!------------------------------------------------------------------------------| !------------------------------------------------------------------------------| ! | ! ||===\\ | ! || \\ | ! || || //==\\ || || //==|| ||/==\\ | ! || || || || || || || || || || | ! || // || || || || || || || | ! ||===// \\==// \\==\\ \\==\\ || | ! | !------------------------------------------------------------------------------| !------------------------------------------------------------------------------| ! | ! MAKE_CUT Nov. 2006 | ! | !------------------------------------------------------------------------------| !------------------------------------------------------------------------------| recursive subroutine make_cut (level,levelmax,ndof,ael,bel,icon,x,y,z,kfix,mat,& u,v,w,temp,pressure,strain,is_plastic,nnode,f, & lsf,nlsf,r0,s0,t0,rst,icut,ileaves,eviscosity, & vbounded,params,threadinfo,weightel,matnum) !------------------------------------------------------------------------------| !(((((((((((((((( Purpose of the routine )))))))))))))))))))))))))))))))))))))) !------------------------------------------------------------------------------| ! this subroutine is a intermediary routine between build_system and make_matrix ! to take into account the complex geometry of cut cells ! if we are in a non cut cell, make-matrix is called ! if we are in a cut cell but at a level that it smaller than levelmax, the ! cell is further cut and make_cut is recursively called ! if we are in a cut cell and level is equal to levelmax, we call make_matrix ! with material properties that have been interpolated from the ! various material properties contribnuting to the cut cell ! level : current level in cut cell algorithm. It varies between 0 and levelmax. ! levelapprox : used to improve the postitive volutme calculation by further division ! mpe : number of nodes per element (8) ! ndof : number of degrees of freedom per node (3) ! ael : computed finite element matrix ! bel : computed rhs vector ! icon : connectivity array for the current element ! xg,yg,zg : global coordinate arrays of length nnode ! penalty : penalty factor used to impose the boundary conditions ! tempscale : temperature scaling parameter ! kfix : bc array of length ndof*nnode (kfix=1 means the dof is fixed to the value stored in velo) ! mat : material matrix for the nmat materials ! materialn : contains the material number associated to each lsf ! dt : time step length (only needed for the temperature calculations) ! u,v,w : velocity array (obtained from previous time step or at least containing the proper velocity at the fixed dofs) ! nnode : number of nodes ! f : global rhs vector ! lsf : global array of level set functions defining the surfaces ! nlsf : number of lsfs ! r0,s0,t0 : bottom left back corner of the part of the element. (we are now integrating in local r,s,t coordinates) ! rst : size of the part of the element we are integrating ! icut : returned, 0 if homogeneous element - 1 if cut element ! ileaves : current leaf number (useless except for debugging) ! matnum : material number, stored for output !------------------------------------------------------------------------------| !(((((((((((((((( declaration of the subroutine arguments )))))))))))))))))))) !------------------------------------------------------------------------------| use threads use definitions implicit none type(parameters),intent(in) :: params integer,intent(in) :: level integer,intent(in) :: levelmax integer,intent(in) :: ndof double precision,intent(inout) :: ael(params%mpe*ndof,params%mpe*ndof) double precision,intent(inout) :: bel(params%mpe*ndof) integer,intent(in) :: icon(params%mpe) double precision,intent(in) :: x(nnode),y(nnode),z(nnode) integer,intent(in) :: kfix(nnode*ndof) type(material),intent(in) :: mat(0:params%nmat) double precision,intent(in) :: u(nnode),v(nnode),w(nnode) double precision,intent(in) :: temp(nnode) double precision,intent(in) :: pressure double precision,intent(in) :: strain(nnode) logical,intent(inout) :: is_plastic integer,intent(in) :: nnode double precision,intent(inout) :: f(nnode*ndof) double precision,intent(in) :: lsf(params%mpe,nlsf) integer,intent(in) :: nlsf double precision,intent(in) :: r0,s0,t0,rst integer,intent(out) :: icut integer,intent(in) :: ileaves double precision,intent(inout) :: eviscosity logical,intent(inout) :: vbounded type(thread),intent(inout) :: threadinfo double precision,intent(inout) :: weightel integer,intent(inout) :: matnum !------------------------------------------------------------------------------| !(((((((((((((((( declaration of the subroutine internal variables ))))))))))))) !------------------------------------------------------------------------------| integer :: matel,matrule,i,j,k,err double precision,allocatable :: vol_lsf(:) double precision :: aelp(params%mpe*ndof,params%mpe*ndof),belp(params%mpe*ndof) double precision :: prod,vol_lsf0,eviscosityp,eps,weight,zmean logical :: is_plastic_temp,vbounded_temp !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- eps=1.d-10 icut=0 if (level.eq.0) then ael=0.d0 bel=0.d0 eviscosity=0.d0 if (ndof.eq.3) weightel=0.d0 endif matel=params%materialn(0) matrule=params%matrule zmean=0.d0 do i=1,params%mpe zmean=zmean+z(icon(i))*params%vex enddo zmean=zmean/params%mpe if (.not.params%excl_vol) then do i=1,nlsf prod=lsf(1,i) do k=2,params%mpe if (prod*lsf(k,i).le.0.d0 .and. icut.eq.0) then icut=1 allocate (vol_lsf(nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vol_lsf in make_cut$') call get_mat_volume(params,nlsf,lsf,vol_lsf,vol_lsf0) if (vol_lsf0.gt.eps .or. level.gt.0) matrule=0 if (matrule.eq.1 .or. matrule.eq.2) then ! Use majority or minority rule call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix, & ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,& w,temp,pressure,strain,r0,s0,t0,rst,zmean,f,ael,& bel,eviscosity,weightel,is_plastic,vbounded, & threadinfo) else ! Use divFEM if (level.eq.levelmax) then call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix,& ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,& v,w,temp,pressure,strain,r0,s0,t0,rst,zmean,f,& ael,bel,eviscosity,weightel,is_plastic, & vbounded,threadinfo) else call divide_element(params,mat,level,levelmax,ndof,nlsf,nnode, & icon,kfix,ileaves,matnum,lsf,r0,s0,t0,rst,x,y,& z,u,v,w,temp,pressure,strain,eviscosity, & weightel,ael,bel,f,is_plastic,vbounded, & threadinfo) endif endif deallocate (vol_lsf) endif enddo if (prod.lt.0.d0 .and. icut.eq.0) then matel=params%materialn(i) if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum matnum=matel endif enddo else !check whether this is a cut cell do i=1,nlsf prod=lsf(1,i) do k=2,params%mpe if (prod*lsf(k,i).le.0.d0 .and. icut.eq.0) then icut=1 allocate (vol_lsf(nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vol_lsf in make_cut$') call get_mat_volume(params,nlsf,lsf,vol_lsf,vol_lsf0) if (vol_lsf0.gt.eps .or. level.gt.0) matrule=0 if (matrule.eq.1 .or. matrule.eq.2) then ! Use majority or minority rule call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix, & ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,& w,temp,pressure,strain,r0,s0,t0,rst,zmean,f,ael,& bel,eviscosity,weightel,is_plastic,vbounded, & threadinfo) else ! Use divFEM if (level.eq.levelmax) then call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix,& ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,& v,w,temp,pressure,strain,r0,s0,t0,rst,zmean,f,& ael,bel,eviscosity,weightel,is_plastic, & vbounded,threadinfo) else call divide_element(params,mat,level,levelmax,ndof,nlsf,nnode, & icon,kfix,ileaves,matnum,lsf,r0,s0,t0,rst,x,y,& z,u,v,w,temp,pressure,strain,eviscosity, & weightel,ael,bel,f,is_plastic,vbounded, & threadinfo) endif endif deallocate (vol_lsf) endif enddo enddo if (icut.eq.0) then !assign material to plain cell, since at that point we know that this is a plain cell do i=1,nlsf if (lsf(1,i).lt.0.d0) then matel=params%materialn(i) if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum matnum=matel endif enddo endif endif if (icut.eq.0) then call make_matrix (params,ndof,aelp,belp,icon,x,y,z,kfix,mat(matel)%viscosity,& mat(matel)%density,mat(matel)%penalty,mat(matel)%expon, & mat(matel)%activationenergy,mat(matel)%expansion, & mat(matel)%diffusivity,mat(matel)%heat, & mat(matel)%plasticity_type,mat(matel)%plasticity_parameters,& u,v,w,temp,pressure,strain,is_plastic_temp,nnode,f,r0,s0,t0,& rst,ileaves,eviscosityp,vbounded_temp,threadinfo,weight) ael=ael+aelp/(8.d0**level) bel=bel+belp/(8.d0**level) eviscosity=eviscosity+eviscosityp/(8.d0**level) is_plastic=(is_plastic.or.is_plastic_temp) vbounded=(vbounded.or.vbounded_temp) if (ndof.eq.3) weightel=weightel+weight/(8.d0**level) endif end subroutine make_cut !------------------------------------------------------------------------------- subroutine get_mat_volume (params,nlsf,lsf,vol_lsf,vol_lsf0) use definitions implicit none type(parameters),intent(in) :: params integer,intent(in) :: nlsf double precision,intent(in) :: lsf(params%mpe,nlsf) double precision,intent(out) :: vol_lsf(nlsf) double precision,intent(out) :: vol_lsf0 !------------------------------------------------------------------------------| !(((((((((((((((( declaration of the subroutine internal variables ))))))))))))) !------------------------------------------------------------------------------| integer :: i !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- do i=1,nlsf call compute_positive_volume (lsf(1,i),vol_lsf(i),params%levelapprox) enddo vol_lsf=1.d0-vol_lsf if (.not.params%excl_vol) then do i=1,nlsf-1 vol_lsf(i)=vol_lsf(i)-vol_lsf(i+1) enddo endif ! this is a little fix that is necessary due to the finite precision with which ! we compute the positive volumes and could lead to a contributing volume being ! either marginally negative or greater than 1 do i=1,nlsf vol_lsf(i)=max(vol_lsf(i),0.d0) vol_lsf(i)=min(vol_lsf(i),1.d0) enddo vol_lsf0=1.d0-sum(vol_lsf) end subroutine get_mat_volume !------------------------------------------------------------------------------- subroutine set_elem_props (params,mat,matrule,ndof,nlsf,nnode,icon,kfix, & ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,w, & temp,pressure,strain,r0,s0,t0,rst,zmean,f,ael,bel, & eviscosity,weightel,is_plastic,vbounded,threadinfo) use threads use definitions implicit none type(parameters),intent(in) :: params type(material),intent(in) :: mat(0:params%nmat) integer,intent(in) :: matrule integer,intent(in) :: ndof integer,intent(in) :: nlsf integer,intent(in) :: nnode integer,intent(in) :: icon(params%mpe) integer,intent(in) :: kfix(nnode*ndof) integer,intent(in) :: ileaves integer,intent(in) :: level integer,intent(out) :: matnum double precision,intent(in) :: vol_lsf(nlsf) double precision,intent(in) :: vol_lsf0 double precision,intent(in) :: x(nnode),y(nnode),z(nnode) double precision,intent(in) :: u(nnode),v(nnode),w(nnode) double precision,intent(in) :: temp(nnode) double precision,intent(in) :: pressure double precision,intent(in) :: strain(nnode) double precision,intent(in) :: r0,s0,t0,rst double precision,intent(in) :: zmean double precision,intent(inout) :: f(nnode*ndof) double precision,intent(out) :: ael(params%mpe*ndof,params%mpe*ndof) double precision,intent(out) :: bel(params%mpe*ndof) double precision,intent(out) :: eviscosity double precision,intent(out) :: weightel logical,intent(out) :: is_plastic logical,intent(out) :: vbounded type(thread),intent(inout) :: threadinfo !------------------------------------------------------------------------------| !(((((((((((((((( declaration of the subroutine internal variables ))))))))))))) !------------------------------------------------------------------------------| double precision :: eps,viscosity,density,penal,expon,activ,expan,diffusivity double precision :: heat,eviscosityp,weight double precision :: plasticity_parameters(9) double precision :: aelp(params%mpe*ndof,params%mpe*ndof),belp(params%mpe*ndof) integer :: matel,i character(len=8) :: plasticity_type logical :: is_plastic_temp,vbounded_temp !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- eps=1.d-10 matnum=0 select case (matrule) case (1) ! Assign material properties of volumetric majority material matel=params%materialn(sum(maxloc(vol_lsf))) if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum matnum=matel viscosity=mat(matel)%viscosity density=mat(matel)%density penal=mat(matel)%penalty expon=mat(matel)%expon activ=mat(matel)%activationenergy expan=mat(matel)%expansion diffusivity=mat(matel)%diffusivity heat=mat(matel)%heat plasticity_type=mat(matel)%plasticity_type plasticity_parameters=mat(matel)%plasticity_parameters case(2) ! Assign material properties of volumetric minority material matel=params%materialn(sum(minloc(vol_lsf))) if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum matnum=matel viscosity=mat(matel)%viscosity density=mat(matel)%density penal=mat(matel)%penalty expon=mat(matel)%expon activ=mat(matel)%activationenergy expan=mat(matel)%expansion diffusivity=mat(matel)%diffusivity heat=mat(matel)%heat plasticity_type=mat(matel)%plasticity_type plasticity_parameters=mat(matel)%plasticity_parameters case default if (matrule.ne.0) write(*,*) 'Invalid matrule value, using divFEM' viscosity=0.d0 density=0.d0 penal=0.d0 expon=0.d0 activ=0.d0 expan=0.d0 diffusivity=0.d0 heat=0.d0 do i=1,nlsf matel=params%materialn(i) if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum if (vol_lsf(i).ge.0.015625-eps) matnum=matnum+matel viscosity=viscosity+vol_lsf(i)*mat(matel)%viscosity density=density+vol_lsf(i)*mat(matel)%density penal=penal+vol_lsf(i)*mat(matel)%penalty expon=expon+vol_lsf(i)*mat(matel)%expon activ=activ+vol_lsf(i)*mat(matel)%activationenergy expan=expan+vol_lsf(i)*mat(matel)%expansion diffusivity=diffusivity+vol_lsf(i)/mat(matel)%diffusivity heat=heat+vol_lsf(i)*mat(matel)%heat enddo matel=params%materialn(0) if (vol_lsf0.ge.0.015625-eps) matnum=matnum+100 viscosity=viscosity+vol_lsf0*mat(matel)%viscosity density=density+vol_lsf0*mat(matel)%density penal=penal+vol_lsf0*mat(matel)%penalty expon=expon+vol_lsf0*mat(matel)%expon activ=activ+vol_lsf0*mat(matel)%activationenergy expan=expan+vol_lsf0*mat(matel)%expansion heat=heat+vol_lsf0*mat(matel)%heat diffusivity=diffusivity+vol_lsf0/mat(matel)%diffusivity diffusivity=1.d0/diffusivity ! Note that some properties add geometrically not algebraically matel=params%materialn(sum(maxloc(vol_lsf))) plasticity_type=mat(matel)%plasticity_type plasticity_parameters=mat(matel)%plasticity_parameters end select if (maxval(vol_lsf).lt.eps) then matel=params%materialn(0) plasticity_type=mat(matel)%plasticity_type plasticity_parameters=mat(matel)%plasticity_parameters endif call make_matrix (params,ndof,aelp,belp,icon,x,y,z,kfix,viscosity,density, & penal,expon,activ,expan,diffusivity,heat,plasticity_type, & plasticity_parameters,u,v,w,temp,pressure,strain, & is_plastic_temp,nnode,f,r0,s0,t0,rst,ileaves,eviscosityp, & vbounded_temp,threadinfo,weight) is_plastic=(is_plastic.or.is_plastic_temp) vbounded=(vbounded.or.vbounded_temp) ael=ael+aelp/(8.d0**level) bel=bel+belp/(8.d0**level) eviscosity=eviscosity+eviscosityp/(8.d0**level) if (ndof.eq.3) weightel=weightel+weight/(8.d0**level) end subroutine set_elem_props !------------------------------------------------------------------------------- subroutine divide_element(params,mat,level,levelmax,ndof,nlsf,nnode,icon,kfix, & ileaves,matnum,lsf,r0,s0,t0,rst,x,y,z,u,v,w,temp, & pressure,strain,eviscosity,weightel,ael,bel,f, & is_plastic,vbounded,threadinfo) use threads use definitions implicit none type(parameters),intent(in) :: params type(material),intent(in) :: mat(0:params%nmat) integer,intent(in) :: level integer,intent(in) :: levelmax integer,intent(in) :: ndof integer,intent(in) :: nlsf integer,intent(in) :: nnode integer,intent(in) :: icon(params%mpe) integer,intent(in) :: kfix(nnode*ndof) integer,intent(in) :: ileaves integer,intent(inout) :: matnum double precision,intent(in) :: lsf(params%mpe,nlsf) double precision,intent(in) :: r0,s0,t0,rst double precision,intent(in) :: x(nnode),y(nnode),z(nnode) double precision,intent(in) :: u(nnode),v(nnode),w(nnode) double precision,intent(in) :: temp(nnode) double precision,intent(in) :: pressure double precision,intent(in) :: strain(nnode) double precision,intent(inout) :: eviscosity double precision,intent(inout) :: weightel double precision,intent(inout) :: ael(params%mpe*ndof,params%mpe*ndof) double precision,intent(inout) :: bel(params%mpe*ndof) double precision,intent(inout) :: f(nnode*ndof) logical,intent(inout) :: is_plastic logical,intent(inout) :: vbounded type(thread),intent(inout) :: threadinfo !------------------------------------------------------------------------------| !(((((((((((((((( declaration of the subroutine internal variables ))))))))))))) !------------------------------------------------------------------------------| integer :: err,i,j,k,ii,jj,kk,levelp,jcut double precision,allocatable :: lsfp(:,:) double precision :: r(params%mpe),s(params%mpe),t(params%mpe),h(params%mpe) double precision :: r0p,s0p,t0p,rstp !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- allocate (lsfp(params%mpe,nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc lsfp in make_cut$') do kk=1,2 t(1:4)=-1.d0+float(kk-1) t(5:8)=float(kk-1) do jj=1,2 s(1:2)=-1.d0+float(jj-1) s(3:4)=float(jj-1) s(5:6)=-1.d0+float(jj-1) s(7:8)=float(jj-1) do ii=1,2 r(1)=-1.d0+float(ii-1) r(2)=float(ii-1) r(3)=-1.d0+float(ii-1) r(4)=float(ii-1) r(5)=-1.d0+float(ii-1) r(6)=float(ii-1) r(7)=-1.d0+float(ii-1) r(8)=float(ii-1) do k=1,8 h(1)=(1.d0-r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0 h(2)=(1.d0+r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0 h(3)=(1.d0-r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0 h(4)=(1.d0+r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0 h(5)=(1.d0-r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0 h(6)=(1.d0+r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0 h(7)=(1.d0-r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0 h(8)=(1.d0+r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0 lsfp(k,:)=0.d0 do i=1,nlsf do j=1,8 lsfp(k,i)=lsfp(k,i)+h(j)*lsf(j,i) enddo enddo enddo r0p=r0+rst*(r(1)+1.d0)/2.d0 s0p=s0+rst*(s(1)+1.d0)/2.d0 t0p=t0+rst*(t(1)+1.d0)/2.d0 rstp=rst/2.d0 levelp=level+1 call make_cut (levelp,levelmax,ndof,ael,bel,icon,x,y,z,kfix,mat,u,v,w,& temp,pressure,strain,is_plastic,nnode,f,lsfp,nlsf,r0p, & s0p,t0p,rstp,jcut,ileaves,eviscosity,vbounded,params, & threadinfo,weightel,matnum) enddo enddo enddo deallocate (lsfp) end subroutine divide_element !------------------------------------------------------------------------------- !-------------------------------------------------------------------------------