diff --git a/analysis_and_scripts/notes.tex b/analysis_and_scripts/notes.tex index cb4dbcdbeffe4e9a29a8853bddbdd9702c12b759..f86991205de6fb489ab17523b200c7f36d088828 100644 --- a/analysis_and_scripts/notes.tex +++ b/analysis_and_scripts/notes.tex @@ -67,6 +67,8 @@ \maketitle +\section*{Contents} + \tableofcontents \begin{abstract} @@ -317,27 +319,29 @@ Causal model, ep & 0.001074039 & 0.0414928\\ \subsection{$\beta_Z=0$ and data generated with unobservables.} -If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval 0.1, ..., 0.3 but the human evaluation failure rate. Figures are drawn in Figures \ref{fig:betaZ_1_5} and \ref{fig:betaZ_0}. +If we assign $\beta_Z=0$, almost all failure rates drop to zero in the interval 0.1, ..., 0.3 but the human evaluation failure rate. Results are presented in Figures \ref{fig:betaZ_1_5} and \ref{fig:betaZ_0}. + +The differences between figures \ref{fig:results_without_Z} and \ref{fig:betaZ_0} could be explained in the slight difference in the data generating process, namely the effect of $W$ or $\epsilon$. The effect of adding $\epsilon$ (noise to the decisions) is further explored in section \ref{sec:epsilon}. \begin{figure}[H] \centering \begin{subfigure}[b]{0.5\textwidth} \includegraphics[width=\textwidth]{sl_with_Z_4iter_betaZ_1_5} - \caption{$\beta_Z=1.5$} + \caption{With unobservables, $\beta_Z$ set to 1.5 in algorithm \ref{alg:data_with_Z}.} \label{fig:betaZ_1_5} \end{subfigure} ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. %(or a blank line to force the subfigure onto a new line) \begin{subfigure}[b]{0.5\textwidth} \includegraphics[width=\textwidth]{sl_with_Z_4iter_beta0} - \caption{$\beta_Z=0$} + \caption{With unobservables, $\beta_Z$ set to 0 in algorithm \ref{alg:data_with_Z}.} \label{fig:betaZ_0} \end{subfigure} \caption{Effect of $\beta_z$. Failure rate vs. acceptance rate with unobservables in the data (see algorithm \ref{alg:data_with_Z}). Logistic regression was trained on labeled training data. Results from algorithm \ref{alg:perf_comp} with $N_{iter}=4$.} \label{fig:betaZ_comp} \end{figure} -\subsection{Noise added to the decision and data generated without unobservables} +\subsection{Noise added to the decision and data generated without unobservables} \label{sec:epsilon} In this part, Gaussian noise with zero mean and 0.1 variance was added to the probabilities $P(Y=0|X=x)$ after sampling Y but before ordering the observations in line 5 of algorithm \ref{alg:data_without_Z}. Results are presented in Figure \ref{fig:sigma_figure}.