSwVH83XpNlv585FyfnOklLYeC+tnRPHkrVOZGuk/Ks8/Xozq98pQzYrv+j/4ZG4gXadHskMvk59h19dc00X+kRoKjtXS3W7Gy8/IrNVRpGdFERY3/N/n8pqMTfK6jD3ymoxN4/F1Ge2CqwVHnPtgwc7PjaS/AhuBmUDOCD+XGCUTaangYL0WG9uPXeCX2cU0dppZmx7BU7dOZUZsoLuHNnlJs2IxTEzdFopO1JOfU0NdWTuaTmPKjFAylkYzZWYoemlMLoQQE8ZoF1zncOzjGiwTOD/Cz33p3dDoraEUI+JyA+JsOrKzr0wVXL0aj5SUMZsqeD1mq52/fXyRF/cWU9veS1ZKKL/57FTmT5HQBbeRZsViGNjtisr8ZvJzainNbcBmsRMS48uyz6QydVEUPgHj78KQEEKI6xvtgut14CeapiUrpUoBNE1LBJYBT1/jccNhK9ADnBnh5xEjYMBSwaPHUCYTOl9ffFeswH/N8C0VdCebXbHrZBUv7C3kYnMP8xKCeO6B2WSlhrl7aJOXNCsWw6C1rpv8ozUUHK2ls8WEp4+BzKxo0rOiCU/wH7cXh4QQQrhmtAuu3wFfx7Gn6hkcs00/wBFw8ZtLB2maNgUoAZ5VSj3b7/5VQDgQ5bxrgaZpnQBKqVedx6zAUbztwNHoOBBHk+V7cQRzXK+5shgDBiwVzM7GdL7fUsEHHxjXSwUHs9sVb5+t4fn3Cylp6GJGbADPfn4Gq6eGyxsxd5FmxeJTMvdaKf7YsWSwprgNTYP4zFCy7kslaXYYBqPe3UMUQggxSka14FJKdWmathZ4HvhfHMv89gJPDAqy0AA9MHgR+/eBVf1uf83559JjAGqcj3sWCAMswGlgq1Lqr8P31YjhZu/upuvo0b4iq2+p4Jw5hH/rKfzXrBnXSwUHU0qxN6+en75fSF5NO2kRfvz6kXncPj1qwnyN486FY45od2lWLG6CsiuqilrJz6mh5JN6rGY7QZE+LNmYzLTF0fgFe7p7iEIIIdxg1FMKlVIXgPuuc0w5QyQXKqVWu3D+YmD9TQ5PjLLJsFRwMKUUh4ob+cl7hZy62EpiqA8/e2gOd8+KQa+TQmvUSbNi8Sm1N/aQf7SWgqM1tDf24uGlZ+qiKDKyoolMCpALKEIIMcm5IxZeTGKXlwpm05G9//JSwbg4gh54AP81q/FZsGBCLBUcyvGyZn7yXgHHy5qJDfLmP++byeZ5cRilienos9sg73XH0kFpVixukMVko+SkY8lgVUEraBA3LZhF9ySTPDcco4csGRRCCOEgBZcYcfaeHkeq4P79dGYfwNrQMKGXCg7l1MVWfvp+IR8WNhDu78mzG6bz4MJ4PA3ypmzUWc1w+mU4/AI0FUNICtz7Isx6EAyy5EtcnVKKmpI28nNqKP64HkuvjYBwbxbfm8S0JdH4h3i5e4hCCCHGICm4xIi4tFSwc382XUePDlgq6Ld6FX6rVk24pYJDyatp57n3C3n/fB3BPkb+9c50PrskEW+5+j36zF3w8X9Dzi8uNyv+zJ8gcwPo5PUQV9fR3EvBsVryc2poq+/B4KkndX4EGUujiE4NmtAXi4QQQnx6UnCJYeFYKnjeGXgx+ZYKDlbS0MkLHxTx5ulq/DwNfOvWqXx+eRJ+nvItN+qkWbG4CVazjbJTjeTl1HAxrxkUxKQFMf+ORFLmhePhJd/LQgghXCO/McRNu+5SwdWr8UhNnVRXfy82d/OzvUXs+KQSL6Oer65O4fEVKQT6GN09tMmno9Yxm3XiT9KsWLhEKUV9eQd5OTUUfVSHuceKX4gnC9Ynkr40isBwH3cPUQghxDgkBZe4IZa6Ojr3Z9O5f//ApYLLl+O3ZvWkWSo4WG1bLy/uK+Lljy6i02l8YVkSX1mdQpif7AkadX3NireB3SrNisV1dbWZnEsGa2mp6cJg1JE8L5z0pdHETQ1Gk/RQIYQQn4IUXOKaZKngtTV2mvhVdgn/e7QCpRQPLYrn62vSiAqUzfOjzbezHF77kjQrFi6xWeyUnW4k/2gNF841o+yKqORAVj88jdQFkXh6y69HIYQQw0N+o4grOJYKHnUuFcweuFTwqafwXzP5lgoO1mVR/NeefP58pJxei4375sXxjVvSiA+RJUejrvIEfPgTFha+42hWvPRrsORr0qxYXEEpRePFTvJyaig8Xoupy4pvoAdzb00gfWkUwVG+7h6iEEKICUgKLgHIUkFXdZut/OFgGb880E2vrYR7ZsXwzXVppIRL36ZRpRSUfQgHf+L42zuYUKky0wAAIABJREFUssQtJD3wH9KsWFyhp8NM4fE68o7U0FTVic6gkTw7nPSsaOIzQtDJkkEhhBAjSAquSapvqWC2o8jqPX8euLxU0G/1KnwXLpy0SwUHs9rs/O3jSp57v5CGDhNzI/T8aGsW6VEB7h7a5KIUFL7rKLQqPwK/SLj1B7DgC1TknCBJii3hZLPZuXC2ibwjNVScacJuV0RM8WflQ1NJWxiJl68E2QghhBgdUnBNIkMuFdQ0WSp4DUop9uXX83/fyaeovpP5U4L59SPz6Sg7JcXWaLLb4PxuOPgc1J2BwAS48ycw97NglP1y4rKmKueSwWO19HRY8PY3MmttHOlLowmNlZloIYQQo08Krgmub6lgdjZdOTlXLhVcuRJDiMwKDOV0ZSv/8XYeR0ubSQrz5dePzOf26ZFomkZ2mbtHN0nYLHD6FTj0PDQVQWgabPwVzLwf9DJDIRx6uywUfeRYMthwoQOdTiNxVhjpWdEkTA9Br9e5e4hCCCEmMSm4Jhhlt9N7Ps8xi9V/qWBsLEH334/fmtWyVPA6LjZ38+N3C3j9VDWhvh78YMN0HlqUgFHetI0eSw+c/Isj3r3tIkTOhPv/DBn3gk7v7tGJMcBus3Mxr4W8IzWUnW7AblWExvmx/P40pi6KxNtffsYJIYQYG6TgmgAGLBU8cABrfb0sFbwJrd1mfrGvmP/JqUCng39Ym8rjK5Px95KZlFFj6oATf4Qjv4CueohbBHf9FNJuA/n/K4CW2i7yc2ooOFpLV5sZL18jM1bEkp4VTXi8v7uHJ4QQQlxBCq5xylJXR2f2AUeq4KWlgj4+zqWCa/BbJUsFXdVrsfE/OeX8Yl8xnSYr98+P58lbp0ovrdHU3QzHfwtHfwW9rfz/9u47PI7qXuP496dqq1nFltwk2bJcZdxkDIYYbHo1oSSQhJ4LNwUSUkggN8klQICElhBSICFAgFySkBBIQi+mVxsMyFVustxkFVu97rl/zMgIIVuytdKuVu/neeZZa3Zm9zc63tW+e86cIW8hLLgHxi1Q0BKaGlopftcbMrhjQzUWZeROz2DB/JGMO2g40THqfRYRkfClwDVAOOf2XIB4b0MFEw4+mCgNFeyxQMDx+PKt3Pz0arbsamDR5BF8/8QpmgyjP9WWwRt3wjv3QHMtTD4JFnwHxs4NdWUSYi7gKF3tDRlc//5O2loCpI1K5LAz8pl0SBaJw+JDXaKIiEiPKHCFsUBDA3EffMC2F/xZBTsOFfzWt0hatJD4iRM1VPAAvF5czg1PruSjLdVMH5PCzWfN4LD84aEua/DYtRlevwOW/QnamqHgdPjMt2Hk9FBXJiG2e2c9q97Yzqo3tlFb1UR8QgxT549iymGjyMxN1vudiIgMOApcYazqoYdI+81vqdZQwaBZtb2am55cxZLVOxmTOpRfnD2LxTNH68Kn/aW82Jtx8IOHvZ9nnuMFrYwJoa1LQqq5sZV1y8pY+fo2thXvBoOcqekcdmY+42cOJyZWE6WIiMjApcAVxlJOOYXVzc0c+l//paGCvbR9dyO3PbuaR5aWkhQfww9OmsL588cxRB/k+sf2j+CVW2HFPyE6DuZeDId9A1KzQ12ZhIgLOLYW72LV69sofm8nrU1tpGYlcOhn85h8yEiS0nQOpYiIRAYFrjAWO3IkzdOmKWz1Qk1jC3e9tJ4/vLqeQAAuPnw8lx2VT2qCfqf9ovRdePkWWPMkxCV5IWv+1yEpM9SVSYhUlzew+i1vyGB1eSOxQ6KZNDeTKYeNZmReioYMiohIxFHgkojU0hbg/94u4ZfPraWirpnFM0dz5fGTyU5PCHVpkc852PiKF7Q2vARD02DhD+CQS71/y6DT0tzG+vd2svL1bWxZXQXAmMlpzDs1j7zZI4iNU0+ziIhELgUuiSjOOZ4u2s7PnlrNhvI6Ds1L596TpjJjbGqoS4t8zsHaZ7ygVfo2JGXBsdfB3IsgXtdHGmxcwLF9/W62vB3g3n++SktjGynDhzDv1PFMPnQkKRlDQ12iiIhIv1DgkoixdFMlNzyxiqWbqpiYmcQfL5zLosmZGqLU1wJtsOIxeOU22PEhDMuBk26B2edBrM7DGUycc+zYUE3xsjLWLS2jtqoJi4bJB49gymGjGJ2fimmCGhERGWQUuGTAW7+zlp8/tZqniraTmRzPTWccxFmFY4mJ1sVQ+1RbC3zwV2/WwYq1kJEPp/0GZnweomNDXZ30E+ccZRtrKF66g+JlZdRWNhEVY+RMy+DQ0/IorVnF0cdOC3WZIiIiIaPAJQNWeW0Tdzy/lj+/VUJ8TBTfPnYS/7VgPAlx+m/dp1oa4b0H4LU7YHcJZB0En7sPpi6GKJ2LMxg459hZUkPxu2UULyujpqKRqGgje1o6hyzOY/yM4cQneKF725LVIa5WREQktPTJVAachuY27nl1Pb97aT0NLW18YV423zx6EiOS40NdWmRrqoV3/whv3Am1O2DsPDj5Fph4HGjYZsRzzlG+udbryVpaRnV5I1FRxtip6Rx88njGzxzOkET1bIqIiHSmwCUDRlvA8felpdz67Gp2VDdx3LQsvnfCFPIzk0JdWmRrqIK37oa3fuv9e/yRcOYfYNwCBa0I55yjvLSW4qVlXsja2YBFGdlT0ig8cRx5s0YoZImIiHRDgUvCnnOOJWt2ctMTq1i9o4ZZ2an86gtzmDc+PdSlRbbaMq836517oLkWJp0IR3wXxs4NdWXSh5xzVGyp29OTtbvMC1ljJ6dSeHyuF7KSFLJERER6SoFLwtpHW3ZzwxMreX1dBbkZCfz6i3M46aCRmnmwL+3aDK/fAcv+BK1NUHA6LPgOjJwe6sqkjzjnqNxat6cna9eOesy8a2XNPjaHvFkjGJqsi4WLiIgcCAUuCUulVfXc+swaHn1vC2kJsfzvqdP40iG5xMVo5sE+U7EOXr0Nlj/s/TzzHDj8WzA8P7R1SZ/xQpbXk1W13QtZoyelMfPobPJmjSAhRSFLRESkt/o9cJlZNnA7cCxgwHPAFc65kh7sewMwFygE0oGLnHP37WXbS4DvAOOBjcDtzrnfBeEQpA/trm/h10uKue+1jZjBVxdO4KsLJ5AyREOY+syOInjlVih6FKLjYO7FcNg3IDU71JVJH6ja/nFPVuXWOjAYMzGVGYvGkjc7UyFLREQkyPo1cJlZAvAC0ARcADjgeuBFM5vhnKvr5iEuB94H/g2cv4/nuQS4C7gRL9AdDfzGzMw599teH4gEXVNrGw+8sYlfvVBMdWMLZ8wey3eOm8To1KGhLi1ylb7rBa3VT0BcEhx2Ocy/DJIyQ12ZBNmuHfV7erIqtngha3R+KkecM4m82SNIHKYZPkVERPpKf/dwXQLkAZOdc8UAZvYBsBb4b+C2bvYf5pwLmFk+ewlcZhYD/BR4wDn3P/7qF81sNHCdmf3BOdcShGORIAgEHP/6YCs3P72a0qoGjpg0gqtOmMK00SmhLi0yOQcbX4GXb4ENL8GQVFh4Ncy7FBI0CUkk2bWjnuJlXk9WRWktAKPyh7Hg7IlMmJ1JYqpCloiISH/o78C1GHizPWwBOOc2mNlrwGl0E7icc4EePMd8YATwYKf1DwAXAZ8BXtyfoqVvvLGughufXMkHpbuZOiqFB758EAsmjgh1WZHJOVj7jBe0St+GpCw49jqYexHEJ4e6OgmS3Tvr9wwXLN/shayRecP4zOcmMmHOCJLShoS4QhERkcGnvwNXAfBYF+uLgM8F8TkAPuriOQCmocAVUmt31HDTk6t4flUZo4cN4dbPzeSzs8cQHaWZB4Mu0AYrH/eGDm7/EIZlw0m3wOzzIFYfviNBdXnDnpC1s6QGgKzxKRx+Vj4T5mSSnK52FhERCSVzzvXfk5k1A7c5567qtP564CrnXI8CoD+kcC1dTJphZj/AG1I41DnX2GF9DNAC/Ng5d10Xj3kpcClAVlZW4cMPP7w/h9ZnamtrSUqKjAv77moM8GhxCy+XtjIkBk7Ji+XY3Fjiogde0Ar3drFAK5llL5O76RESGrZQP3Q0JTlnsSPrSFxUZE5OGu5tEkzNdY7qzVBd4mio9NYNTYeUHCMlG+ISw+c1NZjaZaBQm4QntUv4UZuEp3Bql0WLFi11znV7gdJQfPLqKuEF89NB+2PtV5J0zt0N3A0wd+5ct3DhwiCWdOCWLFlCuNRyoGqbWrn75fX8/rX1tAYCXHj4OC4/aiLpiQN3NrSwbZeWRnjvAXjtDthdAlkHwcnXkzDtNKZERTMl1PX1obBtkyCpqWxknX9O1o4N1QBk5iYza2Em+XMySRkenhPMRHq7DERqk/Ckdgk/apPwNBDbpb8DVxXedO6dpfn3BYP/fS/pwLYO69M73S99rKUtwF/e2cwvnltLeW0TJ88YxfeOn0xuRmKoS4s8TbXw7h/hjTuhdgeMPRhOuhkmHQ+6SPSAVVvVyLplOyleuoPt672QNSInmfmnT2DCnEyGjQjPkCUiIiIf6+/AVcTH51h1NA1YEcTnwH+ejoFrmn8brOeRvXDO8eyKHdz01CrW76xj3rh0fn9+IbNz0kJdWuRpqIK37oa3fuv9e/yRcOYfYNwCBa0BqraqiXXLyli3rIxt63YDMDw7iUM/m8eEOZmkZiaEuEIRERHZH/0duB4HbjGzPOfcegAzGwccDly1j/32xxtAOfAlvGtwtTsXr3frtSA9j3ThvZIqbnxiFW9vrGTCiER+f/5cjpmaienDf3DVlsEbv4Z37oHmGph0Iiz4DmQfHOrK5ADU7Wpi3XvecMFtxV7IyhiTxCGL88gvzCQ1SyFLRERkoOrvwPV74DLgMTP7Id55VtcBm/EuVAyAmeUC64BrnXPXdlh/JN6U7yP9VXPNrBbAOfeIf9tiZj/Cu9DxFrzQdRRwMXC5c665bw9xcNpUUcfPn1rNfz7cxvCkeH56+nTOnptNTHRUqEuLLLs2w+t3wLI/QWsTFJzuBa2R00Ndmeynut1NrH9vJ8VLy9havAscpI9OZN6p48kvzCRtpIbeioiIRIJ+DVzOuTozOwq4He+6WAY8D1zhnKvtsKkB0UDnT+s/AY7s8PPX/aV9n/bn+Z2ZOeA7wJVACXCZc+43QTwcASrrmrnj+bU89NYmYqKi+ObRE7nkiDyS4iNzJryQqVgHr94Gy/8COJhxDnzmWzA8P9SVyX6or25mvd+TtWWtF7LSRiUy75TxTJiTSfoohSwREZFI0++fip1zJcCZ3WyzkS5mLnTOLdyP57mLDr1mElyNLW388bUN/PbFddQ1t3L2wTl865iJZKbomj9BtaPIu4ZW0aMQHeddqPiwb0Bqdqgrkx5qqGlmXXtP1poqnIO0kQnMPWkc+YWZZIwOj6ltRUREpG+oG0L2S1vA8eh7W7j1mdVs293IMVMz+f4JU5iYlRzq0iJL6VJ45RZY/QTEJcFhl8OhX4fkrFBXJj3QUNu8Z7jgljW7cAFHalYChSd6ISt9dKLOaxQRERkkFLikx15es5Mbn1zFym3VzBg7jNs+P4v5EzJCXVbkcA42vuoFrfVLYEgqLLwa5l0KCV1dTUHCSWNtC+uXeyGrdFUVLuAYNmIoc47PIb8wi4wxClkiIiKDkQKXdGvF1mpufHIlr6wtJzt9KHd8YTanHDSKqCh9eAwK52Dts17Q2vwWJGbCsdfC3IshXj2H4ayxroUN7SFrZRWBgCNl+BBmH5dDfmEmw8cmKWSJiIgMcgpcsldbdzVwyzOrefS9LaQMieWHJ0/lvPm5xMdEh7q0yBBog5WPe+dobf8QhmXDSbfA7HMhVhe0DVdN9S1sWF5O8dIyNq+sJNDmhaxZx2aTX5jF8GyFLBEREfmYApd8SnVjC795cR33vrYBB1y6II+vLcxnWEJsqEuLDG0t8OHf4NXboXwNZOTDab+GGWdDtH7H4aipoZWNfk9WyQovZCWnD2HmUdnkz81kRE6yQpaIiIh0SYFL9mhuDfDgm5v41Qtrqapv4YzZY/j2cZMYm6aLrgZFSyO8/yC89kvYVQJZB8FZ98K00yBKvYbhprmhlQ0flPshq4JAqyMpLZ4Zi8aSX5hF5jiFLBEREemeApfgnOM/H27j50+tpqSynsPzM7j6xKlMHzMs1KVFhqZaWHovvH4n1G6HsQfDiTfDpONBH9jDSnNjKxs/LKf43TJKiippaw2QlBbPQUeOJb8wk6xxKZjOXRQREZH9oMA1yL29oZKfPrGS5Zt3MWVkMvdddDBHThqhb+6DoaEK3v49vPkb79/jj4Az7vZu9fsNG82NrWz6qILipWVs+qiCtpYAicPiKDhiNPmFWYwcr5AlIiIiB06Ba5AqLqvlZ0+t4tkVO8hKiefnZ83gzDljidYHy96rLYM3fg3v3APNNTDpBFjwXcg+ONSVia+lqc0PWTvY9GEFrS0BEobFMe0zo8kvzGRU3jCFLBEREQkKBa5BpqymkV8+t5aH39nM0Nhorjx+MhcfPp6hcTqHqNd2l8Jrd8Cy+6G1CQpOhwXfhpEHhboyAVqa2yjxe7I2flhOa3OAoSlxTD1sFPlzMxk5IVWXOhAREZGgU+AaJOqaWvnDKxu46+V1NLcGOPeQHL5x9EQykuJDXdrAV7HOm3Fw+cOAgxnnwGe+BcPzQ13ZoNfa3EZJUSXFS3ew4cMKWpvaGJocy5RDR3k9WRMVskRERKRvKXBFuNa2AH99t5Tbn1vDzpomTpw+ku+dMIXxwxNDXdrAt2OFdw2ton9AVCwUXgiHfwNSc0Jd2aDW2tIessrY+EE5LX7Imjwvi/zCTEZPTCUqOirUZYqIiMggocAVoZxzPL+yjJueWkVxWS2FuWn87txCCnPTQl3awOYclL7L9A9vgCVvQVwSzL/MW5KzQl3doNXa3Eb1Fsez9xaxYXk5LY1tDEmMZaIfssYoZImIiEiIKHBFoOWbd3HDEyt5a0Ml44cn8rtzCzm+IEszD/ZG427vYsVL74PtHzIsJgkWXg3zLoWE9FBXN+g459i1o56SokpKVlSwZc0u2loc8YkVTCzMJL8wi9GTU4lWyBIREZEQU+CKICUV9dz8zGr+tXwrGYlxXHdaAefMyyFWHzoPjHOwZal3Da2P/gEt9d4EGCffypu7R7Ng4UmhrnBQaW5sZcvqqj0hq7q8EYDUrAQKFoxmd9sWTvz8ZxSyREREJKwocEWAqrpm7nyxmD+9sZHoKOPyo/K59Ig8kofEhrq0galh18e9WTs+gthEOOgs7xyt0XPAjLYlS0JcZORzzlGxpY6SogpKVlSwrXg3gTZHbHw0Y6ekMfu4XHKmpZMyfCgAS5ZsVdgSERGRsKPANYA1trRx/+sbufPFYuqaWvlcYTbfOnYSI4cNCXVpA49zUPqOF7I++ge0NsComXDK7TD9LBiSEuoKB4XGuhZKV1WxqaiCzUUV1O1uBiBjTBIzj84mpyCDUROGER2jYCUiIiIDgwLXABQIOB5bvoVbnl7Dll0NLJo8gu+fOIUpIxUK9ltDFXzwVy9ola3wJsGYebbfmzU71NVFPBdwlJXUeL1YRZXs2LAb5yA+IYbsqenkFKSTPTWDpDRdvkBEREQGJgWuAea14nJueGIlRVurmT4mhZvPmsFh+cNDXdbA4hxsftsLWUX/gNZGL1yd+kuYfibEJ4e6wohWX93M5hUVbCqqZPPKShprW8AgMyeZwhPHkVOQQda4ZM0qKCIiIhFBgWuAWLW9mhufWMVLa3YyJnUovzh7FotnjtZFW/dHfeXHvVk7V0JcMsz6Isy5AEbPCnV1ESvQFmD7huo9vVg7S2oAGJocS25Bht+Llc7Q5LgQVyoiIiISfApcYa6qMcCVf1vOI8tKSY6P4QcnTeH8+eMYEhsd6tIGBueg5E0vZK34p9ebNaYQFv8KCs6A+KRQVxiRaiob2byikpKiCjavqqK5oRWLMkbmpXDI4jxyp2cwfGwSpi8MREREJMIpcIWxvy8t5eqXG8C28uXDx3PZUfmkJqgXoEfqK2H5w17QKl8N8Skw+1yvN2vUjFBXF3HaWgJsXbeLko8qKFlRSeXWOgCS0uLJnzOCnIIMxk5JIz5BM2eKiIjI4KLAFcYmj0xmTlY0N593BNnpCaEuJ/w5B5te93uzHoO2Jhh7MJz2ayg4HeISQ11hRNm907/wcFEFpauraG0OEBVjjM5PZcr8UeQUpJM+KlEX3BYREZFBTYErjE0fM4yvzByisNWdugpY/n9e0KpYC/HDoPACrzdr5PRQVxcxWpra2LKmak/I2r2zAYCU4UOYOn8UOQUZjJmcRmy8hruKiIiItFPgkoHJOdj4qheyVj4Obc2QfQgs+C1M+yzEKaT2lnOOqm31lKyooKSogq1rd9PWGiAmNooxU9KYcVQ2OQXppGbqdy0iIiKyNwpcMrDUlcP7f4Zl90NFMQwZBnMv9nqzsqaFuroBr6mhldJVlXt6sWqrmgBIG5XI9IVjyJ2WwaiJw4jRpC0iIiIiPaLAJeEvEICNr/i9Wf+CQAvkzIcjroRpp0Hs0FBXOGC5gKO8tJZNRV4v1vb11biAI25INGOnpjP3pHRyCjJITh8S6lJFREREBiQFLglftTvh/Ye83qzK9TAkFeZd4vVmZU4JdXUDVkNtM5tX+r1YKyppqG4GYHh2ErOPyyG3IIOsvBSideFhERERkV5T4JLwEgjAhpe83qxV//F6s3IPh4VXw9TFEKuelv0VCDjKNlb7vViVlG2qBgdDEmPJnpa+58LDicPiQ12qiIiISMRR4JLwULPj496sqo0wNA0O+W+Ycz6MmBzq6gacut1Nfg9WBZtXVNJU34oZZI1PYd4p48mZlsGI3GSidOFhERERkT7V74HLzLKB24FjAQOeA65wzpX0YN8hwHXAuUAq8D7wfefcy5222wjkdvEQpzvn/tmrA5DgCQRg/Yteb9bqJyDQCuMWwFE/gimnqDdrP7S1Bti+bjclKyrYVFRJRWktAAkpcYyfOZycggyyp6YzJFEXHhYRERHpT/0auMwsAXgBaAIuABxwPfCimc1wztV18xD3ACcDVwLrga8DT5vZfOfc+522fRq4ptO61b07AgmKmu3w3oOw7E+waxMMTYdDvgKFF8LwiaGubsCoLm+gZIV/4eFVVbQ0tREVZYzKH8b80yeQU5BOxpgkXXhYREREJIT6u4frEiAPmOycKwYwsw+AtcB/A7ftbUczmwl8EbjYOXevv+4loAi4FljcaZdy59ybQT8COTCBAKx7AZbeC6ufBNcG44+Ao38MU0+FGJ0/1J3W5ja2rt21Z6hg1fZ6AJLThzBpXhY5BRmMnZxG3FCNFBYREREJF/39yWwx8GZ72AJwzm0ws9eA09hH4PL3bQH+0mHfVjN7GLjKzOKdc019VLccqOpt8P6DsPRPsLsEEjJg/te93qyMCaGuLqw559i1o35PwNqyZhdtLQGiY6IYMymVggVjvAsPZyWoF0tEREQkTPV34CoAHutifRHwuR7su8E5V9/FvnFAvv/vdqeaWT0QDbwH3KTzt/pJoM3vzbrv496svIVw7E9gysnqzdqH5sZWtqyu2hOyqssbAUjNSqBgwWhyCjIYPTGV2DhdeFhERERkIDDnXP89mVkzcJtz7qpO668HrnLO7TUAmtkzQIpz7tBO648BngWOcM694q/7FfAOsAHIAi4DjgTOc849uJfHvxS4FCArK6vw4YcfPrCDDLLa2lqSkpJCXUaPxDVVMGrbc4za9ixDmnbSHDuM7SOPZuvo42gcOirU5QVVsNrFOUfTbqjdBrXbHPXl4AIQFQOJWZA00kgaBXFJ6sHqzkB6rQwmapfwozYJT2qX8KM2CU/h1C6LFi1a6pyb2912oTjZo6uE15NPk9bTfZ1zl39iA7NHgTeBG4EuA5dz7m7gboC5c+e6hQsX9qCkvrdkyRLCpZYuBdqg+DmvN2vNU15ayFsEhRcSN/kkcmLiyAl1jX2gN+3SWNdC6aoqNhVVsLmogrrd3oWHM8YkMemYdHIKMhg1YRjRMbrw8P4I+9fKIKV2CT9qk/Ckdgk/apPwNBDbpb8DVxWQ3sX6NP++famELj+7p3W4v0vOuTYz+xvwMzMb5Zzb1pNiZR92l/ozDT4A1aWQmAmHX+FdNyt9fKirCysu4CgrqaHEv/Dwjg27cQ7iE2IYO8W78HDOtAyS0jTUUkRERCTS9HfgKsI7F6uzacCKHux7upkldDqPaxrQDBR3vdse7T1h/TeGMtK0tULxs15v1tpnwDmYcBSccCNMPhGidY2ndvXVzWz2r4m1eWUljbUtYJCZk0zhiePIKcgga1wyUdHqxRIRERGJZP0duB4HbjGzPOfcegAzGwccDly1j/3a9/0J3uQa9/v7xgBnA8/sa4ZCf7vPASXOue29PIbBZ9dmeO8BrzerZiskjYTPfBvmnAdp40JdXVgItAXYvqF6Ty/WzpIaAIYmx5JTkE6uf+HhoclxIa5URERERPpTfweu3+NNYPGYmf0Qr7fpOmAzcFf7RmaWC6wDrnXOXQvgnHvfzP4C/MLMYvEmxPgqMB74Uod9v4A3xfwT/uNm4V0guRD4Ql8fYMRoa4W1T/u9Wc966/KPgZNuhknHqzcLqKlsZLN/4eHNq6pobmjFooyReSkcsjiPnIJ0RmQnY1Ga8EJERERksOrXwOWcqzOzo4DbgQfwhvk9D1zhnKvtsKnhTefeebzVRcBPgeuBVGA5cIJzblmHbTYAmcDNeOeL1ePNWHiCc+7poB9UpKna5PVmvfcg1GyD5FFwxJVeb1ZqJE5/0TMu4NhVVk/Zphp2bqqheGmAoodfByAxNZ78OSO8Cw9PSSM+QWFURERERDz9Pkuhc64EOLObbTbS9eyDDcC3/WVv+74JHNW7KgeZthZvhsGl90Hx82AG+cfCybfBxOMgOhSTWYZOe7jaWVJDWYkXsHZurqGlsQ2A6NgohqRbriz+AAAW00lEQVRD4dH55BSkkz46URceFhEREZEuDa5P0vJJVRth2Z+83qzaHZA8Go78Psw+F1KzQ11dv3ABx+6dDZSVVO/pveocroaPTWLyISPJzE1mRE4K6aMSePmVl5m9cPD2+ImIiIhIzyhwDTZtLbD6Ca83a92LXm/WxOOh8ELvHK0I7s3qGK52bqphZ4m3NLeHq5goMvxwNSInmczcZNJGJRKtmQRFRERE5ABF7qdr+aTKDbDsfnjvIagrg5SxsPBqrzdr2JhQVxd07eHq42GB1V2Gq0nzRjIiV+FKRERERPqGAlcka22G1f+BpffD+hfBomHSCX5v1tEQFR3qCoPCuQ7halMNO0uq2VlSS3NDKwBRMcbwMUlMnNc+LDCZ9NEKVyIiIiLS9xS4IlHFuo97s+rLYVg2LPohzP4SpIwOdXW94pyjurxhz/lWZe3DAjuHq4OzyMzpEK5iFK5EREREpP8pcEWK1mZY9W/v3KwNL3m9WZNPhMKLYMKiAdmb9YlwVfLx0lTfKVzNzfTPuUpRuBIRERGRsKLANdCVF3u9We//2evNSs2Bo37knZuVPDLU1fWYF64a/VBVvSdk7QlX0UbGmCQmFGaSqXAlIiIiIgOEAtdA1NoEK//l9WZtfAWiYmDySd65WXmLICq8Q4hzjpqKxj3nW+01XM3J3HPOVcboJKJjw/u4REREREQ6U+AaSMrXeiHr/T9DQyWkjYOj/xdmfQmSs0JdXZc+Ga78gFVSQ1OdH66ijPQxiUyYk7lnKnaFKxERERGJFApcYS6qrRk++JsXtDa96vVmTTnZ680avzCserPaw1XHqdi7DFezRjAiN0XhSkREREQingJXOPvgr8x/49vQWgNp4+GYa7zerKTMUFfmhavKxg5TsXuzBjbWtQAfh6u8WSPIzE3xhgWOSSQmduBN3iEiIiIicqAUuMLZsLFUpc0g88TvwbgjQtab5ZyjtqqJsk3V7PTDVVlJDY21H4ertNGJjJ813J+KPYWMsQpXIiIiIiIKXOEs9zBWFHyPzLyF/faU7eHKu8ZV9Z5rXbWHK4sy0kcnMn7G8D1TsStciYiIiIh0TYFrENsTrkpqvN4r/zpXDTUdwtWoRMbN8HuucpMZPiaJmDiFKxERERGRnlDgGiScc9TtatpzvlX7lOyfDFcJ5E7P2HPO1fCxClciIiIiIr2hwBWBOoer9h6sPeHKIG1UIrnTMxiR488WODaJWIUrEREREZGgUuAa4Lxw1bzn+lbt51w1VDcDHcJVQQYjctvPuVK4EhERERHpDwpcA0zdribKOp5ztamG+k7hKmdaOpm53myBw8cmERuvcCUiIiIiEgoKXGGsobaZmi2Ot/+1fs95Vx3DVerIRLKnpXuzBeYkMzw7WeFKRERERCSMKHCFsTVv7aDkFUeJbSRtZCLZU/1wlatwJSIiIiIyEChwhbEJc0ZQWlnMsacuIG6ImkpEREREZKCJCnUBsndJaUNIHGEKWyIiIiIiA5QCl4iIiIiISB9R4BIREREREekjClwiIiIiIiJ9RIFLRERERESkjyhwiYiIiIiI9BEFLhERERERkT6iwCUiIiIiItJH+j1wmVm2mT1iZrvNrNrM/mFmOT3cd4iZ3Wxm28yswczeMLMjutguysyuNrONZtZoZsvN7MzgH42IiIiIiMje9WvgMrME4AVgCnABcB4wEXjRzBJ78BD3AJcAPwZOAbYBT5vZrE7bXQdcA9wJnAi8CfzNzE4KwmGIiIiIiIj0SEw/P98lQB4w2TlXDGBmHwBrgf8GbtvbjmY2E/gicLFz7l5/3UtAEXAtsNhflwl8F7jJOXeLv/uLZpYP3AQ80QfHJSIiIiIi8in9PaRwMfBme9gCcM5tAF4DTuvBvi3AXzrs2wo8DBxvZvH+6uOBOODBTvs/CBxkZuN7dQQiIiIiIiI91N+BqwD4qIv1RcC0Huy7wTlX38W+cUB+h+2agOIutqMHzyMiIiIiIhIU/R240oGqLtZXAmm92Lf9/vbbXc451812IiIiIiIifaq/z+EC6ByEAKwH+1kP9+3pdp+80+xS4FKArKwslixZ0oOS+l5tbW3Y1CIfU7uEH7VJeFK7hB+1SXhSu4QftUl4Gojt0t+Bq4que5jS6Lr3qqNKoKvp49M63N9+m2Zm1qmXq/N2n+Ccuxu4G2Du3Llu4cKF3ZTTP5YsWUK41CIfU7uEH7VJeFK7hB+1SXhSu4QftUl4Gojt0t+BqwjvHKvOpgErerDv6WaW0Ok8rmlAMx+fs1UExAMT+OR5XO3nbnX3PCxdurTczDZ1t10/GQ6Uh7oI+RS1S/hRm4QntUv4UZuEJ7VL+FGbhKdwapfcnmxknz7Vqe+Y2RXALcAk59x6f904vGnhr3LO3bqPfWcB7wEXOufu99fFAB8Cxc65U/11mcBm4Abn3E867P8ckOWcO6gPDq3PmNm7zrm5oa5DPkntEn7UJuFJ7RJ+1CbhSe0SftQm4Wkgtkt/93D9HrgMeMzMfoh3rtV1eAHprvaNzCwXWAdc65y7FsA5976Z/QX4hZnFAhuArwLjgS+17+ucKzOz24GrzawGWAacDRxF91PPi4iIiIiIBE2/Bi7nXJ2ZHQXcDjyAN5HF88AVzrnaDpsaEM2nZ1G8CPgpcD2QCiwHTnDOLeu03f8AtcA3gZHAauDzzrl/BfeIRERERERE9q7fZyl0zpUAZ3azzUa6mFXQOdcAfNtf9rV/G14ou/6ACw0fd4e6AOmS2iX8qE3Ck9ol/KhNwpPaJfyoTcLTgGuXfj2HS0REREREZDDp7wsfi4iIiIiIDBoKXCIiIiIiIn1EgStEzCzbzB4xs91mVm1m/zCzri7s3NW+N5jZM2ZWYWbOzC7s43IHhQNtEzOba2Z3m9kqM6s3sxIze8jMxvdH3ZGuF+2Sa2aPmdkmM2sws3IzW2JmJ/ZH3ZGsN+9fnR7nav897NW+qHMw6eXfFLeXZVZf1x3pevtaMbOpZvY3//2rwcxWm9k3+7LmSNeLvynX7OO10tgftUeyXr6H5ZjZ/f7nr3ozW2Nm15tZYl/X3VM6hysEzCwBb4bFJqB9evzrgQRghnOurpv9a4D3gfXA+cBFzrn7+rLmSNebNjGzW4D5wEN4F94eA/wIyARmOec29231kauX7VKAN8HOEqAUSAEuAU4GznTO/aNPi49QvX3/6vA4ecAHQB2w1jn3mb6pOPIF4W+KA+6jw+VZfB845+qDXvAgEYR2mQu8gPce9kdgNzARSHLO3dZ3lUeuXv5NGQuM7bQ6EXgKeNQ59/k+KXoQ6GW7JOJdpzcWuAYoAQ4GfgI87pw7u0+L7ynnnJZ+XvCmq28D8jusGw+0At/uwf5R/m0+3n/KC0N9TAN96U2bACO6WJcLBPCuJRfy4xuoS29fK108Xgzedf/+FepjG6hLsNoEeBrvA/4S4NVQH9dAXoLwN8UB14f6OCJt6eXflSi8L/AeDfVxRNLSB39TzvNfPyeH+tgG8tLL18pxfhsc12n9Tf7+CaE+PuechhSGyGLgTedccfsK59wG4DV6cHFm51ygD2sbrA64TZxzO7tYtwnYidfbJQeuV6+VzpxzrXjfErcErcLBp9dtYmZfBOYAV/dJhYNPUF8nEjS9aZeFwDRAPVnBFezXygXADrwvkOTA9aZd4vzb6k7rd+F9cfGpy0yFggJXaBQAH3WxvgjvDVb6X1DbxMym4g0pXNnLuga7XreLmUWZWYyZjTSzHwGTgF8HscbBpldtYmZpwO3A95xzlUGubbAKxvvXV82syT//4QUzWxC88gat3rRL+xDbIWb2ppm1mFmZmd1hZkODWuXgErS/9f4Qw0XAQ/6XeXLgetMuzwFrgZ+Z2TQzSzKzo/B6zX7nejjMva8pcIVGOlDVxfpKIK2faxFP0NrEzGKA3+H1cN3T+9IGtWC0y8/xerS2Ad8DznHOPR+c8gal3rbJzcAavHOGJDh62yYPAl8DjgEuBTKAF8xsYbAKHKR60y6j/du/AM8Ax+K9l/0X8OdgFTgIBfPz13l4n6Pv721RcuDt4pxrxPuCon0Ybg3wPPBv4LLglnngYkJdwCDW1WwlYdHtOYgFq03uBA7DG9Pd1RuI7J/etssvgIeBkXiTzPzZzM5yzv07GMUNUgfUJn6vyfnAHOcPspegOeDXiXPuvA4/vmJmj+F923w9H/e0yIE50HZp/0L8Qefcj/1/LzGzaOAmM5vmnFsRlAoHn2D9rT8feM8590Ev6xHPgf5dGYL3xUQmXgguAeYBP8Y7h+urQazxgClwhUYVXprvLI2uE770vaC0iZndiPcN8QXOuWeCVNtg1ut2cc6V4s1SCPBvM1sC3IL37Zfsv960yV14vb6lZpbqr4sBov2fG5xzTUGrdPAI6t8U51yNmf0H+HJvCxvketMuFf7ts53WP4M3GcAsQIFr/wXrb/08YApwRZDqGux60y5fxjvnMd85t85f97KZ7QbuNrPfOeeWB63SA6QhhaFRhDdetbNp6A00VHrdJmb2P8BVwDedcw8EsbbBrC9eK+/izfApB6Y3bTIV+AreH9D25XDgUP/fYfFN5ADUF68To+tvnKXnetMuRf5t5zZo/8Zfk2cdmGC9Vi7A6z3R8M7g6E27HARUdQhb7d72b6f2sragUOAKjceBQ/3r0ABgZuPwPng8HqKaBrtetYmZfQNv+M3/OOd+1Uc1DkZBfa2YWRTeEKnOb8zSc71pk0VdLMvxhq8tAh4JfrmDQrBfJyl416t7K0j1DVa9aZcn8a5JdEKn9cf7t+8Gp8RBp9evFTOLA84BnuhqlmI5IL1pl+1Ampl1/iL1EP92S5Bq7J1Qz0s/GBe8C+UVAx/iTXe5GO9Dx3q8Cxq2b5eL9w3KjzvtfyRwFt7JgA7vnKGzgLNCfWwDdelNm+C98Qbw/kAe2mmZFupjG8hLL9vlGuAO4Gz/NXM23nCcAN7EGSE/voG49Pb9q4vHW4KuwxWyNgG+C/we+CLesJwL/MdpBhaE+tgG8hKEv/X/66+/AW9Ck6uABuC+UB/bQF2C8f4FnOF/9joj1McTKUsv38PG4U0Jv8Z//1oEXOmvexf/2rWhXnQOVwg45+r8KStvBx7AGyLwPHCFc662w6YGRPPpnsif4H2AbPd1f2nfR/ZTL9vkBH/9CXz628iX8D7EyAHoZbsswxtffw4wDO9bsOV4HyJf64fyI1IQ3r8kyHrZJquB0/1lGN6HlNeALzvn3kYOWBBeK9fizbj2NbxgvA1vls/r+rj0iBWk968L8GbP03nAQdKbdnHObTSzQ/G+ZL0eGA5sBu4GfurC5Nq15qdDERERERERCTJ98ygiIiIiItJHFLhERERERET6iAKXiIiIiIhIH1HgEhERERER6SMKXCIiIiIiIn1EgUtERERERKSPKHCJiMh+MbM/mJkzs9tCXcv+MLNr/Gu9DGpmNs7/XeSFuhYRkcFAgUtERHrMzIYCn/N//JKZxYSynv30v8CgD1zAOLzfhQKXiEg/UOASEZH9cTqQAjwBZAInhLYcATCz+FDXICIiXVPgEhGR/XEBUAVcCDQA53e1kZnNNLNHzazCzBrMbLWZXd1pm9PN7DUzqzWzajN728wWd7g/xsyuNrNVZtZkZlvN7FYzG9Jhm3H+8MavmdltZlZmZvVm9m8zG9dhO+f/83/87Z2ZXePfd7CZPWJmpR1qvcHvzetY7xIze9XMjjGzZf7zfGRmnz3A4z/DzN70H2eXmf3NzHK6a4AOdZxqZu+ZWRPwNf++y8zsDTOr9B/zTTM7ucO+C4EX/R+f7fC7WNhhm0vMbLmZNZpZuZndY2bp3dUlIiJdG0hDQUREJITMbDRwDHC3c26nmf0TOMPM0pxzVR22mwcsAYqBbwGlwERgRodtLgfuAP6JF+JqgTl4w93aPQicCvwMeB2YClznb3Nmp/KuBt4HLsLrebsBeMbMCpxzLcB84A3gPuAuf59S/zbH3/c+oAYoAH6MN+TunE7PMwH4JXAjUA58B3jEzKY454r34/i/AvwWuBe4FkgGrgFeMrMZzrka9m0S3u/vOmA9UOmvHwf8AdiI9zf+VODfZnaSc+5JYBnwdeDXwDeAd/z9Vvh13eQf0x3AlcAY4Hpgupkd5pxr66YuERHpzDmnRYsWLVq0dLsA3wccMN//+Xj/56902u5lYDOQsJfHScELNv/Yx3Mt8B/7/E7rv+Svn+X/PM7/eQUQ1WG7w/31X+6wzgHXd3OMhhdUzgUCQEaH+5YALcDEDusygTbgB/tx/EnAbuCPndaPA5qBK7qpcYlf26xutovyj+UZ4LEO6xf6v4tjunj+NuDHnda3/y4/G+r/g1q0aNEyEBcNKRQRkZ46H1jrnHvD//k5YCsdhhWaWQLeB/SHnHP1e3mcw/BCx937eK4T8MLH3/2hhTH+BB3P+Pcf0Wn7R5xzgfYfnHOv4fUsze/uoMwsxcx+ZmbrgCa8UPUAXvia2Gnztc65tR2epwwow+sl6+nxz8cLnQ91OrZSYFUXx9aVjc6597s4lkJ/OOUOoNU/lmOByT14zGPxQlrnut4CqntYl4iIdKIhhSIi0i0zOxiYBvzMzFI73PUP4DIzm+ScWwOk4X1oL+3iYdpl+Lf72iYTiMMbarivx2i3o4ttduANievOvXhDJX+MN7SwDpiHN+xuSKdtK/m0pg7b9eT4M/3b5/Zyf9Ve1ne0rfMKM8sGnsfr7bscKMELXdfhDcfsTntdxXu5v/PvXEREekCBS0REeuIC//b7/tLZ+cAP8cJCgH0HnXL/dgzw0V62qQAa8YYWdmVrp5+zutgmCy9A7ZU/AcdpwDXOuV92WH/Qvvbbh54cf4V/eyFQ1MX93Z2/Bd4Qv85OAIYBn3fO7Ql8fq9bT7TXdRxdh76KLtaJiEg3FLhERGSfzCwOb/KIt4CrutjkduA8M/uRc67ezF4FzjWza51zDV1s/zpez9WlwNN7edqn8ILdMOfc8z0o8ywzu6Z9WKGZHQ6MxZsoo10zMLTTfvFANN7Qu44u7MFzfsp+HH8NkO+cu/9Anmcv2oPVnmMxs0l4Qxw79rg1+bedfxfP4oXFHOfcs0GsS0RkUFPgEhGR7pyCN5zsO865JZ3vNLO78GbcW4g35fh3gZeAN8zsVrwP+3l4kzxc7pyr8adI/5WZ/R14CC+AzAIanXO/cs4tMbP/w5sB8DbgbbwwMA44Cfi+P4SxXTLwT7+WEXizCK4F/tRhmxXAyWb2FF4Pzlbn3FYzexP4jpltw+t9u5ieDUXcm+6Ov9rMrgR+bWYjgCfxJtEYAxwJLHHO/fkAnvc5vCGEf/KfdxTwE7yhhR3P2V7jb3exmVXiBbDVzrl1ZvYz4E4zm+wfQyOQjXd+1x+ccy8iIiL7RZNmiIhIdy7AC0R/28v9/4d3Ta4LAJxz7+D1qmwGfoV3keQr6dDL4py7E/gcXi/UQ8DfgbOADR0e91y8qdLPAh4DHgEuwwtSnc/ZuhHv3KP7gN/gTX9+vPOmhG93Gd75Wf/Cmw79Un/9F4CleOds3QdsB765199GN3p4/HcBi/Ems3gAL3T9BO+L0H0Og9zH8xbhzeKYCzwOfA+vR/LlTttV4P0uZuKFqneAQv++H+D9Xo4A/or3e/8+XkBdi4iI7Ddzrqth4CIiIuHPv7jxBuAS59wfQluNiIjIp6mHS0REREREpI8ocImIiIiIiPQRDSkUERERERHpI+rhEhERERER6SMKXCIiIiIiIn1EgUtERERERKSPKHCJiIiIiIj0EQUuERERERGRPvL/pwgTQd3//84AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1008x504 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f_rates_true = np.zeros(0)\n", + "f_rates_labeled = np.zeros(0)\n", + "f_rates_human = np.zeros(0)\n", + "\n", + "for r in range(1, 9):\n", + " #### True evaluation\n", + " # Sort by failure probabilities, subjects with the smallest risk are first. \n", + " s_sorted = s_test.sort_values(by='probabilities_Y', inplace=False, ascending=False)\n", + "\n", + " to_release = int(round(s_sorted.shape[0] * r / 10))\n", + "\n", + " # Calculate failure rate as the ratio of failures to successes among those \n", + " # who were given a positive decision, i.e. those whose probability of negative\n", + " # outcome was low enough.\n", + " f_rates_true = np.append(f_rates_true, np.mean(s_sorted.result_Y[0:to_release] == 0))\n", + " \n", + " #### Labeled outcomes only\n", + " # Sort by failure probabilities, subjects with the smallest risk are first. \n", + " s_test_labeled.sort_values(by='probabilities_Y', inplace=True, ascending=False)\n", + " \n", + " to_release = int(round(s_test_labeled[s_test_labelead.decision_T==1].shape[0] * r / 10))\n", + "\n", + " f_rates_labeled = np.append(f_rates_labeled, np.mean(s_test_labeled.result_Y[0:to_release] == 0))\n", + " \n", + " #### Human error rate\n", + " # Get judges with correct leniency as list\n", + " correct_leniency_list = s_test_labeled.judgeID_J[\n", + " s_test_labeled['acceptanceRate_R'].round(1) == r / 10].values\n", + "\n", + " # Released are the people they judged and released, T = 1\n", + " released = s_test_labeled[s_test_labeled.judgeID_J.isin(correct_leniency_list)\n", + " & (s_test_labeled.decision_T == 1)]\n", "\n", - "print(f_rates)\n", - "plt.plot(f_rates, label=\"Contraction\")\n", + " # Get their failure rate, aka ratio of reoffenders to number of people judged in total\n", + " f_rates_human = np.append(f_rates_human, np.sum(\n", + " released.result_Y == 0) / correct_leniency_list.shape[0])\n", + " \n", + "plt.plot(x_vals, f_rates_cont, label=\"Contraction\")\n", + "plt.plot(x_vals, f_rates_caus, label=\"Causal\")\n", + "plt.plot(x_vals, f_rates_true, label=\"True evaluation\")\n", + "plt.plot(x_vals, f_rates_labeled, label=\"Labeled outcomes\")\n", + "plt.plot(x_vals, f_rates_human, label=\"Human evaluation\")\n", "plt.title('Failure rate vs. Acceptance rate, simple data')\n", "plt.xlabel('Acceptance rate')\n", "plt.ylabel('Failure rate')\n", @@ -1048,7 +1156,12 @@ "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, - "toc_position": {}, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "300.7px" + }, "toc_section_display": true, "toc_window_display": true }, diff --git a/paper/sl.pdf b/paper/sl.pdf index 64658b57f1acae11a6fb9a8196df9a80466eb569..894ed489c8733a3961fad824a6f69a8fed34a68b 100644 Binary files a/paper/sl.pdf and b/paper/sl.pdf differ diff --git a/paper/sl.synctex.gz b/paper/sl.synctex.gz index 7f7d7ad46b7b38cfc3fd6d39fb8d7ce93b5aa041..871fb18c68f36c8df2ca045aeb8ca8c39928e8f2 100644 Binary files a/paper/sl.synctex.gz and b/paper/sl.synctex.gz differ diff --git a/paper/sl.tex b/paper/sl.tex index 03c1cbc1bd106874c3c01a37540034d499f9ce56..51511afd85a215220a9f508ed13dcf0955893cb6 100755 --- a/paper/sl.tex +++ b/paper/sl.tex @@ -169,7 +169,7 @@ the {\it generalized performance} \generalPerformance of that model is given by Equation~\ref{eqn:gp} can be calculated for a given model \datadistr{\featuresValue} = \prob{\features = \featuresValue} of individual features. Alternatively, we can have an empirical measure \empiricalPerformance of performance over the $\datasize$ data points in dataset \dataset, given by the following equation. \begin{equation} -\empiricalPerformance = \frac{1}{\datasize} \sum_{(\featuresValue, \outcomeValue)\in\dataset} \indicator{\outcomeValue = 1} \indicator{F(\featuresValue) < r} +\empiricalPerformance = \frac{1}{\datasize} \sum_{(\featuresValue, \outcomeValue)\in\dataset} \indicator{\outcomeValue = 0} \indicator{F(\featuresValue) < r} \label{eqn:gp} \end{equation}