module invariants implicit none contains !this function computes the trace of a tensor !Tr[\sigma]=\sum_{i} \sigma_{ii} function trace (exx,eyy,ezz,exy,eyz,ezx) double precision trace double precision exx,eyy,ezz,exy,eyz,ezx trace=exx+eyy+ezz end function trace !this subroutine takes the 6 components of a tensor !computes the trace and outputs the deviatoric tensor !\sigma^d=\sigma-\frac{1}{3}Tr[\sigma] {\bf 1} subroutine deviatoric (exx,eyy,ezz,exy,eyz,ezx) implicit none double precision exx,eyy,ezz,exy,eyz,ezx double precision trace trace=(exx+eyy+ezz)/3.d0 exx=exx-trace eyy=eyy-trace ezz=ezz-trace end subroutine deviatoric !this function computes the second invariant: !J_2=\frac{1}{2} \sum_{ij} e_{ij}e_{ji} !in the case of a symmetric tensor function second_invariant (exx,eyy,ezz,exy,eyz,ezx) double precision second_invariant double precision exx,eyy,ezz,exy,eyz,ezx second_invariant=(exx**2+eyy**2+ezz**2)/2.d0+exy**2+eyz**2+ezx**2 end function second_invariant !this function computes the second invariant: !J_3=\frac{1}{3} \sum_{ijk} e_{ij}e_{jk}e_{ji} !in the case of a symmetric tensor function third_invariant (exx,eyy,ezz,exy,eyz,ezx) double precision third_invariant double precision exx,eyy,ezz,exy,eyz,ezx third_invariant=(exx*( exx**2 + 3.d0*exy**2 + 3.d0*ezx**2) & +eyy*(3.d0*exy**2 + eyy**2 + 3.d0*eyz**2) & +ezz*(3.d0*ezx**2 + 3.d0*eyz**2 + ezz**2))/3.d0 & +2.d0*exy*eyz*ezx end function third_invariant !this function computes the Lode angle !\theta=-\frac{1}{3}\sin^{-1} \left( \frac{3\sqrt{3}}{2} J_3 / J2^{3/2} \right) function lode_angle (J2d,J3d) use constants double precision lode_angle,J2d,J3d lode_angle=asin(-1.5d0*sqrt3*J3d/J2d**(1.5d0))/3.d0 end function lode_angle end module invariants