From 40059338b122157cc5fe1f3d579c7b310944364d Mon Sep 17 00:00:00 2001
From: Douglas Guptill <douglas.guptill@dal.ca>
Date: Thu, 21 May 2009 20:30:59 +0000
Subject: [PATCH] crlf->lf

---
 NN/volume.cc | 4264 +++++++++++++++++++++++++-------------------------
 1 file changed, 2132 insertions(+), 2132 deletions(-)

diff --git a/NN/volume.cc b/NN/volume.cc
index 9e7c2522..aa45dccc 100644
--- a/NN/volume.cc
+++ b/NN/volume.cc
@@ -1,2132 +1,2132 @@
-#include <stdlib.h>
-#include <ctype.h>
-#include <math.h>
-/*--------------------------------------------------------------
-
-    This file contains six recursive C routines for calculating
-    the volume and derivatives of a convex polyhedron in n 
-    dimensions. The routines volume, volumef, volumeb and dvda are 
-    fortran callable interfaces to their C counterparts cvolume,
-    cvolumeb and cdvda.
-
-    ROUTINE      COMMENT			CALLS 
-
-    cvolume	 calculates volume of region    cvolume 
-                 which satisfies Ax <= b.
-
-    cvolumef	 calculates volume of region    cvolumef 
-                 which satisfies Ax <= b.
-                 (faster version, see below)
-
-    cvolumeb     calculates volume and the      cvolume
-                 derivative d(vol)/db(0).
-
-    cdvda        calculates derivatives		cdvda, cvolumeb, 
-                 d(vol)/da(0,j) (j=1,n).        & cvolumebj
-
-    cdvdaf        calculates derivatives	cdvdaf, cvolumeb, 
-                 d(vol)/da(0,j) (j=1,n).        & cvolumebj
-                 (faster version, see below)
-
-    cvolumebj    calculates partial volumes
-                 and derivatives d(vol)/d(b(j)
-                 (j=1,n). (called by cdvda.)
-
-    Here b(j) is the jth element of vector b, and a(i,j) is the
-    (i,j)th coefficient of the matrix A corresponding to the
-    ith constraint and the jth dimension.
-
-    The two faster versions cvolumef and cdvdaf do not continue down
-    the recursive tree if b(j) = 0 for any j at any time. This avoids
-    extra work but restricts the applicability of the routines to
-    cases where the origin does not pass through any inconsistent
-    constraints.
-     
-				Malcolm Sambridge, April 1995.
-
-  --------------------------------------------------------------*/
-
-/*--------------------------------------------------------------
-
-			ROUTINE: cvolume
-
-    This routine calculates the `volume' in dimension n of the region
-    bounded by a set of m linear inequality constraints of the form
-    A x <= b, where a has m rows and n columns and is given by a(m,n),
-    b is the n-vector and is contained in b(m). The recursive formula
-    of Lasserre (1983) is used. Redundant constraints are allowed 
-    If the inequality constraints are inconsistent then the volume 
-    is returned as zero.  If the original polyhedron is unbounded 
-    then a warning is issued and the volume is return as -1.0 
-    (even though it is undefined). 
-
-			Jean Braun and Malcolm Sambridge, Jan 1995.
-
-    Lasserre, J. B., 1983. "An analytical expression and an Algorithm
-    for the Volume of a Convex Polyhedron in R^n.", JOTA, vol. 39, 
-    no. 3, 363-377.
-
-  --------------------------------------------------------------*/
-
-float cvolume (a,b,m,n,mmax,nmax)
-
-int   *n, *m, *mmax, *nmax;
-float *a, *b; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max;
-int   nm1,mm1;
-float  *ap, *bp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float partialv;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;}
-      else if (bb<bmin) bmin=bb;
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;}
-      else if (bb>bmax) bmax=bb;
-      }
-    else if ( *(b+l) < 0.)         /* Constraints are inconsistent */
-      { 
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-       return(0.); 
-      }
-    }
-  v=0.;
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-/*     printf("Volume is unbounded at 1-D; volume returned as -1\n");*/
-     return(-1.0);
-    }
-
-  if (v<0.) {v=0.;} 
-
-  return(v);
-  }
-
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-
-/* find largest pivot */
-
-  amax=0.;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-/* finds contribution to v from this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-                                 /* Constraint is inconsistent */
-
-    if ( *(bi) < 0.) 
-      { printf("Constraint %d is inconsistent\n",i+1); return(0.); }
-
-                                 /* otherwise constraint is redundant */
-
-    printf("Constraint %d is redundant\n",i+1); 
-  }
-  else
-  {
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to volume from volume calculated in smaller dimension */
-
-  partialv=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
-  if(partialv == -1.0)return(-1.0);
-  v=v+ *(bi)/amax*partialv/nn; 
-
-  free(ap);
-  free(bp);
-  }
-  }
-
-return(v);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: volume
-
-   A dummy routine used to call cvolume from a fortran routine 
-
-
-			Jean Braun and Malcolm Sambridge, Jan 1995.
-
-----------------------------------------------------------------*/
-
-volume (a,b,m,n,mmax,nmax,volume)
-
-int   *n, *m, *mmax, *nmax;
-float *a, *b;
-float *volume; 
-
-{
-
-*volume=cvolume(a,b,m,n,mmax,nmax);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: cvolumeb
-
-    This routine calculates the `volume' in dimension n of the region
-    bounded by a set of m linear inequality constraints of the form
-    A x <= b, where a has m rows and n columns and is given by a(m,n),
-    b is the n-vector and is contained in b(m). The recursive formula
-    of Lasserre (1983) is used. Redundant constraints are allowed and
-    a warning is issued if any are encountered. If the inequality 
-    constraints are inconsistent then the volume is returned as zero.
-    If the original polyhedron is unbounded then a warning is issued
-    and the volume is return as zero (even though it is undefined). 
-
-    This version also calculates the derivative of the volume with
-    respect to the parameter b(0) using the simple formula of
-    Lasserre (1983). If *opt == 2 then only the derivative is 
-    calculated and not the volume.
-
-    This routine is a variation from the routine `cvolume'.
-
-    Calls are made to routine cvolume.
-
-				Malcolm Sambridge, March 1995.
-
-
-  --------------------------------------------------------------*/
-
-float cvolumeb (a,b,m,n,mmax,nmax,opt,dvdb)
-
-int   *n, *m, *opt, *mmax, *nmax;
-float *a, *b; 
-float *dvdb; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max;
-int   nm1,mm1;
-int   lmin,lmax;
-float  *ap, *bp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float vol;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  lmax=0;
-  lmin=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
-      else if (bb<bmin) {bmin=bb;lmin=l;}
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
-      else if (bb>bmax) {bmax=bb;lmax=l;}
-      }
-    else if ( *(b+l) < 0.) 
-      { 
-                              /* Constraints are inconsistent.  
-                                 Set volume and derivative to zero. */
-
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-      *dvdb = 0.; 
-      return(0.);
-      }
-    }
-  v=0.;
-  *dvdb = 0.; 
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
-     return(-1.0);
-    }
-
-  if (v<0.) {v=0.;*dvdb=0.;} 
-  else if (v>0. && lmin == 0) *dvdb = 1. / *a;
-  else if (v>0. && lmax == 0) *dvdb = -1. / *a;
-  return(v);
-  }
-
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
-
-/*  perform main loop over constraints */
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-
-/* find largest pivot */
-
-  amax=0.;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-/* finds contribution to v from this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-                                 /* Constraint is inconsistent */
-
-    if ( *(bi) < 0.) 
-       {
-        printf("Constraint %d is inconsistent\n",i+1); 
-        return(0.);
-       } 
-
-                                 /* otherwise constraint is redundant */
-
-    printf("Constraint %d is redundant\n",i+1); 
-  }
-  else
-  {
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to volume from volume calculated in smaller dimension */
-
-  vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
-  if(vol == -1.0)
-     {
-      *dvdb = 0.;
-      return(-1.0);
-     }
-  v=v+ *(bi)/amax*vol/nn;
-
-  free(ap);
-  free(bp);
-
-/* calculate derivatives for first constraint only */
-
-                                    /* calculate volume and derivative 
-                                       with respect to b_0 */
-  if (i == 0) *dvdb = vol/amax; 
-                                    /* calculate derivative with respect 
-                                       to b_0 but not volume */
-  if (*opt == 2) return (0.); 
-  }
-  }
-
-return(v);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: volumeb
-
-   A dummy routine used to call cvolumeb from a fortran routine 
-
-----------------------------------------------------------------*/
-
-volumeb (a,b,m,n,mmax,nmax,opt,volume,dvdb)
-
-int   *n, *m, *mmax, *nmax, *opt;
-float *a, *b;
-float *volume; 
-float *dvdb; 
-
-{
-
-if(*opt == 1)                      /* calculate volume and derivative with
-                                       respect to b(0) */
-  {
-   *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
-  }
-else if(*opt == 2)                /* calculate derivative with respect to b(0) 
-                                       but not volume */
-  {
-   *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
-  }
-else 
-  {
-   printf(" Warning: routine volumeb called with an invalid option parameter\n");
-   printf("          valid options are 1 and 2, option given = %d \n",*opt);
-  } 
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: cvolumebj
-
-    This routine only calculates the j-th outer loop of the recursive
-    routine cvolumeb. It returns the partial volume for projection 
-    onto the j-th constraint and the derivative of the total volume 
-    with respect to parameter b(j) using the simple formula of 
-    Lasserre(1983). (See cvolumeb for more details.)
-    
-    The reason for this routine is so that the derivatives
-    with respect to parameter b(j) can be calculated and passed back
-    to a fortran routine without creating and an extra array of size
-    m (because only one derivative is calculated per call). In
-    this way it also avoids recalculating the total volume m times
-    (which would be the case if we used a simple variation of routine
-     cvolumeb).
-
-    To calculate the total volume this routine must be called m times
-    and the partial volume summed
-
-    Constraint j is determined by the value of *con.
-
-    Calls are made to routine cvolume.
-
-				Malcolm Sambridge, March 1995.
-
-  --------------------------------------------------------------*/
-
-float cvolumebj (a,b,m,n,mmax,nmax,con,dvdb)
-
-int   *n, *m, *mmax, *nmax, con;
-float *a, *b; 
-float *dvdb; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max;
-int   nm1,mm1;
-int   lmin,lmax;
-float  *ap, *bp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float vol;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  lmax=0;
-  lmin=0;
-  for (l=0;l<mm;l++) 
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
-      else if (bb<bmin) {bmin=bb;lmin=l;}
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
-      else if (bb>bmax) {bmax=bb;lmax=l;}
-      }
-    else if ( *(b+l) < 0.) 
-      { 
-                              /* Constraints are inconsistent.  
-                                 Set volume and derivative to zero. */
-
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-      *dvdb = 0.; 
-      return(0.);
-      }
-    }
-  v=0.;
-  *dvdb = 0.; 
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
-     return(-1.0);
-    }
-
-  if (v<0.) {v=0.;*dvdb=0.;} 
-  else if (v>0. && lmin == con) *dvdb = 1. / *(a+lmin);
-  else if (v>0. && lmax == con) *dvdb = -1. / *(a+lmax);
-  return(v);
-  }
-
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
-
-/*  perform main loop over constraints */
-
-/* for (i=0;i<mm;i++) */
-
-  i = con;
-
-   ai=a+i;
-   bi=b+i;
-
-/* find largest pivot */
-
-  amax=0.;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-/* finds contribution to v from this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-                                 /* Constraint is inconsistent */
-
-    if ( *(bi) < 0.) 
-       {
-        printf("Constraint %d is inconsistent\n",i+1); 
-        *dvdb = 0.; 
-        return(0.);
-       } 
-
-                                 /* otherwise constraint is redundant */
-
-    printf("Constraint %d is redundant\n",i+1); 
-    *dvdb = 0.; 
-  }
-  else
-  {
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-                                    /* calculate partial volume */ 
-
-  vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
-  if(vol == -1.0)
-     {
-      *dvdb = 0.;
-      return(-1.0);
-     }
-  v=*(bi)/amax*vol/nn;
-
-                                    /* calculate derivative of total volume
-                                       with respect to current constraint */
-  *dvdb = vol/amax; 
-
-  free(ap);
-  free(bp);
-  }
-
-return(v);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: volumebj
-
-   A dummy routine used to call cvolumebj from a fortran routine
-
-----------------------------------------------------------------*/
-
-volumebj (a,b,m,n,mmax,nmax,con,volume,dvdb)
-
-int   *n, *m, *mmax, *nmax,*con;
-float *a, *b;
-float *volume; 
-float *dvdb; 
-
-{
-
-int tcon;
-tcon = *con - 1;
-                                    /* calculate partial volume and 
-                                       derivative with respect to b(con) */
-
-   *volume=cvolumebj(a,b,m,n,mmax,nmax,tcon,dvdb);
-
-}
-/*--------------------------------------------------------------
-
-			ROUTINE: cdvda
-
-    This routine calculates the derivative with respect to a(0,tdim)
-    of the `volume' in dimension n of the region bounded by a set 
-    of m linear inequality constraints of the form A x <= b, where 
-    a has m rows and n columns and is given by a(m,n), b is the 
-    n-vector and is contained in b(m). The derivative expression
-    is recursive and derived from the formula of Lasserre (1983). 
-
-    Redundant constraints are allowed and a warning is issued if any are 
-    encountered. If the inequality constraints are inconsistent then the 
-    derivative is returned as zero.  If any constraint is orthogonal to 
-    the component a(0,idim) then the reduction can only take place onto 
-    variable idim. A special case is used to handle this which involves
-    no further recursive calls.
-
-    If the original polyhedron is unbounded then a warning is issued
-    and the derivative is return as zero. 
-
-    Note: This code takes advantage of the fact that during recursive calls
-    constraint 0 does not change its position in the list of remaining 
-    constraints (if it has not been eliminated), i.e. it is always the 
-    first constraint.  This would not be the case if the algorithm were 
-    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
-    where i .ne. 0.
-
-    Calls itself cvolumeb, and cvolumebj.
- 
-				Malcolm Sambridge, March 1995.
-
-  --------------------------------------------------------------*/
-
-float cdvda (a,b,m,n,mmax,nmax,tdim,temp,jval,code)
-
-int   *n, *m, *nmax, *mmax, *tdim, *jval, *code;
-float *a, *b, *temp; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max,ttdim;
-int   nm1,mm1;
-int   lmin,lmax, jjval, kval;
-float  *ap, *bp, *ttemp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float deriv, junk, vol, dvdb, dbda;
-int   special, opt;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-*code = 0;
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  lmax=0;
-  lmin=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
-      else if (bb<bmin) {bmin=bb;lmin=l;}
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
-      else if (bb>bmax) {bmax=bb;lmax=l;}
-      }
-    else if ( *(b+l) < 0.) 
-      {
-                                   /* Constraint is inconsistent.
-                                      Set derivative to zero. */
-
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-       *code = 1;
-       return(0.);
-      }
-    }
-  v=0.;
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded; derivative returned is zero\n");
-     *code = -1;
-     return(0.);
-    }
-
-  if (v<0.) return(0.);       
-
-  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
-    {
-     if (lmin == 0) deriv = -bmin/ *a;
-     else if (lmax == 0) deriv = bmax/ *a;
-     else deriv = 0.;
-     return(deriv); 
-    }
-  else if(*jval == 0)     /* Constraint 0  has already been encountered */
-    {
-     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
-              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
-     return(deriv); 
-    }
-  }
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
- 
-                                 /*  perform main loop over constraints */
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-   ttdim = *tdim;
-   special = 0;
-
-/* find largest pivot */
-
-  amax=0.;
-  t = 0;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax && j != ttdim) 
-        {amax= fabs( *(ai+j*mm_max)); t=j;}
-
-                                 /* finds contribution to v from 
-                                    this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-   if(*(ai + ttdim * mm_max) == 0.0) 
-     { 
-                                 /* Constraint is inconsistent */
-       if ( *(bi) < 0.)
-         {
-          printf("Constraint %d is inconsistent\n",i+1);
-          *code = 1;
-          return(0.);
-         }
-
-                                 /* otherwise constraint is redundant */
-
-       printf("Constraint %d is redundant\n",i+1); 
-     }
-   else
-     {
-                                 /* if projection can only be peformed
-                                    on dimension tdim then activate 
-                                    special case */ 
-
-     special = 1;
-     t = ttdim;
-     amax = fabs(*(ai+t * mm_max));
-
-     }
-  }
-
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-  if(t < ttdim) ttdim = ttdim -1;
-
-
-  if (amax != 0)
-  {
-
-                 /* determine if constraint 0 has been encountered */
- 
-   kval = 0;
-   if ( i == 0 && *jval == 1)
-      {
-                                     /* This is the first encounter of
-                                        constraint 0 on this path so we 
-                                        allocate memory and store parameters 
-                                        to be used when n = 1 */
-
-       if (special == 0) 
-          {
-           ttemp = (float *) malloc(4*mm1);
-           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
-           kval = 1;
-          }
-       jjval = 0;
-      }
-   else if (*jval == 0)             /* Constraint 0 has already been
-                                        encountered */
-      {
-        jjval = 0;  
-                                    /* perform recursive update of component
-                                       derivative array temp. This eliminates 
-                                       row i and copies into a new vector */
-
-        if(special == 0)
-          {
-           ttemp = (float *) malloc(4*mm1);
-           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
-                                          -(*(temp+i) * *(a+j+tmm)/pivot);
-           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
-                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
-          }
-      }
-   else 
-      {                             /* Constraint 0 has not yet been 
-                                        encountered */
-      jjval = 1;                
-      }
-
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to derivative from that calculated in smaller dimension */
-
-  					/* Normal case method */
-  if(special == 0)
-    {
-     deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);
-     v=v+ *(bi)/amax*deriv/nn;
-     if (kval == 1 || *jval == 0) free(ttemp);
-     if(*code != 0)return (0.);
-
-    }
-  else					/* Use special case method */
-    {
-     if( *jval == 1)                    
-       {                     
-        if(i == 0)                      /* This is constraint 0 */
-          {
-           deriv = 0.; 
-           vol = 0.; 
-           dvdb = 0.;
-           for (j=1;j<mm;j++) 
-              {
-               k = j - 1;
-               junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
-               if(junk == -1.)
-                 {
-                  *code = -1;
-                  return(0.);
-                 }
-               deriv = deriv + dvdb * *(a + j + tmm) ;
-               vol = vol + junk;
-              }
-           if(nm1 == 1)vol = junk;
-           deriv = *(bi) * deriv/pivot;
-           deriv = (deriv - vol) /pivot; 
-           v=v+ *(bi)/amax*deriv/nn;
-
-          }
-        else				/* Constraint 0 not yet encountered */
-          {
-           opt = 2;
-           junk=cvolumeb(ap,bp,&mm1,&nm1,&mm1,&nm1,&opt,&deriv);
-           if(junk == -1.)
-             {
-              *code = -1;
-              return(0.);
-             }
-           deriv= -(deriv *  *(bi)/pivot);
-           v=v+ *(bi)/amax*deriv/nn;
-          }
-       }
-     else if( *jval == 0)               /* Constraint 0 already encountered */
-       {
-        vol = 0.; 
-        deriv = 0.; 
-        for (j=0;j<i;j++) 
-           {
-            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,j,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-        for (j=i+1;j<mm;j++) 
-           {
-            k = j - 1;
-            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-           if(nm1 == 1)vol = junk;
-           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
-           v=v+ *(bi)/amax*deriv/nn;
-       }
-    }
-
-  free(ap);
-  free(bp);
-  }
-  }
-
-return(v);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: dvda
-
-   A dummy routine used to call cdvda from a fortran routine 
-
-----------------------------------------------------------------*/
-
-dvda (a,b,m,n,mmax,nmax,idim,dvda,code)
-
-int   *n, *m, *mmax, *nmax, *idim, *code;
-float *a, *b;
-float *dvda; 
-
-{
-
-int    j;
-int    jval, tdim;
-float *temp;
-
-jval = 1;
-tdim = *idim - 1;
-
-*dvda=cdvda(a,b,m,n,mmax,nmax,&tdim,temp,&jval,code);
-
-free(temp);
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: cvolumef
-
-    This routine calculates the `volume' in dimension n of the region
-    bounded by a set of m linear inequality constraints of the form
-    A x <= b, where a has m rows and n columns and is given by a(m,n),
-    b is the n-vector and is contained in b(m). The recursive formula
-    of Lasserre (1983) is used. Redundant constraints are allowed 
-    If the inequality constraints are inconsistent then the volume 
-    is returned as zero.  If the original polyhedron is unbounded 
-    then a warning is issued and the volume is return as -1.0 
-    (even though it is undefined). 
-
-    This is a faster version which does not continue down the
-    recursive tree if if encounters b(j) = 0 for any j. This
-    restricts its use to cases where the origin does not
-    pass through any inconsistent constraints. Also redundant
-    constraints that pass through the origin will not be detected.
- 
-			Jean Braun and Malcolm Sambridge, Jan 1995.
-
-
-    Lasserre, J. B., 1983. "An analytical expression and an Algorithm
-    for the Volume of a Convex Polyhedron in R^n.", JOTA, vol. 39, 
-    no. 3, 363-377.
-
-  --------------------------------------------------------------*/
-
-float cvolumef (a,b,m,n,mmax,nmax)
-
-int   *n, *m, *mmax, *nmax;
-float *a, *b; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max;
-int   nm1,mm1;
-float  *ap, *bp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float partialv;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;}
-      else if (bb<bmin) bmin=bb;
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;}
-      else if (bb>bmax) bmax=bb;
-      }
-    else if ( *(b+l) < 0.)         /* Constraints are inconsistent */
-      { 
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-       return(0.); 
-      }
-    }
-  v=0.;
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded at 1-D; volume returned as -1\n");
-     return(-1.0);
-    }
-
-  if (v<0.) {v=0.;} 
-
-  return(v);
-  }
-
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-
-/* find largest pivot */
-
-  amax=0.;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-/* finds contribution to v from this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-                                 /* Constraint is inconsistent */
-
-    if ( *(bi) < 0.) 
-      { printf("Constraint %d is inconsistent\n",i+1); return(0.); }
-
-                                 /* otherwise constraint is redundant */
-
-    printf("Constraint %d is redundant\n",i+1); 
-  }
-  else
-  {
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to volume from volume calculated in smaller dimension */
-
-  partialv = 0.;
-  if (*(bi) != 0.) partialv=cvolumef(ap,bp, &mm1, &nm1, &mm1, &nm1);
-  if(partialv == -1.0)return(-1.0);
-  v=v+ *(bi)/amax*partialv/nn; 
-
-  free(ap);
-  free(bp);
-  }
-  }
-
-return(v);
-
-}
-/*--------------------------------------------------------------
-
-			ROUTINE: volume
-
-   A dummy routine used to call cvolume from a fortran routine 
-
-----------------------------------------------------------------*/
-
-volumef (a,b,m,n,mmax,nmax,volume)
-
-int   *n, *m, *mmax, *nmax;
-float *a, *b;
-float *volume; 
-
-{
-
-*volume=cvolumef(a,b,m,n,mmax,nmax);
-
-}
-/*--------------------------------------------------------------
-
-			ROUTINE: cdvdaf
-
-    This routine calculates the derivative with respect to a(0,tdim)
-    of the `volume' in dimension n of the region bounded by a set 
-    of m linear inequality constraints of the form A x <= b, where 
-    a has m rows and n columns and is given by a(m,n), b is the 
-    n-vector and is contained in b(m). The derivative expression
-    is recursive and derived from the formula of Lasserre (1983). 
-
-    Redundant constraints are allowed and a warning is issued if any are 
-    encountered. If the inequality constraints are inconsistent then the 
-    derivative is returned as zero.  If any constraint is orthogonal to 
-    the component a(0,idim) then the reduction can only take place onto 
-    variable idim. A special case is used to handle this which involves
-    no further recursive calls.
-
-    If the original polyhedron is unbounded then a warning is issued
-    and the derivative is return as zero. 
-
-    Note: This code takes advantage of the fact that during recursive calls
-    constraint 0 does not change its position in the list of remaining 
-    constraints (if it has not been eliminated), i.e. it is always the 
-    first constraint.  This would not be the case if the algorithm were 
-    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
-    where i .ne. 0.
-
-    This is a faster version which does not continue down the
-    recursive tree if if encounters b(j) = 0 for any j. This
-    restricts its use to cases where the origin does not
-    pass through any inconsistent constraints. Also redundant
-    constraints that pass through the origin will not be detected.
- 
-    Calls itself cvolumeb, and cvolumebj.
- 
-				Malcolm Sambridge, March 1995.
-
-  --------------------------------------------------------------*/
-
-float cdvdaf (a,b,m,n,mmax,nmax,tdim,temp,jval,code)
-
-int   *n, *m, *nmax, *mmax, *tdim, *jval, *code;
-float *a, *b, *temp; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm,nn_max,mm_max,ttdim;
-int   nm1,mm1;
-int   lmin,lmax, jjval, kval;
-float  *ap, *bp, *ttemp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float deriv, junk, vol, dvdb, dbda;
-int   special, opt;
-
-nn= *n;
-mm= *m;
-nn_max= *nmax;
-mm_max= *mmax;
-
-/* one-dimensional case (full reduction) */
-
-*code = 0;
-
-if (nn == 1) 
-  {
-  firstmin=0;
-  firstmax=0;
-  lmax=0;
-  lmin=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
-      else if (bb<bmin) {bmin=bb;lmin=l;}
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
-      else if (bb>bmax) {bmax=bb;lmax=l;}
-      }
-    else if ( *(b+l) < 0.) 
-      {
-                                   /* Constraint is inconsistent.
-                                      Set derivative to zero. */
-
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-       *code = 1;
-       return(0.);
-      }
-    }
-  v=0.;
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded; derivative returned is zero\n");
-     *code = -1;
-     return(0.);
-    }
-
-  if (v<0.) return(0.);       
-
-  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
-    {
-     if (lmin == 0) deriv = -bmin/ *a;
-     else if (lmax == 0) deriv = bmax/ *a;
-     else deriv = 0.;
-     return(deriv); 
-    }
-  else if(*jval == 0)     /* Constraint 0  has already been encountered */
-    {
-     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
-              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
-     return(deriv); 
-    }
-  }
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
- 
-                                 /*  perform main loop over constraints */
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-   ttdim = *tdim;
-   special = 0;
-
-/* find largest pivot */
-
-  amax=0.;
-  t = 0;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm_max)) >= amax && j != ttdim) 
-        {amax= fabs( *(ai+j*mm_max)); t=j;}
-
-                                 /* finds contribution to v from 
-                                    this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-   if(*(ai + ttdim * mm_max) == 0.0) 
-     { 
-                                 /* Constraint is inconsistent */
-       if ( *(bi) < 0.)
-         {
-          printf("Constraint %d is inconsistent\n",i+1);
-          *code = 1;
-          return(0.);
-         }
-
-                                 /* otherwise constraint is redundant */
-
-       printf("Constraint %d is redundant\n",i+1); 
-     }
-   else
-     {
-                                 /* if projection can only be peformed
-                                    on dimension tdim then activate 
-                                    special case */ 
-
-     special = 1;
-     t = ttdim;
-     amax = fabs(*(ai+t * mm_max));
-
-     }
-  }
-
-  tmm=t*mm_max;
-  pivot=*(ai+tmm);
-
-  if(t < ttdim) ttdim = ttdim -1;
-
-
-  if (amax != 0)
-  {
-
-                 /* determine if constraint 0 has been encountered */
- 
-   kval = 0;
-   if ( i == 0 && *jval == 1)
-      {
-                                     /* This is the first encounter of
-                                        constraint 0 on this path so we 
-                                        allocate memory and store parameters 
-                                        to be used when n = 1 */
-
-       if (special == 0) 
-          {
-           ttemp = (float *) malloc(4*mm1);
-           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
-           kval = 1;
-          }
-       jjval = 0;
-      }
-   else if (*jval == 0)             /* Constraint 0 has already been
-                                        encountered */
-      {
-        jjval = 0;  
-                                    /* perform recursive update of component
-                                       derivative array temp. This eliminates 
-                                       row i and copies into a new vector */
-
-        if(special == 0)
-          {
-           ttemp = (float *) malloc(4*mm1);
-           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
-                                          -(*(temp+i) * *(a+j+tmm)/pivot);
-           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
-                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
-          }
-      }
-   else 
-      {                             /* Constraint 0 has not yet been 
-                                        encountered */
-      jjval = 1;                
-      }
-
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm_max;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to derivative from that calculated in smaller dimension */
-
-  					/* Normal case method */
-  if(special == 0)
-    {
-     deriv = 0.;
-     if (*(bi) != 0.) 
-     {deriv=cdvdaf(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);}
-     v=v+ *(bi)/amax*deriv/nn;
-     if (kval == 1 || *jval == 0) free(ttemp);
-     if(*code != 0)return (0.);
-
-    }
-  else					/* Use special case method */
-    {
-     if( *jval == 1)                    
-       {                     
-        if(i == 0)                      /* This is constraint 0 */
-          {
-           deriv = 0.; 
-           vol = 0.; 
-           dvdb = 0.;
-           for (j=1;j<mm;j++) 
-              {
-               k = j - 1;
-               junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
-               if(junk == -1.)
-                 {
-                  *code = -1;
-                  return(0.);
-                 }
-               deriv = deriv + dvdb * *(a + j + tmm) ;
-               vol = vol + junk;
-              }
-           if(nm1 == 1)vol = junk;
-           deriv = *(bi) * deriv/pivot;
-           deriv = (deriv - vol) /pivot; 
-           v=v+ *(bi)/amax*deriv/nn;
-
-          }
-        else				/* Constraint 0 not yet encountered */
-          {
-           opt = 2;
-           junk=cvolumeb(ap,bp,&mm1,&nm1,&mm1,&nm1,&opt,&deriv);
-           if(junk == -1.)
-             {
-              *code = -1;
-              return(0.);
-             }
-           deriv= -(deriv *  *(bi)/pivot);
-           v=v+ *(bi)/amax*deriv/nn;
-          }
-       }
-     else if( *jval == 0)               /* Constraint 0 already encountered */
-       {
-        vol = 0.; 
-        deriv = 0.; 
-        for (j=0;j<i;j++) 
-           {
-            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,j,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-        for (j=i+1;j<mm;j++) 
-           {
-            k = j - 1;
-            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-           if(nm1 == 1)vol = junk;
-           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
-           v=v+ *(bi)/amax*deriv/nn;
-       }
-    }
-
-  free(ap);
-  free(bp);
-  }
-  }
-
-return(v);
-
-}
-
-/*--------------------------------------------------------------
-
-			ROUTINE: dvda
-
-   A dummy routine used to call cdvda from a fortran routine 
-
-----------------------------------------------------------------*/
-
-dvdaf (a,b,m,n,mmax,nmax,idim,dvda,code)
-
-int   *n, *m, *mmax, *nmax, *idim, *code;
-float *a, *b;
-float *dvda; 
-
-{
-
-int    j;
-int    jval, tdim;
-float *temp;
-
-jval = 1;
-tdim = *idim - 1;
-
-*dvda=cdvdaf(a,b,m,n,mmax,nmax,&tdim,temp,&jval,code);
-
-free(temp);
-}
-
-
-/*--------------------------------------------------------------
-
-			ROUTINE: cdvda_debug
-
-    This routine calculates the derivative with respect to a(0,tdim)
-    of the `volume' in dimension n of the region bounded by a set 
-    of m linear inequality constraints of the form A x <= b, where 
-    a has m rows and n columns and is given by a(m,n), b is the 
-    n-vector and is contained in b(m). The derivative expression
-    is recursive and derived from the formula of Lasserre (1983). 
-
-    Redundant constraints are allowed and a warning is issued if any are 
-    encountered. If the inequality constraints are inconsistent then the 
-    derivative is returned as zero.  If any constraint is orthogonal to 
-    the component a(0,idim) then the reduction can only take place onto 
-    variable idim. A special case is used to handle this which involves
-    no further recursive calls.
-
-    If the original polyhedron is unbounded then a warning is issued
-    and the derivative is return as zero. 
-
-    Note: This code takes advantage of the fact that during recursive calls
-    constraint 0 does not change its position in the list of remaining 
-    constraints (if it has not been eliminated), i.e. it is always the 
-    first constraint.  This would not be the case if the algorithm were 
-    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
-    where i .ne. 0.
-
-    Calls itself cvolumeb, and cvolumebj.
-
-    This is a version of cdvda used for debugging and contains extra
-    code and print statements.
- 
-				Malcolm Sambridge, March 1995.
-
-  --------------------------------------------------------------*/
-
-float cdvda_debug (a,b,m,n,tdim,temp,jval,code)
-
-int   *n, *m, *tdim, *jval, *code;
-float *a, *b, *temp; 
-
-{
-
-float v,amax,pivot;
-int   i,j,t,k,l;
-int   jj,kk;
-float   *ai, *aj, *ajt, *apjj, *bi;
-int   kmm,tmm;
-int   nn,mm, ttdim;
-int   nm1,mm1;
-int   lmin,lmax, jjval, kval;
-float  *ap, *bp, *ttemp;
-int   firstmin,firstmax;
-float bmin,bmax,bb;
-float deriv, junk, vol, dvdb, dbda;
-int   special, opt;
-float volp, volm, da, FD, FDa;
-
-
-nn= *n;
-mm= *m;
-
-/* write out a and b (debug) */
-
-       printf("\n"); 
-       printf(" Current matrix A and vector b \n");
-   for (j=0;j<mm;j++)
-      {
-      aj=a+j;
-      for (k=0;k<nn;k++) 
-      {ajt=aj+k * mm; printf(" a %d %d = %f",j,k,*(ajt));}
-      printf(" : b = %f \n", *(b+j));
-      }
-
-/* one-dimensional case (full reduction) */
-
-*code = 0;
-
-if (nn == 1) 
-  {
-  printf("One dimension left \n");
-  firstmin=0;
-  firstmax=0;
-  lmax=0;
-  lmin=0;
-  for (l=0;l<mm;l++)
-    {
-    if ( *(a+l) > 0.) 
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
-      else if (bb<bmin) {bmin=bb;lmin=l;}
-      }
-    else if ( *(a+l) < 0.)
-      {
-      bb= *(b+l)/ *(a+l);
-      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
-      else if (bb>bmax) {bmax=bb;lmax=l;}
-      }
-    else if ( *(b+l) < 0.) 
-      {
-                                   /* Constraint is inconsistent.
-                                      Set derivative to zero. */
-
-       printf("Inconsistent constraints found after reduction to n = 1 \n");
-       *code = 1;
-       return(0.);
-      }
-    }
-  v=0.;
-  if (firstmin*firstmax == 1) v=bmin-bmax;
-  else 
-    {
-     printf("Volume is unbounded; derivative returned is zero\n");
-     *code = -1;
-     return(0.);
-    }
-
-  if (v<0.) return(0.);       
-
-  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
-    {
-     if (lmin == 0) deriv = -bmin/ *a;
-     else if (lmax == 0) deriv = bmax/ *a;
-     else deriv = 0.;
-     printf(" No projection onto constraint 0 \n");
-     printf(" lmin = %d lmax = %d bmin = %f bmax = %f alpha = %f \n",
-            lmin,lmax,bmin,bmax,*a);
-     printf(" deriv contribution = %f \n",deriv);
-     return(deriv); 
-    }
-  else if(*jval == 0)     /* Constraint 0  has already been encountered */
-    {
-     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
-              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
-     printf(" Projection onto constraint 0 has occurred \n");
-     printf(" lmin = %d bmin = %f alpha = %f temp = %f\n",
-            lmin,bmin,*(a+lmin),*(temp+lmin));
-     printf(" lmax = %d bmax = %f alpha = %f temp = %f\n",
-            lmax,bmax,*(a+lmax),*(temp+lmax));
-     printf(" deriv contribution = %f \n",deriv);
-     return(deriv); 
-    }
-  }
-nm1=nn-1;
-mm1=mm-1;
-v=0.;
- 
-printf(" About to start main loop n = %d m = %d \n",nn,mm);
-
-                                 /*  perform main loop over constraints */
-
-for (i=0;i<mm;i++)
-  {
-   ai=a+i;
-   bi=b+i;
-   ttdim = *tdim;
-   special = 0;
-
-/* find largest pivot */
-
-  amax=0.;
-  t = 0;
-  for (j=0;j<nn;j++) 
-    if (fabs( *(ai+j*mm)) >= amax && j != ttdim) 
-        {amax= fabs( *(ai+j*mm)); t=j;}
-
-                                 /* finds contribution to v from 
-                                    this pivot (if not nil) */
-
-  if (amax == 0.)
-  {
-   if(*(ai + ttdim * mm) == 0.0) 
-     { 
-                                 /* Constraint is inconsistent */
-       if ( *(bi) < 0.)
-         {
-          printf("Constraint %d is inconsistent\n",i+1);
-          *code = 1;
-          return(0.);
-         }
-
-                                 /* otherwise constraint is redundant */
-
-       printf("Constraint %d is redundant\n",i+1); 
-     }
-   else
-     {
-                                 /* if projection can only be peformed
-                                    on dimension tdim then activate 
-                                    special case */ 
-
-     printf("Constraint %d can only be projected onto dimension %d\n",i+1,*tdim);
-     printf("using special case method \n");
-     special = 1;
-     t = ttdim;
-     amax = fabs(*(ai+t * mm));
-
-     }
-  }
-
-  tmm=t*mm;
-  pivot=*(ai+tmm);
-
-  printf("\n Projection onto constraint %d variable %d k = %d\n",i,t,ttdim);
-
-  if(t < ttdim) ttdim = ttdim -1;
-
-
-  if (amax != 0)
-  {
-
-                 /* determine if constraint 0 has been encountered */
- 
-   kval = 0;
-   if ( i == 0 && *jval == 1)
-      {
-                                     /* This is the first encounter of
-                                        constraint 0 on this path so we 
-                                        allocate memory and store parameters 
-                                        to be used when n = 1 */
-
-       if (special == 0) 
-          {
-           ttemp = (float *) malloc(4*mm);
-           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
-           kval = 1;
-           printf("\n Generating temp n = %d m = %d i = %d \n",nn,mm,i); 
-           printf(" ttemp : \n"); 
-           for (j=0;j<mm1;j++) printf(" %f ",*(ttemp+j));
-           printf("\n"); 
-          }
-       jjval = 0;
-      }
-   else if (*jval == 0)             /* Constraint 0 has already been
-                                        encountered */
-      {
-        jjval = 0;  
-                                    /* perform recursive update of component
-                                       derivative array temp. This eliminates 
-                                       row i and copies into a new vector */
-
-        if(special == 0)
-          {
-           ttemp = (float *) malloc(4*mm1);
-           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
-                                          -(*(temp+i) * *(a+j+tmm)/pivot);
-           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
-                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
-           printf(" Reduced ttemp : \n"); 
-           for (j=0;j<mm1;j++) printf(" %f ",*(ttemp+j));
-           printf("\n"); 
-          }
-      }
-   else 
-      {                             /* Constraint 0 has not yet been 
-                                        encountered */
-      jjval = 1;                
-      }
-
-
-/* allocate memory */
-
-  ap = (float *) malloc(4*nm1*mm1);
-  bp = (float *) malloc(4*mm1);
-
-/* reduce a and b into ap and bp eliminating variable t and constraint i */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-  
-/* add contribution to derivative from that calculated in smaller dimension */
-
-  					/* Normal case method */
-  if(special == 0)
-    {
-/*
-     deriv = 0.;
-     if (*(bi) != 0.) 
-     {deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);}
-*/
-     deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);
-     v=v+ *(bi)/amax*deriv/nn;
-     if (kval == 1 || *jval == 0) free(ttemp);
-     if(*code != 0)return (0.);
-
-    }
-  else					/* Use special case method */
-    {
-     if( *jval == 1)                    
-       {                     
-        if(i == 0)                      /* This is constraint 0 */
-          {
-           deriv = 0.; 
-           vol = 0.; 
-           dvdb = 0.;
-           printf("\n special case 2: reduction by 0 and variable k\n"); 
-           for (j=1;j<mm;j++) 
-              {
-               k = j - 1;
-               junk=cvolumebj(ap,bp,&mm1,&nm1,k,&dvdb);
-               if(junk == -1.)
-                 {
-                  *code = -1;
-                  return(0.);
-                 }
-               printf("\n j %d k %d dvdb %f vol %f",j,k,dvdb,junk); 
-               deriv = deriv + dvdb * *(a + j + tmm) ;
-               vol = vol + junk;
-              }
-           if(nm1 == 1)vol = junk;
-           deriv = *(bi) * deriv/pivot;
-           deriv = (deriv - vol) /pivot; 
-           v=v+ *(bi)/amax*deriv/nn;
-           printf("dcont %f",deriv); 
-           printf("\n total volume of face = %f",vol); 
-
-/* start debug section */
-
-           FDa = *(bi)/amax*deriv/nn;
-           da = 0.01* *(a + *tdim * mm);
-           if(da == 0.0)da = 0.01;
-           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-          volp = cvolume(ap,bp,&mm1,&nm1); 
-          amax = fabs(pivot+da);
-          volp = (*(bi)/(amax*nn)) * volp;
-           *(a + *tdim * mm) = *(a + *tdim * mm) - 2. * da;
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-          volm = cvolume(ap,bp,&mm1,&nm1); 
-          amax = fabs(pivot-da);
-           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
-          volm = (*(bi)/(amax*nn)) * volm;
-          FD = (volp-volm)/(2. * da);
-          printf("\n k  %d a = %f da = %f",*tdim,*(a + *tdim * mm),da); 
-          printf("\n pivot = %f",pivot); 
-          printf("\n volp = %f",volp); 
-          printf("\n volm = %f",volm); 
-          printf("\n FD estimate = %f",FD); 
-          printf("\n analytical estimate = %f\n",FDa); 
-
-/* end debug section */
-
-          }
-        else				/* Constraint 0 not yet encountered */
-          {
-           printf("\n special case 1: constraint 0 not yet reached\n"); 
-           opt = 2;
-           junk=cvolumeb(ap,bp,&mm1,&nm1,&opt,&deriv);
-           if(junk == -1.)
-             {
-              *code = -1;
-              return(0.);
-             }
-           deriv= -(deriv *  *(bi)/pivot);
-           v=v+ *(bi)/amax*deriv/nn;
-           printf("\n spec: 0 not yet reached i %d dcont %f",i,deriv); 
- 
-/* debug section: reduce system and repeat calculation with finite difference */
-
-           FDa = *(bi)/amax*deriv/nn;
-           da = 0.01* *(a + *tdim * mm);
-           if(da == 0.0)da = 0.01;
-           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
-
-/* reduce system */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-          volp = cvolume(ap,bp,&mm1,&nm1); 
-           *(a + *tdim * mm) = *(a + *tdim * mm) - 2. * da;
-
-/* reduce system */
-
-  jj=-1;
-    for (j=0;j<mm;j++)
-      if (j != i)
-      {
-      jj=jj+1;
-      aj=a+j;
-      ajt=aj+tmm;
-      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
-      apjj=ap+jj;
-      kk=-1;
-      for (k=0;k<nn;k++)
-        if (k != t)
-        {
-        kk=kk+1;
-        kmm=k*mm;
-        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
-        }
-      }
-          volm = cvolume(ap,bp,&mm1,&nm1); 
-           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
-          FD = (*(bi)/(amax*nn)) * (volp-volm)/(2. * da);
-          printf("\n k  %d a = %f da = %f",*tdim,*(a + *tdim * mm),da); 
-          printf("\n volp = %f",volp); 
-          printf("\n volm = %f",volm); 
-          printf("\n FD estimate = %f",FD); 
-          printf("\n analytical estimate = %f\n",FDa); 
-
-/* end debug section */
-
-          }
-       }
-     else if( *jval == 0)               /* Constraint 0 already encountered */
-       {
-        printf("\n special case 3: constraint 0 already reduced\n"); 
-        vol = 0.; 
-        deriv = 0.; 
-        for (j=0;j<i;j++) 
-           {
-            junk=cvolumebj(ap,bp,&mm1,&nm1,j,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-        for (j=i+1;j<mm;j++) 
-           {
-            k = j - 1;
-            junk=cvolumebj(ap,bp,&mm1,&nm1,k,&dvdb);
-            if(junk == -1.)
-              {
-               *code = -1;
-               return(0.);
-              }
-            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
-            deriv = deriv + dvdb*dbda;
-            vol = vol + junk;
-           }
-           if(nm1 == 1)vol = junk;
-           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
-           v=v+ *(bi)/amax*deriv/nn;
-           printf("\n spec: 0 already encountered i = %d dcont %f",i,deriv); 
-       }
-    }
-
-  free(ap);
-  free(bp);
-  }
-  }
-
-return(v);
-
-}
-
+#include <stdlib.h>
+#include <ctype.h>
+#include <math.h>
+/*--------------------------------------------------------------
+
+    This file contains six recursive C routines for calculating
+    the volume and derivatives of a convex polyhedron in n 
+    dimensions. The routines volume, volumef, volumeb and dvda are 
+    fortran callable interfaces to their C counterparts cvolume,
+    cvolumeb and cdvda.
+
+    ROUTINE      COMMENT			CALLS 
+
+    cvolume	 calculates volume of region    cvolume 
+                 which satisfies Ax <= b.
+
+    cvolumef	 calculates volume of region    cvolumef 
+                 which satisfies Ax <= b.
+                 (faster version, see below)
+
+    cvolumeb     calculates volume and the      cvolume
+                 derivative d(vol)/db(0).
+
+    cdvda        calculates derivatives		cdvda, cvolumeb, 
+                 d(vol)/da(0,j) (j=1,n).        & cvolumebj
+
+    cdvdaf        calculates derivatives	cdvdaf, cvolumeb, 
+                 d(vol)/da(0,j) (j=1,n).        & cvolumebj
+                 (faster version, see below)
+
+    cvolumebj    calculates partial volumes
+                 and derivatives d(vol)/d(b(j)
+                 (j=1,n). (called by cdvda.)
+
+    Here b(j) is the jth element of vector b, and a(i,j) is the
+    (i,j)th coefficient of the matrix A corresponding to the
+    ith constraint and the jth dimension.
+
+    The two faster versions cvolumef and cdvdaf do not continue down
+    the recursive tree if b(j) = 0 for any j at any time. This avoids
+    extra work but restricts the applicability of the routines to
+    cases where the origin does not pass through any inconsistent
+    constraints.
+     
+				Malcolm Sambridge, April 1995.
+
+  --------------------------------------------------------------*/
+
+/*--------------------------------------------------------------
+
+			ROUTINE: cvolume
+
+    This routine calculates the `volume' in dimension n of the region
+    bounded by a set of m linear inequality constraints of the form
+    A x <= b, where a has m rows and n columns and is given by a(m,n),
+    b is the n-vector and is contained in b(m). The recursive formula
+    of Lasserre (1983) is used. Redundant constraints are allowed 
+    If the inequality constraints are inconsistent then the volume 
+    is returned as zero.  If the original polyhedron is unbounded 
+    then a warning is issued and the volume is return as -1.0 
+    (even though it is undefined). 
+
+			Jean Braun and Malcolm Sambridge, Jan 1995.
+
+    Lasserre, J. B., 1983. "An analytical expression and an Algorithm
+    for the Volume of a Convex Polyhedron in R^n.", JOTA, vol. 39, 
+    no. 3, 363-377.
+
+  --------------------------------------------------------------*/
+
+float cvolume (a,b,m,n,mmax,nmax)
+
+int   *n, *m, *mmax, *nmax;
+float *a, *b; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max;
+int   nm1,mm1;
+float  *ap, *bp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float partialv;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;}
+      else if (bb<bmin) bmin=bb;
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;}
+      else if (bb>bmax) bmax=bb;
+      }
+    else if ( *(b+l) < 0.)         /* Constraints are inconsistent */
+      { 
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+       return(0.); 
+      }
+    }
+  v=0.;
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+/*     printf("Volume is unbounded at 1-D; volume returned as -1\n");*/
+     return(-1.0);
+    }
+
+  if (v<0.) {v=0.;} 
+
+  return(v);
+  }
+
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+
+/* find largest pivot */
+
+  amax=0.;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+/* finds contribution to v from this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+                                 /* Constraint is inconsistent */
+
+    if ( *(bi) < 0.) 
+      { printf("Constraint %d is inconsistent\n",i+1); return(0.); }
+
+                                 /* otherwise constraint is redundant */
+
+    printf("Constraint %d is redundant\n",i+1); 
+  }
+  else
+  {
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to volume from volume calculated in smaller dimension */
+
+  partialv=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
+  if(partialv == -1.0)return(-1.0);
+  v=v+ *(bi)/amax*partialv/nn; 
+
+  free(ap);
+  free(bp);
+  }
+  }
+
+return(v);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: volume
+
+   A dummy routine used to call cvolume from a fortran routine 
+
+
+			Jean Braun and Malcolm Sambridge, Jan 1995.
+
+----------------------------------------------------------------*/
+
+volume (a,b,m,n,mmax,nmax,volume)
+
+int   *n, *m, *mmax, *nmax;
+float *a, *b;
+float *volume; 
+
+{
+
+*volume=cvolume(a,b,m,n,mmax,nmax);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: cvolumeb
+
+    This routine calculates the `volume' in dimension n of the region
+    bounded by a set of m linear inequality constraints of the form
+    A x <= b, where a has m rows and n columns and is given by a(m,n),
+    b is the n-vector and is contained in b(m). The recursive formula
+    of Lasserre (1983) is used. Redundant constraints are allowed and
+    a warning is issued if any are encountered. If the inequality 
+    constraints are inconsistent then the volume is returned as zero.
+    If the original polyhedron is unbounded then a warning is issued
+    and the volume is return as zero (even though it is undefined). 
+
+    This version also calculates the derivative of the volume with
+    respect to the parameter b(0) using the simple formula of
+    Lasserre (1983). If *opt == 2 then only the derivative is 
+    calculated and not the volume.
+
+    This routine is a variation from the routine `cvolume'.
+
+    Calls are made to routine cvolume.
+
+				Malcolm Sambridge, March 1995.
+
+
+  --------------------------------------------------------------*/
+
+float cvolumeb (a,b,m,n,mmax,nmax,opt,dvdb)
+
+int   *n, *m, *opt, *mmax, *nmax;
+float *a, *b; 
+float *dvdb; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max;
+int   nm1,mm1;
+int   lmin,lmax;
+float  *ap, *bp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float vol;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  lmax=0;
+  lmin=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
+      else if (bb<bmin) {bmin=bb;lmin=l;}
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
+      else if (bb>bmax) {bmax=bb;lmax=l;}
+      }
+    else if ( *(b+l) < 0.) 
+      { 
+                              /* Constraints are inconsistent.  
+                                 Set volume and derivative to zero. */
+
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+      *dvdb = 0.; 
+      return(0.);
+      }
+    }
+  v=0.;
+  *dvdb = 0.; 
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
+     return(-1.0);
+    }
+
+  if (v<0.) {v=0.;*dvdb=0.;} 
+  else if (v>0. && lmin == 0) *dvdb = 1. / *a;
+  else if (v>0. && lmax == 0) *dvdb = -1. / *a;
+  return(v);
+  }
+
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+
+/*  perform main loop over constraints */
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+
+/* find largest pivot */
+
+  amax=0.;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+/* finds contribution to v from this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+                                 /* Constraint is inconsistent */
+
+    if ( *(bi) < 0.) 
+       {
+        printf("Constraint %d is inconsistent\n",i+1); 
+        return(0.);
+       } 
+
+                                 /* otherwise constraint is redundant */
+
+    printf("Constraint %d is redundant\n",i+1); 
+  }
+  else
+  {
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to volume from volume calculated in smaller dimension */
+
+  vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
+  if(vol == -1.0)
+     {
+      *dvdb = 0.;
+      return(-1.0);
+     }
+  v=v+ *(bi)/amax*vol/nn;
+
+  free(ap);
+  free(bp);
+
+/* calculate derivatives for first constraint only */
+
+                                    /* calculate volume and derivative 
+                                       with respect to b_0 */
+  if (i == 0) *dvdb = vol/amax; 
+                                    /* calculate derivative with respect 
+                                       to b_0 but not volume */
+  if (*opt == 2) return (0.); 
+  }
+  }
+
+return(v);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: volumeb
+
+   A dummy routine used to call cvolumeb from a fortran routine 
+
+----------------------------------------------------------------*/
+
+volumeb (a,b,m,n,mmax,nmax,opt,volume,dvdb)
+
+int   *n, *m, *mmax, *nmax, *opt;
+float *a, *b;
+float *volume; 
+float *dvdb; 
+
+{
+
+if(*opt == 1)                      /* calculate volume and derivative with
+                                       respect to b(0) */
+  {
+   *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
+  }
+else if(*opt == 2)                /* calculate derivative with respect to b(0) 
+                                       but not volume */
+  {
+   *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
+  }
+else 
+  {
+   printf(" Warning: routine volumeb called with an invalid option parameter\n");
+   printf("          valid options are 1 and 2, option given = %d \n",*opt);
+  } 
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: cvolumebj
+
+    This routine only calculates the j-th outer loop of the recursive
+    routine cvolumeb. It returns the partial volume for projection 
+    onto the j-th constraint and the derivative of the total volume 
+    with respect to parameter b(j) using the simple formula of 
+    Lasserre(1983). (See cvolumeb for more details.)
+    
+    The reason for this routine is so that the derivatives
+    with respect to parameter b(j) can be calculated and passed back
+    to a fortran routine without creating and an extra array of size
+    m (because only one derivative is calculated per call). In
+    this way it also avoids recalculating the total volume m times
+    (which would be the case if we used a simple variation of routine
+     cvolumeb).
+
+    To calculate the total volume this routine must be called m times
+    and the partial volume summed
+
+    Constraint j is determined by the value of *con.
+
+    Calls are made to routine cvolume.
+
+				Malcolm Sambridge, March 1995.
+
+  --------------------------------------------------------------*/
+
+float cvolumebj (a,b,m,n,mmax,nmax,con,dvdb)
+
+int   *n, *m, *mmax, *nmax, con;
+float *a, *b; 
+float *dvdb; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max;
+int   nm1,mm1;
+int   lmin,lmax;
+float  *ap, *bp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float vol;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  lmax=0;
+  lmin=0;
+  for (l=0;l<mm;l++) 
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
+      else if (bb<bmin) {bmin=bb;lmin=l;}
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
+      else if (bb>bmax) {bmax=bb;lmax=l;}
+      }
+    else if ( *(b+l) < 0.) 
+      { 
+                              /* Constraints are inconsistent.  
+                                 Set volume and derivative to zero. */
+
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+      *dvdb = 0.; 
+      return(0.);
+      }
+    }
+  v=0.;
+  *dvdb = 0.; 
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
+     return(-1.0);
+    }
+
+  if (v<0.) {v=0.;*dvdb=0.;} 
+  else if (v>0. && lmin == con) *dvdb = 1. / *(a+lmin);
+  else if (v>0. && lmax == con) *dvdb = -1. / *(a+lmax);
+  return(v);
+  }
+
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+
+/*  perform main loop over constraints */
+
+/* for (i=0;i<mm;i++) */
+
+  i = con;
+
+   ai=a+i;
+   bi=b+i;
+
+/* find largest pivot */
+
+  amax=0.;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+/* finds contribution to v from this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+                                 /* Constraint is inconsistent */
+
+    if ( *(bi) < 0.) 
+       {
+        printf("Constraint %d is inconsistent\n",i+1); 
+        *dvdb = 0.; 
+        return(0.);
+       } 
+
+                                 /* otherwise constraint is redundant */
+
+    printf("Constraint %d is redundant\n",i+1); 
+    *dvdb = 0.; 
+  }
+  else
+  {
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+                                    /* calculate partial volume */ 
+
+  vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
+  if(vol == -1.0)
+     {
+      *dvdb = 0.;
+      return(-1.0);
+     }
+  v=*(bi)/amax*vol/nn;
+
+                                    /* calculate derivative of total volume
+                                       with respect to current constraint */
+  *dvdb = vol/amax; 
+
+  free(ap);
+  free(bp);
+  }
+
+return(v);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: volumebj
+
+   A dummy routine used to call cvolumebj from a fortran routine
+
+----------------------------------------------------------------*/
+
+volumebj (a,b,m,n,mmax,nmax,con,volume,dvdb)
+
+int   *n, *m, *mmax, *nmax,*con;
+float *a, *b;
+float *volume; 
+float *dvdb; 
+
+{
+
+int tcon;
+tcon = *con - 1;
+                                    /* calculate partial volume and 
+                                       derivative with respect to b(con) */
+
+   *volume=cvolumebj(a,b,m,n,mmax,nmax,tcon,dvdb);
+
+}
+/*--------------------------------------------------------------
+
+			ROUTINE: cdvda
+
+    This routine calculates the derivative with respect to a(0,tdim)
+    of the `volume' in dimension n of the region bounded by a set 
+    of m linear inequality constraints of the form A x <= b, where 
+    a has m rows and n columns and is given by a(m,n), b is the 
+    n-vector and is contained in b(m). The derivative expression
+    is recursive and derived from the formula of Lasserre (1983). 
+
+    Redundant constraints are allowed and a warning is issued if any are 
+    encountered. If the inequality constraints are inconsistent then the 
+    derivative is returned as zero.  If any constraint is orthogonal to 
+    the component a(0,idim) then the reduction can only take place onto 
+    variable idim. A special case is used to handle this which involves
+    no further recursive calls.
+
+    If the original polyhedron is unbounded then a warning is issued
+    and the derivative is return as zero. 
+
+    Note: This code takes advantage of the fact that during recursive calls
+    constraint 0 does not change its position in the list of remaining 
+    constraints (if it has not been eliminated), i.e. it is always the 
+    first constraint.  This would not be the case if the algorithm were 
+    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
+    where i .ne. 0.
+
+    Calls itself cvolumeb, and cvolumebj.
+ 
+				Malcolm Sambridge, March 1995.
+
+  --------------------------------------------------------------*/
+
+float cdvda (a,b,m,n,mmax,nmax,tdim,temp,jval,code)
+
+int   *n, *m, *nmax, *mmax, *tdim, *jval, *code;
+float *a, *b, *temp; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max,ttdim;
+int   nm1,mm1;
+int   lmin,lmax, jjval, kval;
+float  *ap, *bp, *ttemp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float deriv, junk, vol, dvdb, dbda;
+int   special, opt;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+*code = 0;
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  lmax=0;
+  lmin=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
+      else if (bb<bmin) {bmin=bb;lmin=l;}
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
+      else if (bb>bmax) {bmax=bb;lmax=l;}
+      }
+    else if ( *(b+l) < 0.) 
+      {
+                                   /* Constraint is inconsistent.
+                                      Set derivative to zero. */
+
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+       *code = 1;
+       return(0.);
+      }
+    }
+  v=0.;
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded; derivative returned is zero\n");
+     *code = -1;
+     return(0.);
+    }
+
+  if (v<0.) return(0.);       
+
+  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
+    {
+     if (lmin == 0) deriv = -bmin/ *a;
+     else if (lmax == 0) deriv = bmax/ *a;
+     else deriv = 0.;
+     return(deriv); 
+    }
+  else if(*jval == 0)     /* Constraint 0  has already been encountered */
+    {
+     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
+              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
+     return(deriv); 
+    }
+  }
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+ 
+                                 /*  perform main loop over constraints */
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+   ttdim = *tdim;
+   special = 0;
+
+/* find largest pivot */
+
+  amax=0.;
+  t = 0;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax && j != ttdim) 
+        {amax= fabs( *(ai+j*mm_max)); t=j;}
+
+                                 /* finds contribution to v from 
+                                    this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+   if(*(ai + ttdim * mm_max) == 0.0) 
+     { 
+                                 /* Constraint is inconsistent */
+       if ( *(bi) < 0.)
+         {
+          printf("Constraint %d is inconsistent\n",i+1);
+          *code = 1;
+          return(0.);
+         }
+
+                                 /* otherwise constraint is redundant */
+
+       printf("Constraint %d is redundant\n",i+1); 
+     }
+   else
+     {
+                                 /* if projection can only be peformed
+                                    on dimension tdim then activate 
+                                    special case */ 
+
+     special = 1;
+     t = ttdim;
+     amax = fabs(*(ai+t * mm_max));
+
+     }
+  }
+
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+  if(t < ttdim) ttdim = ttdim -1;
+
+
+  if (amax != 0)
+  {
+
+                 /* determine if constraint 0 has been encountered */
+ 
+   kval = 0;
+   if ( i == 0 && *jval == 1)
+      {
+                                     /* This is the first encounter of
+                                        constraint 0 on this path so we 
+                                        allocate memory and store parameters 
+                                        to be used when n = 1 */
+
+       if (special == 0) 
+          {
+           ttemp = (float *) malloc(4*mm1);
+           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
+           kval = 1;
+          }
+       jjval = 0;
+      }
+   else if (*jval == 0)             /* Constraint 0 has already been
+                                        encountered */
+      {
+        jjval = 0;  
+                                    /* perform recursive update of component
+                                       derivative array temp. This eliminates 
+                                       row i and copies into a new vector */
+
+        if(special == 0)
+          {
+           ttemp = (float *) malloc(4*mm1);
+           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
+                                          -(*(temp+i) * *(a+j+tmm)/pivot);
+           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
+                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
+          }
+      }
+   else 
+      {                             /* Constraint 0 has not yet been 
+                                        encountered */
+      jjval = 1;                
+      }
+
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to derivative from that calculated in smaller dimension */
+
+  					/* Normal case method */
+  if(special == 0)
+    {
+     deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);
+     v=v+ *(bi)/amax*deriv/nn;
+     if (kval == 1 || *jval == 0) free(ttemp);
+     if(*code != 0)return (0.);
+
+    }
+  else					/* Use special case method */
+    {
+     if( *jval == 1)                    
+       {                     
+        if(i == 0)                      /* This is constraint 0 */
+          {
+           deriv = 0.; 
+           vol = 0.; 
+           dvdb = 0.;
+           for (j=1;j<mm;j++) 
+              {
+               k = j - 1;
+               junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
+               if(junk == -1.)
+                 {
+                  *code = -1;
+                  return(0.);
+                 }
+               deriv = deriv + dvdb * *(a + j + tmm) ;
+               vol = vol + junk;
+              }
+           if(nm1 == 1)vol = junk;
+           deriv = *(bi) * deriv/pivot;
+           deriv = (deriv - vol) /pivot; 
+           v=v+ *(bi)/amax*deriv/nn;
+
+          }
+        else				/* Constraint 0 not yet encountered */
+          {
+           opt = 2;
+           junk=cvolumeb(ap,bp,&mm1,&nm1,&mm1,&nm1,&opt,&deriv);
+           if(junk == -1.)
+             {
+              *code = -1;
+              return(0.);
+             }
+           deriv= -(deriv *  *(bi)/pivot);
+           v=v+ *(bi)/amax*deriv/nn;
+          }
+       }
+     else if( *jval == 0)               /* Constraint 0 already encountered */
+       {
+        vol = 0.; 
+        deriv = 0.; 
+        for (j=0;j<i;j++) 
+           {
+            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,j,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+        for (j=i+1;j<mm;j++) 
+           {
+            k = j - 1;
+            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+           if(nm1 == 1)vol = junk;
+           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
+           v=v+ *(bi)/amax*deriv/nn;
+       }
+    }
+
+  free(ap);
+  free(bp);
+  }
+  }
+
+return(v);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: dvda
+
+   A dummy routine used to call cdvda from a fortran routine 
+
+----------------------------------------------------------------*/
+
+dvda (a,b,m,n,mmax,nmax,idim,dvda,code)
+
+int   *n, *m, *mmax, *nmax, *idim, *code;
+float *a, *b;
+float *dvda; 
+
+{
+
+int    j;
+int    jval, tdim;
+float *temp;
+
+jval = 1;
+tdim = *idim - 1;
+
+*dvda=cdvda(a,b,m,n,mmax,nmax,&tdim,temp,&jval,code);
+
+free(temp);
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: cvolumef
+
+    This routine calculates the `volume' in dimension n of the region
+    bounded by a set of m linear inequality constraints of the form
+    A x <= b, where a has m rows and n columns and is given by a(m,n),
+    b is the n-vector and is contained in b(m). The recursive formula
+    of Lasserre (1983) is used. Redundant constraints are allowed 
+    If the inequality constraints are inconsistent then the volume 
+    is returned as zero.  If the original polyhedron is unbounded 
+    then a warning is issued and the volume is return as -1.0 
+    (even though it is undefined). 
+
+    This is a faster version which does not continue down the
+    recursive tree if if encounters b(j) = 0 for any j. This
+    restricts its use to cases where the origin does not
+    pass through any inconsistent constraints. Also redundant
+    constraints that pass through the origin will not be detected.
+ 
+			Jean Braun and Malcolm Sambridge, Jan 1995.
+
+
+    Lasserre, J. B., 1983. "An analytical expression and an Algorithm
+    for the Volume of a Convex Polyhedron in R^n.", JOTA, vol. 39, 
+    no. 3, 363-377.
+
+  --------------------------------------------------------------*/
+
+float cvolumef (a,b,m,n,mmax,nmax)
+
+int   *n, *m, *mmax, *nmax;
+float *a, *b; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max;
+int   nm1,mm1;
+float  *ap, *bp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float partialv;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;}
+      else if (bb<bmin) bmin=bb;
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;}
+      else if (bb>bmax) bmax=bb;
+      }
+    else if ( *(b+l) < 0.)         /* Constraints are inconsistent */
+      { 
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+       return(0.); 
+      }
+    }
+  v=0.;
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded at 1-D; volume returned as -1\n");
+     return(-1.0);
+    }
+
+  if (v<0.) {v=0.;} 
+
+  return(v);
+  }
+
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+
+/* find largest pivot */
+
+  amax=0.;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+/* finds contribution to v from this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+                                 /* Constraint is inconsistent */
+
+    if ( *(bi) < 0.) 
+      { printf("Constraint %d is inconsistent\n",i+1); return(0.); }
+
+                                 /* otherwise constraint is redundant */
+
+    printf("Constraint %d is redundant\n",i+1); 
+  }
+  else
+  {
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to volume from volume calculated in smaller dimension */
+
+  partialv = 0.;
+  if (*(bi) != 0.) partialv=cvolumef(ap,bp, &mm1, &nm1, &mm1, &nm1);
+  if(partialv == -1.0)return(-1.0);
+  v=v+ *(bi)/amax*partialv/nn; 
+
+  free(ap);
+  free(bp);
+  }
+  }
+
+return(v);
+
+}
+/*--------------------------------------------------------------
+
+			ROUTINE: volume
+
+   A dummy routine used to call cvolume from a fortran routine 
+
+----------------------------------------------------------------*/
+
+volumef (a,b,m,n,mmax,nmax,volume)
+
+int   *n, *m, *mmax, *nmax;
+float *a, *b;
+float *volume; 
+
+{
+
+*volume=cvolumef(a,b,m,n,mmax,nmax);
+
+}
+/*--------------------------------------------------------------
+
+			ROUTINE: cdvdaf
+
+    This routine calculates the derivative with respect to a(0,tdim)
+    of the `volume' in dimension n of the region bounded by a set 
+    of m linear inequality constraints of the form A x <= b, where 
+    a has m rows and n columns and is given by a(m,n), b is the 
+    n-vector and is contained in b(m). The derivative expression
+    is recursive and derived from the formula of Lasserre (1983). 
+
+    Redundant constraints are allowed and a warning is issued if any are 
+    encountered. If the inequality constraints are inconsistent then the 
+    derivative is returned as zero.  If any constraint is orthogonal to 
+    the component a(0,idim) then the reduction can only take place onto 
+    variable idim. A special case is used to handle this which involves
+    no further recursive calls.
+
+    If the original polyhedron is unbounded then a warning is issued
+    and the derivative is return as zero. 
+
+    Note: This code takes advantage of the fact that during recursive calls
+    constraint 0 does not change its position in the list of remaining 
+    constraints (if it has not been eliminated), i.e. it is always the 
+    first constraint.  This would not be the case if the algorithm were 
+    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
+    where i .ne. 0.
+
+    This is a faster version which does not continue down the
+    recursive tree if if encounters b(j) = 0 for any j. This
+    restricts its use to cases where the origin does not
+    pass through any inconsistent constraints. Also redundant
+    constraints that pass through the origin will not be detected.
+ 
+    Calls itself cvolumeb, and cvolumebj.
+ 
+				Malcolm Sambridge, March 1995.
+
+  --------------------------------------------------------------*/
+
+float cdvdaf (a,b,m,n,mmax,nmax,tdim,temp,jval,code)
+
+int   *n, *m, *nmax, *mmax, *tdim, *jval, *code;
+float *a, *b, *temp; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm,nn_max,mm_max,ttdim;
+int   nm1,mm1;
+int   lmin,lmax, jjval, kval;
+float  *ap, *bp, *ttemp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float deriv, junk, vol, dvdb, dbda;
+int   special, opt;
+
+nn= *n;
+mm= *m;
+nn_max= *nmax;
+mm_max= *mmax;
+
+/* one-dimensional case (full reduction) */
+
+*code = 0;
+
+if (nn == 1) 
+  {
+  firstmin=0;
+  firstmax=0;
+  lmax=0;
+  lmin=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
+      else if (bb<bmin) {bmin=bb;lmin=l;}
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
+      else if (bb>bmax) {bmax=bb;lmax=l;}
+      }
+    else if ( *(b+l) < 0.) 
+      {
+                                   /* Constraint is inconsistent.
+                                      Set derivative to zero. */
+
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+       *code = 1;
+       return(0.);
+      }
+    }
+  v=0.;
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded; derivative returned is zero\n");
+     *code = -1;
+     return(0.);
+    }
+
+  if (v<0.) return(0.);       
+
+  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
+    {
+     if (lmin == 0) deriv = -bmin/ *a;
+     else if (lmax == 0) deriv = bmax/ *a;
+     else deriv = 0.;
+     return(deriv); 
+    }
+  else if(*jval == 0)     /* Constraint 0  has already been encountered */
+    {
+     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
+              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
+     return(deriv); 
+    }
+  }
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+ 
+                                 /*  perform main loop over constraints */
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+   ttdim = *tdim;
+   special = 0;
+
+/* find largest pivot */
+
+  amax=0.;
+  t = 0;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm_max)) >= amax && j != ttdim) 
+        {amax= fabs( *(ai+j*mm_max)); t=j;}
+
+                                 /* finds contribution to v from 
+                                    this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+   if(*(ai + ttdim * mm_max) == 0.0) 
+     { 
+                                 /* Constraint is inconsistent */
+       if ( *(bi) < 0.)
+         {
+          printf("Constraint %d is inconsistent\n",i+1);
+          *code = 1;
+          return(0.);
+         }
+
+                                 /* otherwise constraint is redundant */
+
+       printf("Constraint %d is redundant\n",i+1); 
+     }
+   else
+     {
+                                 /* if projection can only be peformed
+                                    on dimension tdim then activate 
+                                    special case */ 
+
+     special = 1;
+     t = ttdim;
+     amax = fabs(*(ai+t * mm_max));
+
+     }
+  }
+
+  tmm=t*mm_max;
+  pivot=*(ai+tmm);
+
+  if(t < ttdim) ttdim = ttdim -1;
+
+
+  if (amax != 0)
+  {
+
+                 /* determine if constraint 0 has been encountered */
+ 
+   kval = 0;
+   if ( i == 0 && *jval == 1)
+      {
+                                     /* This is the first encounter of
+                                        constraint 0 on this path so we 
+                                        allocate memory and store parameters 
+                                        to be used when n = 1 */
+
+       if (special == 0) 
+          {
+           ttemp = (float *) malloc(4*mm1);
+           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
+           kval = 1;
+          }
+       jjval = 0;
+      }
+   else if (*jval == 0)             /* Constraint 0 has already been
+                                        encountered */
+      {
+        jjval = 0;  
+                                    /* perform recursive update of component
+                                       derivative array temp. This eliminates 
+                                       row i and copies into a new vector */
+
+        if(special == 0)
+          {
+           ttemp = (float *) malloc(4*mm1);
+           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
+                                          -(*(temp+i) * *(a+j+tmm)/pivot);
+           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
+                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
+          }
+      }
+   else 
+      {                             /* Constraint 0 has not yet been 
+                                        encountered */
+      jjval = 1;                
+      }
+
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm_max;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to derivative from that calculated in smaller dimension */
+
+  					/* Normal case method */
+  if(special == 0)
+    {
+     deriv = 0.;
+     if (*(bi) != 0.) 
+     {deriv=cdvdaf(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);}
+     v=v+ *(bi)/amax*deriv/nn;
+     if (kval == 1 || *jval == 0) free(ttemp);
+     if(*code != 0)return (0.);
+
+    }
+  else					/* Use special case method */
+    {
+     if( *jval == 1)                    
+       {                     
+        if(i == 0)                      /* This is constraint 0 */
+          {
+           deriv = 0.; 
+           vol = 0.; 
+           dvdb = 0.;
+           for (j=1;j<mm;j++) 
+              {
+               k = j - 1;
+               junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
+               if(junk == -1.)
+                 {
+                  *code = -1;
+                  return(0.);
+                 }
+               deriv = deriv + dvdb * *(a + j + tmm) ;
+               vol = vol + junk;
+              }
+           if(nm1 == 1)vol = junk;
+           deriv = *(bi) * deriv/pivot;
+           deriv = (deriv - vol) /pivot; 
+           v=v+ *(bi)/amax*deriv/nn;
+
+          }
+        else				/* Constraint 0 not yet encountered */
+          {
+           opt = 2;
+           junk=cvolumeb(ap,bp,&mm1,&nm1,&mm1,&nm1,&opt,&deriv);
+           if(junk == -1.)
+             {
+              *code = -1;
+              return(0.);
+             }
+           deriv= -(deriv *  *(bi)/pivot);
+           v=v+ *(bi)/amax*deriv/nn;
+          }
+       }
+     else if( *jval == 0)               /* Constraint 0 already encountered */
+       {
+        vol = 0.; 
+        deriv = 0.; 
+        for (j=0;j<i;j++) 
+           {
+            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,j,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+        for (j=i+1;j<mm;j++) 
+           {
+            k = j - 1;
+            junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+           if(nm1 == 1)vol = junk;
+           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
+           v=v+ *(bi)/amax*deriv/nn;
+       }
+    }
+
+  free(ap);
+  free(bp);
+  }
+  }
+
+return(v);
+
+}
+
+/*--------------------------------------------------------------
+
+			ROUTINE: dvda
+
+   A dummy routine used to call cdvda from a fortran routine 
+
+----------------------------------------------------------------*/
+
+dvdaf (a,b,m,n,mmax,nmax,idim,dvda,code)
+
+int   *n, *m, *mmax, *nmax, *idim, *code;
+float *a, *b;
+float *dvda; 
+
+{
+
+int    j;
+int    jval, tdim;
+float *temp;
+
+jval = 1;
+tdim = *idim - 1;
+
+*dvda=cdvdaf(a,b,m,n,mmax,nmax,&tdim,temp,&jval,code);
+
+free(temp);
+}
+
+
+/*--------------------------------------------------------------
+
+			ROUTINE: cdvda_debug
+
+    This routine calculates the derivative with respect to a(0,tdim)
+    of the `volume' in dimension n of the region bounded by a set 
+    of m linear inequality constraints of the form A x <= b, where 
+    a has m rows and n columns and is given by a(m,n), b is the 
+    n-vector and is contained in b(m). The derivative expression
+    is recursive and derived from the formula of Lasserre (1983). 
+
+    Redundant constraints are allowed and a warning is issued if any are 
+    encountered. If the inequality constraints are inconsistent then the 
+    derivative is returned as zero.  If any constraint is orthogonal to 
+    the component a(0,idim) then the reduction can only take place onto 
+    variable idim. A special case is used to handle this which involves
+    no further recursive calls.
+
+    If the original polyhedron is unbounded then a warning is issued
+    and the derivative is return as zero. 
+
+    Note: This code takes advantage of the fact that during recursive calls
+    constraint 0 does not change its position in the list of remaining 
+    constraints (if it has not been eliminated), i.e. it is always the 
+    first constraint.  This would not be the case if the algorithm were 
+    adapated to deal with other constraints, i.e. evaluate dvda_i,j 
+    where i .ne. 0.
+
+    Calls itself cvolumeb, and cvolumebj.
+
+    This is a version of cdvda used for debugging and contains extra
+    code and print statements.
+ 
+				Malcolm Sambridge, March 1995.
+
+  --------------------------------------------------------------*/
+
+float cdvda_debug (a,b,m,n,tdim,temp,jval,code)
+
+int   *n, *m, *tdim, *jval, *code;
+float *a, *b, *temp; 
+
+{
+
+float v,amax,pivot;
+int   i,j,t,k,l;
+int   jj,kk;
+float   *ai, *aj, *ajt, *apjj, *bi;
+int   kmm,tmm;
+int   nn,mm, ttdim;
+int   nm1,mm1;
+int   lmin,lmax, jjval, kval;
+float  *ap, *bp, *ttemp;
+int   firstmin,firstmax;
+float bmin,bmax,bb;
+float deriv, junk, vol, dvdb, dbda;
+int   special, opt;
+float volp, volm, da, FD, FDa;
+
+
+nn= *n;
+mm= *m;
+
+/* write out a and b (debug) */
+
+       printf("\n"); 
+       printf(" Current matrix A and vector b \n");
+   for (j=0;j<mm;j++)
+      {
+      aj=a+j;
+      for (k=0;k<nn;k++) 
+      {ajt=aj+k * mm; printf(" a %d %d = %f",j,k,*(ajt));}
+      printf(" : b = %f \n", *(b+j));
+      }
+
+/* one-dimensional case (full reduction) */
+
+*code = 0;
+
+if (nn == 1) 
+  {
+  printf("One dimension left \n");
+  firstmin=0;
+  firstmax=0;
+  lmax=0;
+  lmin=0;
+  for (l=0;l<mm;l++)
+    {
+    if ( *(a+l) > 0.) 
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
+      else if (bb<bmin) {bmin=bb;lmin=l;}
+      }
+    else if ( *(a+l) < 0.)
+      {
+      bb= *(b+l)/ *(a+l);
+      if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
+      else if (bb>bmax) {bmax=bb;lmax=l;}
+      }
+    else if ( *(b+l) < 0.) 
+      {
+                                   /* Constraint is inconsistent.
+                                      Set derivative to zero. */
+
+       printf("Inconsistent constraints found after reduction to n = 1 \n");
+       *code = 1;
+       return(0.);
+      }
+    }
+  v=0.;
+  if (firstmin*firstmax == 1) v=bmin-bmax;
+  else 
+    {
+     printf("Volume is unbounded; derivative returned is zero\n");
+     *code = -1;
+     return(0.);
+    }
+
+  if (v<0.) return(0.);       
+
+  if(*jval == 1)           /* Constraint 0 has not yet been encountered */
+    {
+     if (lmin == 0) deriv = -bmin/ *a;
+     else if (lmax == 0) deriv = bmax/ *a;
+     else deriv = 0.;
+     printf(" No projection onto constraint 0 \n");
+     printf(" lmin = %d lmax = %d bmin = %f bmax = %f alpha = %f \n",
+            lmin,lmax,bmin,bmax,*a);
+     printf(" deriv contribution = %f \n",deriv);
+     return(deriv); 
+    }
+  else if(*jval == 0)     /* Constraint 0  has already been encountered */
+    {
+     deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
+              ( *(temp+lmin) * (bmin/ *(a+lmin)) );
+     printf(" Projection onto constraint 0 has occurred \n");
+     printf(" lmin = %d bmin = %f alpha = %f temp = %f\n",
+            lmin,bmin,*(a+lmin),*(temp+lmin));
+     printf(" lmax = %d bmax = %f alpha = %f temp = %f\n",
+            lmax,bmax,*(a+lmax),*(temp+lmax));
+     printf(" deriv contribution = %f \n",deriv);
+     return(deriv); 
+    }
+  }
+nm1=nn-1;
+mm1=mm-1;
+v=0.;
+ 
+printf(" About to start main loop n = %d m = %d \n",nn,mm);
+
+                                 /*  perform main loop over constraints */
+
+for (i=0;i<mm;i++)
+  {
+   ai=a+i;
+   bi=b+i;
+   ttdim = *tdim;
+   special = 0;
+
+/* find largest pivot */
+
+  amax=0.;
+  t = 0;
+  for (j=0;j<nn;j++) 
+    if (fabs( *(ai+j*mm)) >= amax && j != ttdim) 
+        {amax= fabs( *(ai+j*mm)); t=j;}
+
+                                 /* finds contribution to v from 
+                                    this pivot (if not nil) */
+
+  if (amax == 0.)
+  {
+   if(*(ai + ttdim * mm) == 0.0) 
+     { 
+                                 /* Constraint is inconsistent */
+       if ( *(bi) < 0.)
+         {
+          printf("Constraint %d is inconsistent\n",i+1);
+          *code = 1;
+          return(0.);
+         }
+
+                                 /* otherwise constraint is redundant */
+
+       printf("Constraint %d is redundant\n",i+1); 
+     }
+   else
+     {
+                                 /* if projection can only be peformed
+                                    on dimension tdim then activate 
+                                    special case */ 
+
+     printf("Constraint %d can only be projected onto dimension %d\n",i+1,*tdim);
+     printf("using special case method \n");
+     special = 1;
+     t = ttdim;
+     amax = fabs(*(ai+t * mm));
+
+     }
+  }
+
+  tmm=t*mm;
+  pivot=*(ai+tmm);
+
+  printf("\n Projection onto constraint %d variable %d k = %d\n",i,t,ttdim);
+
+  if(t < ttdim) ttdim = ttdim -1;
+
+
+  if (amax != 0)
+  {
+
+                 /* determine if constraint 0 has been encountered */
+ 
+   kval = 0;
+   if ( i == 0 && *jval == 1)
+      {
+                                     /* This is the first encounter of
+                                        constraint 0 on this path so we 
+                                        allocate memory and store parameters 
+                                        to be used when n = 1 */
+
+       if (special == 0) 
+          {
+           ttemp = (float *) malloc(4*mm);
+           for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
+           kval = 1;
+           printf("\n Generating temp n = %d m = %d i = %d \n",nn,mm,i); 
+           printf(" ttemp : \n"); 
+           for (j=0;j<mm1;j++) printf(" %f ",*(ttemp+j));
+           printf("\n"); 
+          }
+       jjval = 0;
+      }
+   else if (*jval == 0)             /* Constraint 0 has already been
+                                        encountered */
+      {
+        jjval = 0;  
+                                    /* perform recursive update of component
+                                       derivative array temp. This eliminates 
+                                       row i and copies into a new vector */
+
+        if(special == 0)
+          {
+           ttemp = (float *) malloc(4*mm1);
+           for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
+                                          -(*(temp+i) * *(a+j+tmm)/pivot);
+           for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
+                                          -(*(temp+i) * *(a+j+1+tmm)/pivot);
+           printf(" Reduced ttemp : \n"); 
+           for (j=0;j<mm1;j++) printf(" %f ",*(ttemp+j));
+           printf("\n"); 
+          }
+      }
+   else 
+      {                             /* Constraint 0 has not yet been 
+                                        encountered */
+      jjval = 1;                
+      }
+
+
+/* allocate memory */
+
+  ap = (float *) malloc(4*nm1*mm1);
+  bp = (float *) malloc(4*mm1);
+
+/* reduce a and b into ap and bp eliminating variable t and constraint i */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+  
+/* add contribution to derivative from that calculated in smaller dimension */
+
+  					/* Normal case method */
+  if(special == 0)
+    {
+/*
+     deriv = 0.;
+     if (*(bi) != 0.) 
+     {deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);}
+*/
+     deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);
+     v=v+ *(bi)/amax*deriv/nn;
+     if (kval == 1 || *jval == 0) free(ttemp);
+     if(*code != 0)return (0.);
+
+    }
+  else					/* Use special case method */
+    {
+     if( *jval == 1)                    
+       {                     
+        if(i == 0)                      /* This is constraint 0 */
+          {
+           deriv = 0.; 
+           vol = 0.; 
+           dvdb = 0.;
+           printf("\n special case 2: reduction by 0 and variable k\n"); 
+           for (j=1;j<mm;j++) 
+              {
+               k = j - 1;
+               junk=cvolumebj(ap,bp,&mm1,&nm1,k,&dvdb);
+               if(junk == -1.)
+                 {
+                  *code = -1;
+                  return(0.);
+                 }
+               printf("\n j %d k %d dvdb %f vol %f",j,k,dvdb,junk); 
+               deriv = deriv + dvdb * *(a + j + tmm) ;
+               vol = vol + junk;
+              }
+           if(nm1 == 1)vol = junk;
+           deriv = *(bi) * deriv/pivot;
+           deriv = (deriv - vol) /pivot; 
+           v=v+ *(bi)/amax*deriv/nn;
+           printf("dcont %f",deriv); 
+           printf("\n total volume of face = %f",vol); 
+
+/* start debug section */
+
+           FDa = *(bi)/amax*deriv/nn;
+           da = 0.01* *(a + *tdim * mm);
+           if(da == 0.0)da = 0.01;
+           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+          volp = cvolume(ap,bp,&mm1,&nm1); 
+          amax = fabs(pivot+da);
+          volp = (*(bi)/(amax*nn)) * volp;
+           *(a + *tdim * mm) = *(a + *tdim * mm) - 2. * da;
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+          volm = cvolume(ap,bp,&mm1,&nm1); 
+          amax = fabs(pivot-da);
+           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
+          volm = (*(bi)/(amax*nn)) * volm;
+          FD = (volp-volm)/(2. * da);
+          printf("\n k  %d a = %f da = %f",*tdim,*(a + *tdim * mm),da); 
+          printf("\n pivot = %f",pivot); 
+          printf("\n volp = %f",volp); 
+          printf("\n volm = %f",volm); 
+          printf("\n FD estimate = %f",FD); 
+          printf("\n analytical estimate = %f\n",FDa); 
+
+/* end debug section */
+
+          }
+        else				/* Constraint 0 not yet encountered */
+          {
+           printf("\n special case 1: constraint 0 not yet reached\n"); 
+           opt = 2;
+           junk=cvolumeb(ap,bp,&mm1,&nm1,&opt,&deriv);
+           if(junk == -1.)
+             {
+              *code = -1;
+              return(0.);
+             }
+           deriv= -(deriv *  *(bi)/pivot);
+           v=v+ *(bi)/amax*deriv/nn;
+           printf("\n spec: 0 not yet reached i %d dcont %f",i,deriv); 
+ 
+/* debug section: reduce system and repeat calculation with finite difference */
+
+           FDa = *(bi)/amax*deriv/nn;
+           da = 0.01* *(a + *tdim * mm);
+           if(da == 0.0)da = 0.01;
+           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
+
+/* reduce system */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+          volp = cvolume(ap,bp,&mm1,&nm1); 
+           *(a + *tdim * mm) = *(a + *tdim * mm) - 2. * da;
+
+/* reduce system */
+
+  jj=-1;
+    for (j=0;j<mm;j++)
+      if (j != i)
+      {
+      jj=jj+1;
+      aj=a+j;
+      ajt=aj+tmm;
+      *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
+      apjj=ap+jj;
+      kk=-1;
+      for (k=0;k<nn;k++)
+        if (k != t)
+        {
+        kk=kk+1;
+        kmm=k*mm;
+        *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
+        }
+      }
+          volm = cvolume(ap,bp,&mm1,&nm1); 
+           *(a + *tdim * mm) = *(a + *tdim * mm) + da;
+          FD = (*(bi)/(amax*nn)) * (volp-volm)/(2. * da);
+          printf("\n k  %d a = %f da = %f",*tdim,*(a + *tdim * mm),da); 
+          printf("\n volp = %f",volp); 
+          printf("\n volm = %f",volm); 
+          printf("\n FD estimate = %f",FD); 
+          printf("\n analytical estimate = %f\n",FDa); 
+
+/* end debug section */
+
+          }
+       }
+     else if( *jval == 0)               /* Constraint 0 already encountered */
+       {
+        printf("\n special case 3: constraint 0 already reduced\n"); 
+        vol = 0.; 
+        deriv = 0.; 
+        for (j=0;j<i;j++) 
+           {
+            junk=cvolumebj(ap,bp,&mm1,&nm1,j,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+        for (j=i+1;j<mm;j++) 
+           {
+            k = j - 1;
+            junk=cvolumebj(ap,bp,&mm1,&nm1,k,&dvdb);
+            if(junk == -1.)
+              {
+               *code = -1;
+               return(0.);
+              }
+            dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
+            deriv = deriv + dvdb*dbda;
+            vol = vol + junk;
+           }
+           if(nm1 == 1)vol = junk;
+           deriv = (*(bi) * deriv - *(temp+i)*vol)/pivot;
+           v=v+ *(bi)/amax*deriv/nn;
+           printf("\n spec: 0 already encountered i = %d dcont %f",i,deriv); 
+       }
+    }
+
+  free(ap);
+  free(bp);
+  }
+  }
+
+return(v);
+
+}
+
-- 
GitLab