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ABSTRACT
We show how a causality-based approach can be used to estimate
the performance of prediction algorithms in ‘selective labels’ set-
tings – with particular application to ‘bail-or-jail’ judicial decisions.
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1 INTRODUCTION
‘Selective labels’ settings arise in situations where data are the prod-
uct of a decisionmechanism that prevents us from observing certain
variables for part of the data. A typical example is that of bail-or-jail
decisions in judicial settings: a judge decides whether to grant bail
to a defendant based on whether the defendant is considered likely
to violate bail conditions while awaiting trial – and therefore a
violation might occur only in case bail is granted. Such settings
give rise to questions about the effect of alternative decision mech-
anisms – e.g., ‘how many defendants would violate bail conditions
if more bail decisions were granted?’. In other words, one faces the
challenge to estimate the performance of an alternative, potentially
automated, decision policy that might make different decisions than
the one found in the judicial data.

The challenge was addressed by Lakkaraju et.al. in [1], in a
setting that involved multiple judges of varying leniency, and under
the assumption that defendants are assigned to judges randomly.
Lakkaraju et.al. estimate the performance of an automated decision-
making algorithm (‘algorithm’, for short) via a technique they call
‘contraction’ - it proceeds as follows:

• It considers a set of judges with same number N of judged
defendants each.

• Judges are ordered from most lenient (most bail decisions)
to least lenient. Let ni be the number of bail decisions for
judge #i . We have ni+1 ≤ ni .

• The algorithm considers the ni defendants that were granted
bail by the i-th judge.

• It keeps the ni+1 ≤ ni defendants that it finds most likely to
violate the bail.

• It makes its own bail-or-jail decision for each of those ni+1
defendants.

• Its performance is measured as the number of defendants
that it decides to bail but who, according to the data, eventu-
ally violated the bail.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• Its performance is compared to the performance of judge
#(i + 1), based on the cases they bailed.

The above procedure gives us a comparison between the perfor-
mance of the algorithm to that of judges at the ni+1/N leniency
level (leniency measured as the rate of bail decisions). A major
drawback of the contraction technique is that it requires data to
include judges at a given leniency level.

In this document, we describe a different approach based on
causal analysis, that allows us to estimate the performance of a
decision-making system at any leniency level.

2 SETTING
Consider a judge who decides whether to grant bail to a defendant
based on whether the defendant is considered likely to violate
bail conditions while awaiting trial. We use variable T to store the
outcome of the bail-or-jail decision, with T = 1 denoting a bail
decision and T = 0 a jail decision. Whether the defendant violates
the bail conditions depends on the bail-or-jail decision T and the
features X of the defendant.

The decision is based on the following variables. First, the fea-
turesX of the defendant, which we assume to be observed. Secondly,
the leniency of the judge, expressed as a variable R. Specifically, we
assume that every judge evaluates a given candidate according to
the probability

P(Y = 0|X = x, do(T = 1))
that the candidate will violate bail conditions (Y = 0) if they were
granted bail. We write Y = 0 to refer to the case when the de-
fendant does not violate bail, whether bail is granted or not. The
do(condition) expression signifies that, in evaluating the proba-
bility, we consider the event where the condition (here, it is the
condition T = 1) is imposed to the data-generation process (and
therefore alters the generative model). In addition, we assume that
every judge would assign the same value to the above probability,
given by a function f(x).

f(x) = P(Y = 0|X = x, do(T = 1))

The assumption that, essentially, all judges have the same model for
the probability that a defendant would violate bail is not far-fetched
for the purposes of our analysis, particularly taking into account
that f(x) can be learned from the observed data

P(Y = 0|X = x, do(T = 1)) = P(Y = 0|X = x,T = 1)

and that data are publicly accessible, allowing us to assume that all
judges have access to the same information. Where judges do differ
is at the level of their leniency R. Following the above assumptions,
a judge with leniency R = r grants bail to the defendants for which
F (x) < r , where F is the cumulative distribution.

F (x0) =
∫

δ (P(Y = 0|T = 1,X = x) > P(Y = 0|T = 1,X = x0))dP(x)

(1)
which should be equal to
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Figure 1: Causal model.

F (x0) =
∫

P(x)δ (P(Y = 0|T = 1,X = x) > P(Y = 0|T = 1,X = x0))dx

(2)
The bail-or-jail scenario is just one example of settings that involve
a decision T ∈ {0, 1} that is based on individual features X and
leniency (acceptance rate) R– and where a behavior of interest Y
is observed only for the cases where T = 1. The diagram of the
causal model is shown in Figure 1. Our results are applicable to
other scenarios with same causal model.

2.1 Analysis Task
We will use existing machine-learning techniques from the litera-
ture to learn function f(x), with the goal to build a decision system
that outperforms judges. The challenge we face is to estimate ac-
curately the performance of the decision system – given that we
are in a ‘selective labels’ setting. Performance is measured for a
given leniency level as the rate at which bail is granted and the
defendant violates it. In other words, performance is measured as
the probability that a decision lead to undesired outcome.

3 ANALYSIS
We wish to calculate the probability of undesired outcome (Y = 0)
at a fixed leniency level.

P(Y = 0|do(R = r )) =

=
∑
t

P(Y = 0,T = t |do(R = r ))

= P(Y = 0,T = 0|do(R = r )) + P(Y = 0,T = 1|do(R = r ))
= 0 + P(Y = 0,T = 1|do(R = r ))
= P(Y = 0,T = 1|do(R = r ))

=
∑
x

P(Y = 0,T = 1,X = x |do(R = r ))

=
∑
x

P(Y = 0,T = 1|do(R = r ),X = x)P(X = x |do(R = r ))

=
∑
x

P(Y = 0,T = 1|do(R = r ),X = x)P(X = x)

=
∑
x

P(Y = 0|T = 1, do(R = r ),X = x)P(T = 1|do(R = r ),X = x)P(X = x)

=
∑
x

P(Y = 0|T = 1,X = x)P(T = 1|R = r ,X = x)P(X = x)

Expanding the above derivation for model f(x) learned from the
data

f(x) = P(Y = 0|X = x,T = 1),

the generalized performance gp of that model is given by the follow-
ing formula.

gp =
∑
x

f(x)δ (F (x) < r )P(X = x) (3)

Equation 4 can be calculated for a given model g(x) = P(X = x) of
individual features. Alternatively, we can have an empirical measure
ep of performance over the n data points in dataset D, given by the
following equation.

ep =
1
n

∑
(x ,y)∈D

δ (y = 1)δ (F (x) < r ) (4)

3.1 Comments
Roughly speaking, the above formulas should work well if ‘bail’
cases (T = 1) cover well the area spanned by the observed features
of defendants – i.e., we do not have large areas of X with no or too
few bail cases.

If there are such areas, then we cannot do much about the lack
of data. One reasonable modeling choice, however, is to impose the
following priors on f(x):

(1) f(x) ≈ 1 for areas near values of X for which we have ob-
served data but few bail decisions (i.e., we assume a-priori
that a defendant is more likely to violate bail – a belief that
will change if the data tell us otherwise);

(2) f(x) ≈ 0 for areas near unobserved values of X (i.e., we
assume that people who are unlikely to ever be taken to
court would probably ‘play nice’ and not violate bail).

Lack of data for large areas of X is a potential problem for the
contraction technique of Lakkaraju et.al., as well. Unlike contrac-
tion, though, our approach does not require to have data at all
leniency levels. Moreover, it is easy to see based on the derivations
of Eq.4 that our approach would work identically in the case where
defendants are not assigned to judges at random (i.e., if there was a
causal relation X → R).

REFERENCES
[1] Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil

Mullainathan. 2017. The selective labels problem: Evaluating algorithmic predic-
tions in the presence of unobservables. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 275–284.


	Abstract
	1 Introduction
	2 Setting
	2.1 Analysis Task

	3 Analysis
	3.1 Comments

	References

