import math import re from typing import Sequence, Optional, Any import pandas DEFAULT_ILLEGAL_CONTINUATIONS = {"INC.", "LLC", "CO.", "LTD.", "S.R.O."} def get_owner_means(owner_limits: Sequence[Any]): if not isinstance(owner_limits, list): return owner_limits else: return (owner_limits[0] + owner_limits[1]) / 2 def convert_owners_to_limits(owner_limit): if not isinstance(owner_limit, str): return owner_limit owners_raw = [rev.replace(" ", "") for rev in owner_limit.split(" .. ")] owners_clean = [] for owner_limit in owners_raw: owner_limit = owner_limit.replace("M", "0" * 6) owner_limit = owner_limit.replace("k", "0" * 3) owners_clean.append(int(owner_limit)) return owners_clean def split_companies(arr, illegal_continuations: Optional[Sequence[str]] = None): """ Splits the given string at comma sign as long as following the comma none of the illegal continuations happen. In such a case, the string split does not happen that said comma. :param arr: Array containing the developers/publishers for a single game :param illegal_continuations: A list of illegal continuations. Must be uppercase. :return: Returns the given split input string as a list. :note: If the arr is numpy.NaN, this value is returned instead of a list. """ if illegal_continuations is None: illegal_continuations = DEFAULT_ILLEGAL_CONTINUATIONS if pandas.isna(arr): return arr results_list = [] start_index = 0 split_char = ", " for index in range(len(arr)): if index < len(arr) - 1: txt = arr[index:index + 2] if txt == split_char: found_illegal = False min_continuation = min([len(continuation) for continuation in illegal_continuations]) max_continuation = max([len(continuation) for continuation in illegal_continuations]) next_chars = arr[index + min_continuation:index + min_continuation + max_continuation] for i in range(index + min_continuation, index + len(next_chars) + 2): comp_txt = arr[index + 2:i + 2].upper() if comp_txt in illegal_continuations: found_illegal = True break if not found_illegal: results_list.append(arr[start_index:index].strip()) start_index = index + 1 elif index == len(arr) - 1: results_list.append(arr[start_index:index + 1].strip()) return results_list def extract_unique_companies(nested_companies): full_company_list = [dev for company_list in nested_companies if isinstance(company_list, list) for dev in company_list] unique_companies = [] for company in full_company_list: if company not in unique_companies: unique_companies.append(company) return unique_companies def replace_owner_number_with_symbol(df): def owner_strip(user_range: str): if isinstance(user_range, str): user_range = user_range.replace(",000,000", " M") user_range = user_range.replace(",000", " k") return user_range df["owners"] = df["owners"].apply(lambda name: owner_strip((name))) return df def replace_owner_number_with_symbol_real_numeric(value): value_str = str(value) value_str = re.sub("0" * 9 + "$", " B", value_str) value_str = re.sub("0" * 6 + "$", " M", value_str) value_str = re.sub("0" * 3 + "$", " k", value_str) return value_str def round_to_three_largest_digits(number, accuracy = 2): round_val = -(len(str(round(number)))-accuracy) return_val = round(round(number), min(round_val,0)) return return_val