import dash import numpy import pandas from dash import html, dash, Output, Input, dcc from dash.exceptions import PreventUpdate from Project_data_processor_ML import get_genre_plot import dash_plot_generation.data_store as ds from dash_plot_generation.styles_and_handles import RATING_MIN_REVIEWS, RATING_SLIDER, RATING_TABLE, \ DEV_AVERAGE_RATING_LABEL, DENSITY_LAYOUT_STYLE, WHITE_STEAM, TAB_COLOR, TAB_EDGE, \ TAB_HEADER_COLOR, DEVELOPER_DROPDOWN, DEV_TOP_GENRES_LABEL, DEV_CCU_LABEL, DEV_GAME_COUNT_LABEL, \ DEV_REV_PER_GAME_LABEL, DEV_REVENUE_LABEL, DEV_TOP_GAMES, RATING_TABS, RATING_TABS_OUTPUT_AREA, \ GENRE_PREDICTION_GRAPH, GENRE_DROPDOWN, DEFAULT_PLOT_STYLE_DICT, GAMES_BY_DEV_GRAPH, MARKET_PERFORMANCE_SCATTER, \ MP_COMPANY_TYPE_DROPDOWN, create_market_scatter_plot_style, REVENUE_COMPANY_GAME_COUNT, PUB_REVENUE_LABEL, \ PUB_TOP_GENRES_LABEL, PUB_CCU_LABEL, PUB_GAME_COUNT_LABEL, PUB_REV_PER_GAME_LABEL, PUB_TOP_GAMES, \ PUB_AVERAGE_RATING_LABEL, PUBLISHER_DROPDOWN, GAMES_BY_PUB_GRAPH, TOP_COMPANY_TABLE_AREA, TOP_REVENUE_COMPANIES from dash_plot_generation.utils import get_average_user_rating_label, get_game_count_label, get_top_revenue_game_labels, \ get_total_revenue_label, get_top_genre_labels, get_ccu_label, get_average_game_rev_label, get_ccu_str, \ get_top_revenue_game_names, convert_to_numeric_str from visual_presentation.Annual_release_games import get_game_release_figure from visual_presentation.Distribution_of_review_rating import get_rating_density_plot from visual_presentation.Market_performance_function import plot_market_performance APP = dash.Dash( name=__name__, use_pages=True, external_stylesheets=['/assets/styles.css', 'https://codepen.io/chriddyp/pen/bWLwgP.css'] ) server = APP.server APP.layout = html.Div([ html.Nav(className="navbar", children=[ html.A("SteamSavvy - Steam game data insights", href="/", style={"margin-left": "60px", "display": "inline-block"}, className="nav-item-1"), html.A('About', className="nav-item nav-link btn", href='/about', style={"margin-left": "150px"}, ), html.A('Dashboard', className="nav-item nav-link btn", href='/dashboard', style={"margin-left": "150px"}), html.A('Technical report', className="nav-item nav-link active btn", href="", download='dark city.jpg', style={"margin-left": "150px"}) ]), dash.page_container ], className="body") def update_company_info(filtered_dataframe: pandas.DataFrame): # Top games company_top_games_label = get_top_revenue_game_labels(filtered_dataframe) # Dev total revenue company_revenue = get_total_revenue_label(filtered_dataframe) # Dev revenue per game company_game_revenue_per_game = get_average_game_rev_label(filtered_dataframe) # Top genres company_top_genre_labels = get_top_genre_labels(filtered_dataframe) # CCU company_ccu = get_ccu_label(filtered_dataframe) # Game count company_game_count = get_game_count_label(filtered_dataframe) user_rating_value = get_average_user_rating_label(filtered_dataframe) return company_revenue, company_top_genre_labels, company_ccu, company_game_count, company_game_revenue_per_game, \ company_top_games_label, user_rating_value @APP.callback([Output(DEV_REVENUE_LABEL, "children"), Output(DEV_TOP_GENRES_LABEL, "children"), Output(DEV_CCU_LABEL, "children"), Output(DEV_GAME_COUNT_LABEL, "children"), Output(DEV_REV_PER_GAME_LABEL, "children"), Output(DEV_TOP_GAMES, "children"), Output(DEV_AVERAGE_RATING_LABEL, "children")], inputs=[Input(DEVELOPER_DROPDOWN, "value")]) def update_dev_info(dev_name): if not (dev_name and isinstance(ds.FULL_DATA, pandas.DataFrame)): raise PreventUpdate # Remove empty rows mask = ds.FULL_DATA.developer.apply(lambda x: dev_name in x if isinstance(x, str) else False) dev_data = ds.FULL_DATA[mask] return update_company_info(dev_data) @APP.callback([Output(PUB_REVENUE_LABEL, "children"), Output(PUB_TOP_GENRES_LABEL, "children"), Output(PUB_CCU_LABEL, "children"), Output(PUB_GAME_COUNT_LABEL, "children"), Output(PUB_REV_PER_GAME_LABEL, "children"), Output(PUB_TOP_GAMES, "children"), Output(PUB_AVERAGE_RATING_LABEL, "children")], inputs=[Input(PUBLISHER_DROPDOWN, "value")]) def update_pub_info(pub_name): if not (pub_name and isinstance(ds.FULL_DATA, pandas.DataFrame)): raise PreventUpdate # Remove empty rows mask = ds.FULL_DATA.publisher.apply(lambda x: pub_name in x if isinstance(x, str) else False) pub_data = ds.FULL_DATA[mask] return update_company_info(pub_data) @APP.callback(Output(GAMES_BY_PUB_GRAPH, "figure"), Input(PUBLISHER_DROPDOWN, "value")) def get_games_by_pub_table(pub_name): if not (pub_name and isinstance(ds.FULL_DATA, pandas.DataFrame)): raise PreventUpdate layout_arguments = DEFAULT_PLOT_STYLE_DICT | dict(margin=dict(l=20, r=20, t=50, b=20)) return get_game_release_figure(ds.FULL_DATA, pub_name, "publisher", **layout_arguments) @APP.callback(Output(GAMES_BY_DEV_GRAPH, "figure"), Input(DEVELOPER_DROPDOWN, "value")) def get_games_by_dev_table(dev_name): if not (dev_name and isinstance(ds.FULL_DATA, pandas.DataFrame)): raise PreventUpdate layout_arguments = DEFAULT_PLOT_STYLE_DICT | dict(margin=dict(l=20, r=20, t=50, b=20)) return get_game_release_figure(ds.FULL_DATA, dev_name, "developer", **layout_arguments) @APP.callback(Output(RATING_TABS_OUTPUT_AREA, 'children'), Input(RATING_SLIDER, "value"), Input(RATING_MIN_REVIEWS, "value"), Input(RATING_TABS, "value")) def update_density_filter_plot(rating_range, min_reviews, active_tab): allowed_indexes = [str_val for (val, str_val) in ds.OWNER_RANGE_PARTS_SORTED[rating_range[0]:rating_range[1] + 1]] allowed_ratings = [" .. ".join([val, allowed_indexes[i + 1]]) for (i, val) in enumerate(allowed_indexes) if i < len(allowed_indexes) - 1] data = get_rating_density_plot(ds.FULL_DATA, allowed_ratings, min_reviews, layout=DENSITY_LAYOUT_STYLE) table_data_key = None output_table = False output = None match active_tab: case "free": table_data_key = "free" output_table = True case "plot": output = html.Div(dcc.Graph(figure=data['fig'])) case "non-free": table_data_key = "non_free" output_table = True case _: raise KeyError("Invalid tab name") if output_table: output = html.Div(dash.dash_table.DataTable(data['top_games'][table_data_key].to_dict('records'), id=RATING_TABLE, style_data={'backgroundColor': TAB_COLOR, 'color': WHITE_STEAM, 'border': '1px solid ' + TAB_EDGE}, style_header={'backgroundColor': TAB_HEADER_COLOR, 'color': WHITE_STEAM, 'border': '1px solid ' + TAB_EDGE})) return [output] @APP.callback(Output(GENRE_PREDICTION_GRAPH, "figure"), Input(GENRE_DROPDOWN, "value") ) def get_genre_prediction_table(genre, **kwargs): if "layout" not in kwargs.keys(): kwargs["layout"] = DEFAULT_PLOT_STYLE_DICT | dict( title="Genre future prediction", margin=dict(l=20, r=20, t=50, b=20) ) fig = get_genre_plot(ds.LABEL_ENCODED_DATASET, genre, **kwargs) return fig @APP.callback(Output(MARKET_PERFORMANCE_SCATTER, "figure"), Input(MP_COMPANY_TYPE_DROPDOWN, "value"), Input(REVENUE_COMPANY_GAME_COUNT, "value")) def get_market_performance_scatter(company_type, company_game_onwer_range): style = create_market_scatter_plot_style(company_type) return plot_market_performance(df=ds.FULL_DATA, company_type=company_type, game_number_min=company_game_onwer_range[0], game_number_max=company_game_onwer_range[1], **style) def top_revenue_company_infromation_for_company(data, company_name): ccu_str = get_ccu_str(data) game_count_str = data.shape[0] top_games = get_top_revenue_game_names(data) total_revenue = "".join(["$", convert_to_numeric_str(int(numpy.nansum(data["game_revenue"])))]) return {"Company": company_name, "Revenue": total_revenue, "Concurrent users": ccu_str, "Number of games": game_count_str, "Top games": top_games} def get_company_information_for_company_list(company_list, company_type): company_information_list = [] for company, value in company_list.iterrows(): mask = ds.FULL_DATA[company_type].apply(lambda x: company in x if isinstance(x, str) else False) company_data = ds.FULL_DATA[mask] company_information = top_revenue_company_infromation_for_company(company_data, company) company_information_list.append(company_information) table_data = pandas.DataFrame(company_information_list) return table_data @APP.callback(Output(TOP_COMPANY_TABLE_AREA, 'children'), Input(TOP_REVENUE_COMPANIES, "value")) def get_top_companies_table(company_type, get_largest_to=50): data = ds.FULL_DATA[[company_type, "game_revenue"]].groupby(company_type).sum() top_n_companies = data.nlargest(get_largest_to, 'game_revenue') data = get_company_information_for_company_list(top_n_companies, company_type) output = html.Div(dash.dash_table.DataTable(data.to_dict('records'), id=RATING_TABLE, style_data={'backgroundColor': TAB_COLOR, 'color': WHITE_STEAM, 'border': '1px solid ' + TAB_EDGE}, style_header={'backgroundColor': TAB_HEADER_COLOR, 'color': WHITE_STEAM, 'border': '1px solid ' + TAB_EDGE})) return [output] def start_server(): APP.run_server(debug=True, host="0.0.0.0") if __name__ == "__main__": print("Here!") ds.initialize_data() start_server()