
DOUAR
theory, methods, and concepts

C. Thieulot, J. Braun, P. Fullsack

cedric.thieulot@univ-rennes1.fr

Univ. Rennes1

Univ. Dalhousie

CT. Feb. 2007 – p. 1/190

who?

main developpers

Jean Braun Géosciences Rennes

Cedric Thieulot University of Rennes

France

Chris Beaumont Dalhousie Geodynamics Group

Philippe Fullsack Oceanography Department

Halifax

Martijn de Kool Australian National University

Australia

contributers

Ritske Huismans Department of Earth Sciences

Bergen University

Norway

Likke Geimar leeds

Frederic Hermann Caltech

Collaboration supported by the Canadian Institute for Advanced Studies (CIAR).

CT. Feb. 2007 – p. 2/190

The physics

CT. Feb. 2007 – p. 3/190

Incompressible fluid flow (1)

What follows comes from

and is intended to be a reminder.

CT. Feb. 2007 – p. 4/190

Incompressible fluid flow (2)

CT. Feb. 2007 – p. 5/190

Incompressible fluid flow (3)

CT. Feb. 2007 – p. 6/190

Incompressible fluid flow (4)

CT. Feb. 2007 – p. 7/190

Incompressible fluid flow (5)

CT. Feb. 2007 – p. 8/190

Incompressible fluid flow (6)

CT. Feb. 2007 – p. 9/190

The Stokes equation

The Stokes equation system is a fundamental model of viscous flow. The variable v is a vector-valued function representing the velocity of
the fluid, and the scalar p represents the pressure.

µ∆v − ∇p + ρg = 0

∇ · v = 0

ρ is the density of the material

g is the gravitationnal acceleration

µ is the shear viscosity

assumptions

highly viscous material deforming at a sufficiently low speed → inertial forces can be neglected (low Reynolds number flow)

heat is conducted faster than dissipated by viscous flow (low Prandtl number flow),

fluid is assumed to be incompressible

CT. Feb. 2007 – p. 10/190

Re and Pr

Re: in fluid mechanics, the Reynolds number is the ratio of inertial forces to viscous forces and consequently it quantifies the relative
importance of these two types of forces for given flow conditions. Thus, it is used to identify different flow regimes, such as laminar or turbulent
flow.
It is one of the most important dimensionless numbers in fluid dynamics and is used, usually along with other dimensionless numbers, to
provide a criterion for determining dynamic similitude. When two geometrically similar flow patterns, in perhaps different fluids with possibly
different flowrates, have the same values for the relevant dimensionless numbers, they are said to be dynamically similar.
It is named after Osborne Reynolds (1842-1912), who proposed it in 1883. Typically it is given as follows:

Re =
ρvsL

µ
=
vsL

ν
=

Inertial forces

Viscous forces

where vs is the mean fluid velocity, L a characteristic length, µ the dynamic fluid viscosity, ν the kinematic fluid viscosity ν = µ/ρ, and ρ
is the fluid density.

Pr: the Prandtl number is a dimensionless number approximating the ratio of momentum diffusivity (viscosity) and thermal diffusivity. It is
named after Ludwig Prandtl.
It is defined as:

Pr =
ν

α
=

viscous diffusion rate

thermal diffusion rate

where ν is the kinematic viscosity, ν = µ/ρ, and α is the thermal diffusivity, α = k/(ρCp).

Typical values for Pr are around 0.7 for air and many other gases, around 7 for water, and around 71021 for Earth’s mantle.

CT. Feb. 2007 – p. 11/190

The penalty method

A slightly compressible material may be modelled by replacing th divergence-free constraint by the relation

p = −λ∇ · v

where we have introduced a so-called penalty or compressibility factor λ:

λ has the dimensions of a viscosity (Pa.s)

λ is commonly taken to be several orders of magnitude larger than the shear viscosity µ

λ ≫ µ

this ensures a nearly incompressible behaviour for the flow.

Pressure can be eliminated from the Stokes equations and they become:

µ∆v + λ∇∇ · v + ρg = 0

This called the penalty method. The idea was popularised by Hughes et al. in the classic paper Finite element analysis of incompressible viscous flows by

the penalty function formulation in the Journal of Computational Physics 30, p1-60, 1979.

The attraction of this approach is that the resulting linear algebra system is symmetric and positive definite. Discretisation of the penalty
formulation is tricky however. Typically different quadrature rules must be applied to the µ and the λ terms. If the same quadrature is used for
both terms, it implies instability in the incpmpressible limit.

CT. Feb. 2007 – p. 12/190

The heat transport equation

Because rock material properties such as density or viscosity depend on temperature, it is also necessary to compute the temperature within
the deforming system.

This is done by solving the energy or heat transport equation which has temperature T as an unknown:

ρc

0

B
B
@

∂T

∂t
+ v · ∇T
| {z }

adv

1

C
C
A

= ∇k · ∇T
| {z }

conv.

+ρH

k is the thermal conductivity,

is the density,

c is the heat capacity and

H is the heat production.

The relative importance of the advective term with respect to the conductive term is measured by the value of the dimensionless Peclet
number,Pe = v0L/κ where v0 andL are typical velocity and length characterizing the system and κ = k/ρc is the heat diffusivity.

In most active tectonic systems, Pe is large, i.e. comprised between 1 and 100. Thus the advective term, cannot be neglected.

CT. Feb. 2007 – p. 13/190

Stress tensor (1)

The state of stress for a three-dimensional point is defined by a matrix containing nine stress components:

σ =

0

B
B
@

σxx σxy σxy

σyx σyy σyz

σzx σzy σzz

1

C
C
A

Moment equilibrium demands the following relationships on shear stresses:

σxy = σyx ; σxz = σzx ; σzy = σyz

As a result there are only six independent stress components:

three normal stresses (σxx ,σyy ,σzz)

three shear stresses (σxy ,σyz ,σxz)

CT. Feb. 2007 – p. 14/190

Stress tensor (2)

In the absence of body moments, the stress tensor is symmetric and can always be resolved into the sum of two symmetric tensors:

a mean or hydrostatic stress tensor, involving only pure tension and compression. It is defined as the average of normal stresses in three
directions:

p =
1

3
(σxx + σyy + σzz) =

1

3
Tr[σ]

a shear or deviatoric stress tensor, involving only shear stress, defined by

sij = σij − pδij

or,

s = σ − p1

One usually defines the three following quantities:

J1 =
X

i

σii

J
′
2 =

1

2
sijsji

J′
3 =

1

3

X

ijk

sijsjkski

CT. Feb. 2007 – p. 15/190

Invariants

Moment equilibrium demands σij = σji so that these invariants can be written

J1 =
X

i

σii

J′
2 =

1

2
(s2xx + s2yy + s2zz) + s2xy + s2yz + s2zx

J
′
3 =

1

3
sxx(s

2
xx + 3s

2
xy + 3s

2
xz)

+
1

3
syy(3s

2
xy + s

2
yy + 3s

2
yz)

+
1

3
szz(3s2xz + 3s2yz + s2zz)

+ 2sxysxzsyz

One also defines the Lode angle as follows:

θl =
1

3
sin

−1

0

@−
3
√

3

2

J′
3

(J′
2)3/2

1

A θl ∈ [−
π

6
;
π

6
]

CT. Feb. 2007 – p. 16/190

Plasticity

In physics and materials science, plasticity is a property of a material to undergo a non-reversible change of shape in response to an applied
force. Plastic deformation occurs under shear stress, as opposed to brittle fractures which occur under normal stress. Examples of plastic
materials are clay and mild steel. In engineering, the transition from elastic behavior to plastic behavior is called yield.

There are several mathematical descriptions of Plasticity. One is deformation theory (see e.g. Hooke’s law) where the stress tensor (of order d
in d dimensions) is a function of the strain tensor. Although this description is accurate when a small part of matter is subjected to increasing
loading (such as strain loading), this theory can not account for irreversibility.

materials can sustain large plastic deformations without fracture. However, even ductile metals will fracture when the strain becomes large
enough - this is as a result of work-hardening of the material, which causes it to become brittle. Heat treatment such as annealing can restore
the ductility of a worked piece, so that shaping can continue.

CT. Feb. 2007 – p. 17/190

The von Mises yield criterion

We assume that the plastic flow does not depend on the hydrostatic pressure, so that F (σ) = f(J2).

The von Mises criterion states that flow occurs only at those points where the second invariant J2 reaches a certain value depending on the
material.

The yield function can then be written as

F =
q

J′
2 − c

CT. Feb. 2007 – p. 18/190

The Drucker-Prager yield criterion

The von Mises yield criterion is not suitable for modelling the yielding of frictional material as it does not include the effect of mean stress as
observed in experiments.

To overcome this limitation, Drucker and Prager (1952) proposed the following revised function for frictional materials:

F =
q

J′
2 + αp− k

whereα and k are material constants. In principal stress space, the Drucker-Prager surface has the form of a circular cone, whilst the von
Mises yield surface is an infinitely long cylinder.

DPI

α =
2 sinφ

√
3(3 − sinφ)

k =
6c cosφ

√
3(3 − sinφ)

DPII

α =
tanφ

q

9 + 12 tan2 φ

k =
3c

q

9 + 12 tan2 φ

CT. Feb. 2007 – p. 19/190

The Drucker-Prager yield criterion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 π/6 π/4 π/3 π/2

φ

αDPI
αDPII

CT. Feb. 2007 – p. 20/190

The Drucker-Prager yield criterion

0

π/6
π/4

π/3

π/2 0

 2

 4

 6

 8

 10

 0

 2

 4

 6

 8

 10

 12

 14

kDPI
kDPII

φ

c

CT. Feb. 2007 – p. 21/190

The Drucker-Prager yield criterion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 π/6 π/4 π/3 π/2

φ

kDPI
kDPII

c =

√
3

2

CT. Feb. 2007 – p. 22/190

The Mohr-Coulomb yield criterion

The Mohr-Coulomb criterion is commonly used to represent the behaviour of rocks and requires two rheological parameters:

φ the dimensionless angle of friction

c the cohesion that has units of pressure

In 2D, the yield criterion is in terms of shear stress τ and normal stress σn acting on a plane. It suggest that the yielding begins as long as
the shear stress and the normal stress satisfy the following equation:

|τ| = c + σn tanφ

in 3D the yield criterion is given by:

F = p sinφ +
q

J′
2 (cos θl −

1
√

3
sin θl sinφ)

| {z }

ζ(θl.φ)

−c cosφ

CT. Feb. 2007 – p. 23/190

The Mohr-Coulomb yield criterion

ζ(θl, φ) = cos θl −
1

√
3

sin θl sinφ θl ∈ [−
π

6
:
π

6
] φ ∈ [0 :

π

4
]

-0.4
-0.2

 0
 0.2

 0.4 0

π/8

π/6

π/4

 0.65
 0.7

 0.75

 0.8
 0.85
 0.9

 0.95
 1

 1.05
 1.1

θl

φ

CT. Feb. 2007 – p. 24/190

The Mohr-Coulomb yield criterion

m(θl, φ) = ζ(θl, φ) =
1

cos θl − 1√
3

sin θl sinφ
θl ∈ [−

π

6
:
π

6
] φ ∈ [0 :

π

4
]

-0.4
-0.2

 0
 0.2

 0.4 0

π/8

π/6

π/4

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

θl

φ

CT. Feb. 2007 – p. 25/190

The Tresca yield criterion

The yield criterion is given by

F =
q

J′
2 cos θl − c

CT. Feb. 2007 – p. 26/190

Other yield criterions

Matsuoka-Nakai (MN) (work in progress)

F =
I1I2

I3

− (9 + 8 tan2 φ)

Lade-Duncan (LD) (work in progress)

F =
I31

I3

− k

Griffith-Murrel (GM) (work in progress)

F = 4J′
2 cos θl + g(θl)

q

J′
2 − αI1 − k

Hoek-Brown (HB) (work in progress)

Cam-Clay (CC) (work in progress)

F = J′
2 −M2(p(p0 − p))

whereM is a soil constant, and p0 a history variable.

CT. Feb. 2007 – p. 27/190

the vrm algorithm

J′
2=second_invariant(σ) = 2µ second_invariant(ǫ̇) = 2µE′

2
From

F (σ) = 0

a value µ′ of the viscosity is computed that by simple rescaling allows for the point to be placed on the yield surface.

V R M Ra d ia lRe tu r n
y i e l d e n ve lo pe

CT. Feb. 2007 – p. 28/190

Nonlinear viscosity

At high temperature, rocks deform by creep, a non-linear form of viscous deformation that is commonly approximated by defining a stress or
strain rate dependent and thermally activated viscosity:

µ = µ0 ǫ̇

“

1− 1
n

”

exp

−
Q

nRT

!

where

µ0 is the viscosity of the material at T = T0

n is the nonlinear exponent

R is the perfect gas constant

Q is the activation energy

T is the temperature

ǫ̇ is ... ?

CT. Feb. 2007 – p. 29/190

material density

In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids the amount of
expansion will normally vary depending on the material’s coefficient of thermal expansion.

The density ρ varies as a function of temperature according to:

ρ = ρ0(1 − α(T − T0))

where

α is the coefficient of thermal expansion (K−1)

ρ0 is the value of the density at T = T0

CT. Feb. 2007 – p. 30/190

The FEM method

CT. Feb. 2007 – p. 31/190

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function
values at specified points within the domain of integration.

An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for
polynomials of degree 2n − 1 , by a suitable choice of the n points ri and n weightswi .

The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule is stated as

Z 1

−1
f(r)dr ≃

nX

i=1

wif(ri)

in three dimensions this becomes

Z +1

−1

Z +1

−1

Z +1

−1
f(r, s, t)drdsdt ≃

nX

i=1

nX

i=1

nX

i=1

wiwjwwkf(ri, sj, tk)

in DOUAR we set n = 2 so that ri = ±
q

1
3

= ±0.57735026919... andwi = 1

CT. Feb. 2007 – p. 32/190

global/local coordinates

In order to perform the numerical integration described previously, one needs to change from the global coordinate system (x, y, z) to a
local coordinate system (r, s, t).

x

y

b

b

b

b

1
2

3
4

r

s

b

b b

bb

1 2

34

⊗ ⊗

⊗⊗

CT. Feb. 2007 – p. 33/190

coordinates change

When changing from a coordonate system to another coordinate system , one often require the derivatives ∂/∂x, ∂/∂y, ∂/∂z, and it
seems natural to use the chain rule as follows:

∂

∂x
=
∂r

∂x

∂

∂r
+
∂s

∂x

∂

∂s
+
∂t

∂x

∂

∂t

with similar relation ships for ∂/∂y and ∂/∂z, so that one can write

0

B
B
B
B
B
B
B
@

∂
∂r

∂
∂s

∂
∂t

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

1

C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
@

∂
∂x

∂
∂y

∂
∂z

1

C
C
C
C
C
C
C
C
A

in matrix notation
∂

∂r
= J

∂

∂x

where J is the Jacobian operator.

the volume integration extends over the natural coordinate volume, and the volume differential dV need also to be written in terms of the
natural coordinates. In general we have

dV = det(J)drdsdt

CT. Feb. 2007 – p. 34/190

divfem

From the values of the level set functions, the position of each element with respect to each interface is known as well as possible.

This information is used to determine the material making up the element, assuming that interfaces are material boundaries.

When an element is intersected by one or several interfaces, the value of the level set functions at the nodes of the elements are used to
compute the part or volume of the element that is in each of the materials.

These volumes are used to perform the volume integration of the finite element equations.

To determine the volume that is on the positive side of the interface cutting a given element (the cut cell), an octree division of cut cells is
performed down to level 3 (8 × 8 × 8). The level set function is interpolated to the internal nodes and used to determine which part of the
volume (positive or negative) each sub-cell belongs.

The relative positive volumes,α, in the remaining cut cells (the gray cells) are estimated using the following approximate formula and in those
cut cells, material properties are averaged.

α = 1
2

0

B
B
B
B
@

8P

i=1
φi

8P

i=1
|φi|

+ 1

1

C
C
C
C
A cut cell

interface

CT. Feb. 2007 – p. 35/190

fundamental concept

Ku = F

property behaviour action

property behaviour action

elastic stiffness displacement force

thermal conductivity temperature heat source

fluid viscosity velocity body force

CT. Feb. 2007 – p. 36/190

Octrees

CT. Feb. 2007 – p. 37/190

Terminology

b b

b b

bb

b

b

b

b

b

b bb

b

b

b bb b

b

b

b b

nodes

bad face

hanging node

leaves

CT. Feb. 2007 – p. 38/190

Leaf size and levels (1)

level = 0 leaf size=2
0=1

b b

b b

CT. Feb. 2007 – p. 39/190

Leaf size and levels (2)

level = 1 leaf size=2
−1=0.5

b b

b b

bb

b

b

b

CT. Feb. 2007 – p. 40/190

Leaf size and levels (3)

level = 2 leaf size=2
−2=0.25

b b

b b

bb

b

b

b

b b

b b b b b

b b

b b b b b

b b

CT. Feb. 2007 – p. 41/190

Leaf size and levels (4)

level leaf size

0 2
0

= 1

1 2
−1

= 0.5

2 2
−2

= 0.25

3 2
−3

= 0.125

4 2
−4

= 0.0625

5 2
−5

= 0.03125

6 2
−6

= 0.015625

7 2
−7

= 0.0078125

8 2
−8

= 0.00390625

9 2
−9

= 0.001953125

10 2
−10

= 0.0009765625

CT. Feb. 2007 – p. 42/190

Internal structure

Octrees are very simple and memory-efficient entities that can be built as a single integer array containing, for each cube of the octree, the
address in the array of the first of its eight children cubes.

When a cube is not divided, it becomes a leaf to which a name/number is associated and stored in the octree integer array as a negative
number (to indicate that it corresponds to a leaf number and not a child’s address).

1 2 3 lo
c

lo
c+

1

lo
c+

2

lo
c+

3

lo
c+

4

lo
c+

5

lo
c+

6

lo
c+

7

lo
c+

8

lo
c+

9

octree(1)=maximum level (unit cube is level 0)

octree(2)=number of leaves

octree(3)=total length of octree

For each cube in the octree (at location loc)

octree(loc)=level

octree(loc+1)=address of parent

octree(loc+2 to loc+9)=address of children
(if negative the child is a leaf and the value is the leaf number in the sequence of leaves)

CT. Feb. 2007 – p. 43/190

The OctreeBitPlus library

All the following routines are in /OCTREE/OctreeBitPlus.f90:

octree init

find integer coordinates, find real coordinates

octree create from particles

octree find leaf

octree smoothen, octree super smoothen

octree find element level

ioctree number of elements

ioctree maximum level, ioctree size

octree create uniform

octree renumber nodes

octree find node connectivity

octree find bad faces

octree interpolate

octree interpolate many, octree interpolate many derivative

CT. Feb. 2007 – p. 44/190

octree_init

subroutine o c t r e e _ i n i t (octree , noctree)

integer noctree , oc t ree (noctree)

oct ree (1)=1

oct ree (2)=8

oct ree (3)=13

loc =4

oct ree (loc)=1

oct ree (loc +1)=0

do k=1 ,8

oct ree (loc +1+k)=−k

enddo

return

end

This routine initialises the octree structure by creating an octree of level 1, containing 8 leaves.

CT. Feb. 2007 – p. 45/190

octree_create_from_particles

This routine updates the octree by creating a leaf at points (x(1:np),y(1:np),z(1:np)) of level level(1:np). If the leaf (or a cube of smaller level) exists,
the routine has no effect on the octree.

subroutine oc t ree_crea te_ f rom_pa r t i c l es (octree , noctree , x , y , z , np , l e v e l)

integer noctree , oc t ree (noctree) , np

double precision x (np) , y (np) , z (np)

integer l e v e l (np)

[. . .]

return

end

level = 1

b b

b b

bb

b

b

b

level = 3

b

b b

b b

bb

b

b

b

call octree_create_from_particles (octree,noctree,x,y,z,1,3)

CT. Feb. 2007 – p. 46/190

octree_find_leaf

Given an octree of size noctree, this routine returns the leaf number in which a point (x,y,z) resides, the level of the leaf (0 is unit cube), the location

in the octree of the part describing the parent of the leaf (loc), the centroid of the leaf (x0,y0,z0) and its size (dxyz).

subroutine o c t r e e _ f i n d _ l e a f (octree , noctree , x , y , z , lea f , l e ve l , loc , x0 , y0 , z0 , dxyz)

integer noctree , oc t ree (noctree)

double precision x , y , z , x0 , y0 , z0 , dxyz

integer l ea f , l e ve l , l oc

[. . .]

return

end

CT. Feb. 2007 – p. 47/190

octree_smoothen

This routine smoothens the octree: it ensures that no two adjacent leaves are more than one level apart.

subroutine octree_smoothen (octree , noctree)

integer noctree , oc t ree (noctree)

[. . .]

return

end

b b

b b

bb

b

b

b

b

b b b

b

b b

b b

b b

bb

b

b

b

call octree_smoothen (octree,noctree)

CT. Feb. 2007 – p. 48/190

octree_find_element_level

This routine returns the level of each leaf. The result is returned in the array levs of dimension nleaves

subroutine oc t ree_ f ind_e lemen t_ leve l (octree , noctree , levs , nleaves)

integer noctree , oc t ree (noctree) , nleaves , levs (nleaves)

[. . .]

return

end

nleaves=10
nnode=17

2

1

3

4 5

6
7

9

8

10

levs(1:10)=(1,1,1,2,2,2,3,3,3,3)

call octree_find_element_level (octree,noctree,levs,nleaves)

CT. Feb. 2007 – p. 49/190

octree_create_uniform

This routine generates a uniform octree down to level levelt.

subroutine oct ree_create_un i fo rm (octree , noctree , l e v e l t)

integer noctree , oc t ree (noctree) , l e v e l t

[. . .]

return

end

level = 0

b b

b b

level = 2

call octree_create_uniform (octree,noctree,2)

CT. Feb. 2007 – p. 50/190

octree_find_node_connectivity

This routine

finds the number (na) and locations (xa,ya,za) of the nodes of the octree.

computes the connectivity array between nodes and leaves (icon).

Icon is dimensioned icon(8,nleaves) and contains the number of the 8 nodes connected by each leaf. When calling this routine, na should have the

dimension used to dimension the coordinate arrays in the calling routine. On return na contains the true dimension of these array (ie how many

nodes there are in the octree)

subroutine oc t ree_ f ind_node_connec t i v i t y (octree , noctree , icon , nleaves , xa , ya , za , na)

integer noctree , oc t ree (noctree) , nleaves , icon (8 , nleaves) , na

double precision xa (∗) , ya (∗) , za (∗)

[. . .]

return

end

b b

b b

bb

b

b

b

b

b b b

b

1 2 3

4 5 6

7 8 9

10

11 12 13

14

nleaves=7
nnode=14

icon(1:4,2)=(4,5,7,8)
icon(1:4,7)=(6,12,13,14)

2

1

3

4

6

5

7

CT. Feb. 2007 – p. 51/190

octree_find_bad_faces

this routine returns the bad faces as an array (iface) of 9 nodes per face.
iface is the resulting bad face information iface(9,nface).
nface is the number of bad faces found.

icon is the connectivity array of dimension nelem

subroutine oct ree_f ind_bad_faces (octree , noctree , i f ace , nface , icon , nelem)

integer noctree , oc t ree (noctree)

integer nface , i f a c e (9 , nface) , nelem , icon (8 , nelem)

[. . .]

return

end

bad face

b

b

b

b

b

b

b

b

b

CT. Feb. 2007 – p. 52/190

octree_interpolate

This function returns the value of a field (field) known at the nodes of an octree by trilinear interpolation.

icon is the connectivity matrix, nleaves is the number of leaves in the octree, field is the array of dimension nfield containing the field known at the

nodes of the octree and to be interpolated, x,y,z are the location of the point where the field is to be interpolated, f is the resulting interpolated field.

subroutine o c t r e e _ i n t e r p o l a t e (octree , noctree , icon , nleaves , f i e l d , n f i e l d , x , y , z , f)

integer noctree , oc t ree (noctree) , nleaves , icon (8 , nleaves)

integer n f i e l d

double precision f i e l d (n f i e l d) , x , y , z , f

[. . .]

return

end

CT. Feb. 2007 – p. 53/190

The NN library

CT. Feb. 2007 – p. 54/190

The NN library - files (1)

The library contains five fortran files:

delaun.f
subroutine delaun

del_sub.f

subroutine visiblelist
subroutine addpoint

subroutine insertpoint

subroutine Triloc_del

nn.f
subroutine nn2d_setup

subroutine nn2D
subroutine nn2DL
subroutine build_nv

subroutine calculate_hulltriangles

subroutine Triloc
subroutine ccentres
subroutine nn2Di
subroutine nn2Do
subroutine nn_tri

subroutine nn2Dr, subroutine nn2Drd

subroutine nn2Df, subroutine nn2Dfd, subroutine nn2Dfdd

subroutine first_voronoi, subroutine second_voronoi, subroutine second_voronoi_d

subroutine circum, subroutine circum_d, subroutine circum_dd

subroutine second_v_area, subroutine second_v_area_d, subroutine second_v_area_dd

nnplot.f

qhullf_dummy.f

CT. Feb. 2007 – p. 55/190

The NN library - files (2)

The library contains six C files:

stack.c(c)

stackinit
push

pop

stackempty

stackflush

stackpair.c(c)

stackpairinit

pushpair

poppair

stackpairempty

stackpairflush

volume.c(c)

cvolume
cvolumef
cvolumeb
cdvda
cdvdaf
cvolumebj

CT. Feb. 2007 – p. 56/190

The NN library - bibliography (1)

Efficient parallel inversion using the Neighbourhood Algorithm. Rickwood, P. and Sambridge, M., Geochem. Geophys. Geosyst, 7,Q11001,
2006.

Nonlinear inversion by direct search using the neighbourhood algorithm. Sambridge, M., Int. Handbook of Earthquake and Engineering
Seismology, 81B, Ch. 85-15, 1635-1637, 2003.

Constraints on the S-wave Velocity Structure in a Continental Shield From Surface-Wave Data: Comparing Linearized Least-Squares
Inversion and the Direct-Search Neighbourhood Algorithm. Snoke, J. A., and Sambridge, M., J. Geophys. Res., 107(B5), 2002.

A numerical method for solving partial differential equations on highly irregular evolving grids. J.Braun and M.Sambridge, Nature 376, 655 -
660 (24 August 2002).

Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm. Sambridge, M. S., and Kennett, B. L. N., Pure. appl.
geophys., 158, 241-257, 2001.

Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Sambridge, M., Inverse Problems, 17, 387-403,
2001.

Seismic Source Characterisation using a Neighbourhood Algorithm. Kennett, B. L. N., Marson-Pidgeon, K., and Sambridge, M., Geophys.
Res. Lett., 27, No. 20., 3401-3404, 2000.

CT. Feb. 2007 – p. 57/190

The NN library - bibliography (2)

Source depth and Mechanism inversion at teleseismic distances using a neighbourhood algorithm. Marson-Pidgeon, K., Kennett, B. L. N.,
and Sambridge, M., Bull. seism. Soc. am., 90, 1369-1383, 2000.

Geophysical Inversion with a Neighbourhood Algorithm -I. Searching a parameter space. Sambridge, M., Geophys. J. Int., 138, 479-494,
1999.

Geophysical Inversion with a Neighbourhood Algorithm -II. Appraising the ensemble. Sambridge, M., Geophys. J. Int., 138, 727-746, 1999.

Computational methods for performing Natural Neighbour interpolation in two and three dimensions, Sambridge, M. S., Braun, J., and
McQueen, H., Proceedings of the seventh Biennial conference on Computational techniques and applications (CTAC95), Eds. R. L. May and
A. K. Easton, 685-692, 1996.

Geophysical prametrization and interpolation of irregular data using natural neighbours. Sambridge, M. S., Braun, J., and McQueen, H.,
Geophys. J. Int., 122, 837-857, 1995.

Dynamical Lagrangian Remeshing (DLR): A new algorithm for solving large strain deformation problems and its application to
fault-propagation folding. J.Braun and M.Sambridge, Earth and Planetary Science Letters, Volume 124, Issues 1-4 , June 1994, Pages
211-220.

CT. Feb. 2007 – p. 58/190

NN - basic principles (1)

a) The Voronoï diagram for a set of 16 nodes in a plane. b) The corresponding Delaunay triangulation. The thick perimeter line connects the nodes
in the convex hull.

CT. Feb. 2007 – p. 59/190

NN - basic principles (2)

a) The original Voronoï diagram for 5 neighbouring nodes and an interpolation point X. b) The new Voronoï cell about X (shaded). The overlap of the
new Voronoï cell with the original cells forms 5 second-order Voronoï cells between X and its neighbours.

CT. Feb. 2007 – p. 60/190

NN - basic principles (3)

The shaded region about node i shows that the area that it can influence in natural-neighbour interpolation.

CT. Feb. 2007 – p. 61/190

NN - basic principles (4)

A perspective view of the influence surface about node i seen from the direction of the arrow on previous figure. The height of the surface at any
point is the value of its natural-neighbour coordinate with respect to node i.

CT. Feb. 2007 – p. 62/190

NN - basic principles (5)

An example of the path (shaded triangles) taken by the walking triangle algorithm. The initial triangle is in the lower right corner (black) and the final
triangle is in the top left corner (black). The nearly direct path taken by the algorithm enables it to locate efficiently a point in any triangle.

CT. Feb. 2007 – p. 63/190

The ALE concept

CT. Feb. 2007 – p. 64/190

The solver

CT. Feb. 2007 – p. 65/190

The code files and routines

CT. Feb. 2007 – p. 66/190

build edge

subroutine build edge (surface,ed,nedge,refine,nadd,naddp, stretch,anglemax,

nedgepernode,nodenodenumber,nodeedgenumber,nnmax, distance exponent)

arguments

surface is the sheet/surface to be refined

ed is the computed edge array

nedge is the number of edges

refine is the integer array determining the edges to be refined

stretch is the maximum stretching allowed (set in the input.txt file)

nadd is the number of edges to be refined

anglemax is the maximum authorised angle between two normals

nedgepernode,nodenodenumber and nodenodenumber contain the list of edges that start from each node; for a given node i their
number is nedgepernode(i), the edge number in the list of edges is nodeedgenumber(j,i) and the node at the end of the edge is
nodenodenumber(j,i) for j=1,nedgepernode(i)

This routine builds an edge array between a set of particles on a surface. It uses the delaunay triangulation and then steps through the
triangles to build the edge information. In a second step, the routine checks for refinement and computes an integer array (refine) which
contains the list of edges that need to be refined.
It uses the delaunay triangulation and then steps through the triangles to build the edge information. In a second step, the routine checks for
refinement and computes a integer array (refine) which contains the list of edges that need to be refined.

CT. Feb. 2007 – p. 67/190

build edge (2)

the edge derived type:

it is to store edges in a trianglulation

it is used to update (in a generalized Delaunay sense) the triangulation of the 3D points on the surfaces

for each edge:

n1, n2 are the node numbers defining the edge

t1, t2 are the triangle numbers on either side of the edge going from n1 to n2, t1 is to the left and t2 is to the right

m1, m2 are the node numbers of the two other nodes making t1 and t2

b

b

b

b

edge%n1

edge%n2

edge%m1

edge%m2

edge%t1

edge%t2

CT. Feb. 2007 – p. 68/190

build edge (3)

b

b

b

b

i

j

k

m

332

123

211

nedgepernode(i)=3

nodeedgenumber(1,i)=211

nodeedgenumber(2,i)=123

nodeedgenumber(3,i)=332

nodenodenumber(1,i)=m

nodenodenumber(2,i)=k

nodenodenumber(3,i)=k

CT. Feb. 2007 – p. 69/190

build edge (4)

b

b

b

b

b

edge%n1

edge%n2

edge%m2

edge%t1=0
edge%t2

unit cube border

CT. Feb. 2007 – p. 70/190

build surface octree

subroutine build surface octree (surface,olsf,leveluniform oct,levelmax oct,

criterion,anglemax,ismooth)

arguments

surface is the surface represented by particles

olsf is the octree that we must build (it has already been dimensioned to noctreemax in the main program)

leveluniform_oct is the base level for the octree

levelmax_oct is the maximum level allowed for leaves of the octree

if criterion=1 all triangles of the surface must be entirely comprised in leaf of maximum order. If criterion=2 the octree is discretized to la
level computed from the angle made by the normals; when the angle varies between 0 and angle max, the level varies from levelmin to
levelmax.

ismooth determines whether additional smoothing is to be performed. (ismooth is set in the input.txt file). Additional smoothing imposes
that no leaf touches other leaves that are different in size by more than one level.

This subroutine builds the olsf octree to carry a level set function used to represent a surface. The criterion is used to define the octree in the
vicinity of the suface:

criterion 1 correponds to imposing that each leaf that is cut by a triangle of any surface will be refined to levelmax_oct.

criterion 2 corresponds to imposing that discretization is proportional to the curvature of the surface; curvature is calculated from the
local divergence of the normals.

level = max

"

level, Lu + nint

min(
angle

anglemax
, 1)(Lmax − Lu)

!#

criterion 3 corresponds to imposing that all leaves that contain at least one particle of any surface is at levelmax_oct.

CT. Feb. 2007 – p. 71/190

build surface octree: criterion=1

lsf isosurface

surface

surface octree

surface octree cutplane

CT. Feb. 2007 – p. 72/190

build surface octree: criterion=2

lsf isosurface

surface

surface octree

surface octree cutplane

CT. Feb. 2007 – p. 73/190

build surface octree: criterion=3

lsf isosurface

surface (cosinus)

surface octree

CT. Feb. 2007 – p. 74/190

build system.f90

subroutine build system (nleaves,nface,nnode,nz,a,irn,jcn,idg,icon,iface,ndof,mpe,x,y,z,kfix,lsf,nlsf,

mat,nmat,materialn,dt,u,v,w,temp,pressure,strain,rhs,penalty,tempscale,vo,

levelcut,levelapprox,iproc col,eviscosity,istep,iter,iter nl,doDoRuRe,forces)

arguments

nleaves

nface

nnode

nz

a

irn,jcn,idg

icon

iface

ndof

mpe

x,y,z

kfix

lsf,nlsf

mat,nmat

materialn

dt

u,v,w

temp, pressure, strain

rhs

penalty

tempscale

vo CT. Feb. 2007 – p. 75/190

calculate lsf.f90 (1)

subroutine calculate lsf (lsf,octree lsf,noctree lsf,icon lsf,

nleaves lsf,na lsf,xl,yl,zl

icon,nelem,na,levelmax oct)

input

octree_lsf(noctree_lsf) is the octree on which the lsf is to be built known

icon_lsf(8,nleaves_lsf) is the node-leaf connectivity of the octree

xl(na),yl(na),zl(na) are the coordinates of the na particles on the surface

icon(3,nelem) is the connectivity matrix defining the triangulation

levelmax_oct is the maximum level of refinement of the octree

output

lsf(na_lsf) is the values of the lsf at the nodes (main output of the routine)

function: this subroutine calculates the lsf (level set function) on an octree from the position of a series of particles connected by a 2D
triangulation

CT. Feb. 2007 – p. 76/190

calculate lsf.f90 (2)

subroutine distance to triangle (x1,y1,z1,x2,y2,z2,x3,y3,z3,

x1n,y1n,z1n,x2n,y2n,z2n,x3n,y3n,z3n,x0,y0,z0,dist)

input

.

.

CT. Feb. 2007 – p. 77/190

calculate lsf

b

b

b

nodes

x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

minval(xl(icon(1:3,it))) maxval(xl(icon(1:3,it)))

it

i1 i2

i2-i1 leaves

CT. Feb. 2007 – p. 78/190

b

b

b

b

b
P0

P1

P2

P3

C

n1

n3

n2

n

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)

P3 = (x3, y3, z3)

n1 = (x1n, y1n, z1n)

n2 = (x2n, y2n, z2n)

n3 = (x3n, y3n, z3n)

barycenter

xC = (x1 + x2 + x3)/3

yC = (y1 + y2 + y3)/3

zC = (z1 + z2 + z3)/3

n =
~P1P2

V ~P1P3
‖ ~P1P2

V ~P1P3‖

α = n · ~CP0

xc=(x1+x2+x3)/3.d0

yc=(y1+y2+y3)/3.d0

zc=(z1+z2+z3)/3.d0

xn=(y2-y1)*(z3-z1)-(y3-y1)*(z2-z1)

yn=(z2-z1)*(x3-x1)-(z3-z1)*(x2-x1)

zn=(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1)

xyzn=sqrt(xn**2+yn**2+zn**2)

xn=xn/xyzn

yn=yn/xyzn

zn=zn/xyzn

alpha=xn*(x0-xc)+yn*(y0-yc)+zn*(z0-zc)

CT. Feb. 2007 – p. 79/190

b

b

b

b

P2

P3

P1

n

P1

np1

do k=1,3

xnp(k)=(y(k+1)-y(k))*zn-(z(k+1)-z(k))*yn

ynp(k)=(z(k+1)-z(k))*xn-(x(k+1)-x(k))*zn

znp(k)=(x(k+1)-x(k))*yn-(y(k+1)-y(k))*xn

xyzn=sqrt(xnp(k)**2+ynp(k)**2+znp(k)**2)

xnp(k)=xnp(k)/xyzn

ynp(k)=ynp(k)/xyzn

znp(k)=znp(k)/xyzn

alphap(k)=(x0-x(k))*xnp(k)+(y0-y(k))*ynp(k)+(z0-z(k))*znp(k)

enddo

np1 =
~P1P2

V
n

‖ ~P1P2
V

n‖
→ defines the P1 plane

αp1 = np1 · ~P1P0

CT. Feb. 2007 – p. 80/190

check delaunay.f90

subroutine check delaunay (ed,nedge,x,y,z,xn,yn,zn,nnode,icon,nelem,

nedgepernode,nodenodenumber,nodeedgenumber,nnmax, distance exponent)

arguments

type (edge) ed(nedge)

nedge

x(nnode),y(nnode),z(nnode)

xn(nnode),yn(nnode),zn(nnode)

nnode

icon(3,nelem)

nelem

nedgepernode(nnode)

nodenodenumber(nnmax,nnode)

nodeedgenumber(nnmax,nnode)

nnmax

distance_exponent

This subroutine calculates the Delaunay triangulation around a set of points located on a surface in three dimensional space. A non Euclidian
metrics is used that takes into account the divergence of normals attached to the points such that folding over of the surface is impossible.
The Delaunay triangulation is UPDATED, not reconstructed at each time step.
First the delaunay triangulation is checked along each edge between two adjacent triangles using a generalized in-circle test based on the
calculation of distances only; the test is based on an angle. There the test is positive, edge flipping takes place and all the arrays are
permutated (icon, edge, and subsidiary arrays)

CT. Feb. 2007 – p. 81/190

check delaunay (1)

b

b

b

b

i1

i2

j2

j1

dn
1n
2

dn1m2

d
n
2
m
2d
n
1
m
1

dn2m1

CT. Feb. 2007 – p. 82/190

compute convergence criterion.f90

subroutine compute convergence criterion (osolve,ov,vo,istep,iter,iter nl,tol,refine level,debug,velocity converged,doDoRuRe)

arguments

type (octreesolve) osolve

type (octreev) ov

type (void) vo

istep,iter,iter_nl

tol,maxu,maxv,maxw

refine_level

debug

velocity_converged

doDoRuRe

This subroutine computes a convergence criterion based on the difference between the velocity field obtained at this iteration (osolve) and the
previous velocity field (ov). This is based on the 2-norm.

CT. Feb. 2007 – p. 83/190

compute dhdx dhdy dhdz.f90 (1)

subroutine compute dhdx dhdy dhdz (mpe,r,s,t,x,y,z,dhdx,dhdy,dhdz,volume)

arguments

mpe

r,s,t

x,y,z

dhdx,dhdy,dhdz

volume

CT. Feb. 2007 – p. 84/190

compute dhdx dhdy dhdz.f90 (2)

Given a point (r, s, t) in a leaf (in local coordinates) - it usually is a Gauss integratoin point- the shape functions are computed:

h1(ri, si, ti) = (1 − ri) ∗ (1 − si) ∗ (1 − ti)/8

h2(ri, si, ti) = (1 + ri) ∗ (1 − si) ∗ (1 − ti)/8

h3(ri, si, ti) = (1 − ri) ∗ (1 + si) ∗ (1 − ti)/8

h4(ri, si, ti) = (1 + ri) ∗ (1 + si) ∗ (1 − ti)/8

h5(ri, si, ti) = (1 − ri) ∗ (1 − si) ∗ (1 + ti)/8

h6(ri, si, ti) = (1 + ri) ∗ (1 − si) ∗ (1 + ti)/8

h7(ri, si, ti) = (1 − ri) ∗ (1 + si) ∗ (1 + ti)/8

h8(ri, si, ti) = (1 + ri) ∗ (1 + si) ∗ (1 + ti)/8

Their derivatives with respect to r, s, t are then calculated as follows:

∂h1

∂r

˛
˛
˛
˛
˛
i

= −(1 − si) ∗ (1 − ti)/8 · · ·
∂h8

∂r

˛
˛
˛
˛
˛
i

= (1 + si) ∗ (1 + ti)/8

∂h1

∂s

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 − ti)/8 · · ·
∂h8

∂s

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 + ti)/8

∂h1

∂t

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 − si)/8 · · ·
∂h8

∂t

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 + si)/8

CT. Feb. 2007 – p. 85/190

compute dhdx dhdy dhdz.f90 (3)

We then need the Jacobian of the transformation (x, y, z) → (r, s, t).

0

B
B
B
B
B
B
B
@

∂
∂r

∂
∂s

∂
∂t

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

1

C
C
C
C
C
C
C
A

| {z }

J

0

B
B
B
B
B
B
B
B
@

∂
∂x

∂
∂y

∂
∂z

1

C
C
C
C
C
C
C
C
A

Since x =
8P

k=1
hkxk , y =

8P

k=1
hkyk and z =

8P

k=1
hkzk , we have for instance ∂x

∂r
=

8P

k=1

∂hk
∂r

xk .

One then computes J−1 . J is a 3 × 3 matrix, so we simply resort to a simple matrix inversion algorithm. We first compute
volume = Det[J] = J1,1J2,2J3,3+J1,2J2,3J3,1+J2,1J3,2J1,3−J1,3J2,2J3,1−J1,2J2,1J3,3−J2,3J3,2J1,1 ,

and then J−1 .
Finally,

0

B
B
B
B
B
B
B
B
@

∂h
∂x

∂h
∂y

∂h
∂z

1

C
C
C
C
C
C
C
C
A

= J
−1

0

B
B
B
B
B
B
B
@

∂h
∂r

∂h
∂s

∂h
∂t

1

C
C
C
C
C
C
C
A

CT. Feb. 2007 – p. 86/190

compute divergence.f90

subroutine compute divergence (nleaves,nnode,mpe,icon,xnode,ynode,znode,unode,vnode,wnode,voleaf,istep,iter,doDoRuRe)

arguments

nleaves:

nnode:

mpe:

icon:

xnode,ynode,znode:

unode,vnode,znode:

voleaf:

istep,iter

doDoRuRe

This subroutines computes the elemental divergence of the velocity field in every leaf.

CT. Feb. 2007 – p. 87/190

compute normals.f90

subroutine compute normals (ns,x,y,z,nt,icon,xn,yn,zn)

arguments

ns

x(ns),y(ns),z(ns)

nt

icon(3,nt)

xn(ns),yn(ns),zn(ns)

given a set of points, and a connectivity array of their triangulation, this routine computes the normal to each point through cross-products: at
first one computes the normal to each triangle and add the vector to the three points that make the triangle, then one loops over the points,
and normalises the vectors.

CT. Feb. 2007 – p. 88/190

compute positive volume.f90

subroutine compute positive volume (phi,vol,levelmax)

input

phi are the lsf values

levelmax is the max level for accuracy (power of 2)

output

vol is the returned volume

function: finds the volume of a cube that is defined by the positive value of a lsf known at the nodes of the cube

subroutine volume lsf (phi,volp,level,levelmax)

CT. Feb. 2007 – p. 89/190

volume lsf

φ1

φ2 φ4

φ3

φ7

φ8

φ5

φ6

φ′1

φ′4

φ′6

φ′2

φ′5 φ′7

φ′3

φ′8

phip(1)=(phi(1)+phi(2))/2.d0

phip(2)=phi(2)

phip(3)=(phi(1)+phi(2)+phi(3)+phi(4))/4.d0

phip(4)=(phi(2)+phi(4))/2.d0

phip(5)=(phi(1)+phi(2)+phi(5)+phi(6))/4.d0

phip(6)=(phi(2)+phi(6))/2.d0

phip(7)=(phi(1)+phi(2)+phi(3)+phi(4)+phi(5)+phi(6)+phi(7)+phi(8))/8.d0

phip(8)=(phi(2)+phi(4)+phi(6)+phi(8))/4.d0

CT. Feb. 2007 – p. 90/190

compute pressure.f90

subroutine compute pressure (nleaves,nface,nnode,icon,ndof,mpe,x,y,z,lsf,nlsf,mat,nmat,materialn,

u,v,w,temp,pressure,strain,vo,levelcut,levelapprox,octree,noctree)

arguments

nleaves

nface

nnode

icon

ndof

mpe

x,y,z

lsf,nlsf

mat,nmat

materialn

u,v,w

temp,pressure,strain

vo

levelcut

levelapprox

octree,noctree

This subroutine computes the elemental pressure in each leaf. It calls pressure_cut, which itself calls make_pressure. It is based on the same
principle as build_system, make_cut and make_matrix.

CT. Feb. 2007 – p. 91/190

compute vol work.f90

subroutine compute vol work (osolve,ov,istep,iter,iter nl)

arguments

osolve

ov

istep

iter

iter_nl

this routine computes the respective volume and work rate of each material associated to each surface.

The work rate is computed as follows

W =

Z

V
σ : ǫ̇dV

[σ] = M.L.T−2 , [ǫ̇] = T−1 ,⇒ [W] = ML2T−2.T−1

CT. Feb. 2007 – p. 92/190

create surfaces.f90

subroutine create surf (surface,is,debug)

arguments

surface

is

debug

This routine creates a surface through a set of points. Each of these points is assigned a normal. The topology of the points can either be
based on a regular grid or on a random distribution. The Delaunay triangulation of these points is computed by means of the natural
neighbours library. The surface is output in the file ’/VTK/surf_xxxx_init.vtk’.

subroutine zpoints (ns,x,y,z,surface type,levelt,sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10)

arguments

ns is the number of points on the surface

x,y,z are the arrays that contain the coordinates of the points

surface_type

levelt is the level of the surface

sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10

This routine computes the z coordinate of the points generated by create_surf according to the type of surface under consideration

CT. Feb. 2007 – p. 93/190

create surfaces.f90 (2)

The convex hull is first built. Then, random points in the unit square a generated (figure a), so that the total number of points is (2levelt + 1)2 .

The points are triangulated. The neighbouring list nn(i) is built for each point i. Then the barycenter rbi of the nb(i) neighbours of point i is computed,

and once this is done, for every point ri = rbi (except for the points on the hull and somme others). This insures a certain level of smoothing
(figure b).

a) b)

The triangulation is computed again for these new positions. Having done this, we proceed to compute the normals at the points. In order to do so,
each triangle is considered, two of its edges are used to calculate the unit normal to the triangle (by mean of the cross product) that is given (added)
to each point forming the triangle. Finally, the normals are (re)-normalised (figure c).

c)

CT. Feb. 2007 – p. 94/190

create surfaces.f90 (3)

surface_type=1 : flat surface
sp01 is the z level

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 95/190

create surfaces.f90 (4)

surface_type=2 : rectangular emboss
sp01 is the z level

sp02 and 03 are x1,x2

sp04 and 05 are y1,y2

sp06 is the thickness (positive or negative)

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 96/190

create surfaces.f90 (5)

surface_type=3 : convex spherical emboss
sp01 is the z level

sp02 and 03 are x0,y0

sp04 is the radius

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 97/190

create surfaces.f90 (6)

surface_type=4 : concave spherical emboss
sp01 is the z level

sp02 and 03 are x0,y0

sp04 is the radius

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 98/190

create surfaces.f90 (7)

surface_type=5 : double rectangular emboss
sp01 is the z level

sp02 and 03 are x1,x2

sp04 and 05 are x3,x4

sp06 and 07 are y1,y2

sp08 and 09 are y3,y4

sp10 is the thickness

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 99/190

create surfaces.f90 (8)

surface_type=6 : a sinus
sp01 is the z level

sp02 is the wavelength

sp03 is the amplitude

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 100/190

create surfaces.f90 (9)

surface_type=7 : a noisy surface
sp01 is the z level

sp02 is the noise amplitude

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 101/190

create surfaces.f90 (10)

surface_type=8 : a double sinus
sp01 is the z level

sp02 is the x-wavelength

sp03 is the x-amplitude

sp04 is the y-wavelength

sp05 is the y-amplitude

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 102/190

create surfaces.f90 (11)

surface_type=9 : a cosinus
sp01 is the z level

sp02 is the wavelength

sp03 is the amplitude

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 103/190

create surfaces.f90 (12)

surface_type=10 : slope
sp01 is z0 (base level)

sp02 is y0 (position where the slope starts)

sp03 isψ (angle of the slope)

sp04 is δ (maximum thickness of layer)

surface%rand=.false. surface%rand=.true.

CT. Feb. 2007 – p. 104/190

define bc

subroutine define bc (infile,kfix,u,v,w,x,y,z,nnode,kfixt,temp,vo)

arguments

infile is the a string containing the input.txt

kfix

u,v,w are the nodal velocities

x,y,z are the positions of nodes

nnode is the number of nodes

kfixt

temp is the nodal temperature

vo is the structure that contains the void information

This subroutine is to be modified by the user to implement the boundary conditions. Here the user should define if the dof is fixed by setting
kfix((inode-1)*3+idof) to 1 (node inode and dof idof) and setting the corresponding value of u, v, or w to the set fixed value. Same operation for
kfixt and temp but for a single dof. If no input file has been passed as argument to douar, the boundary conditions are those defined in the
subroutine. If input.xxxx has been passed as argument to douar, then the user should modify accordingly the select case and write its own
define bc xxxx.f90.

CT. Feb. 2007 – p. 105/190

define cloud

subroutine define cloud (cl,irestart,restartfile)

arguments

cl is the cloud

irestart

restartfile is the name of the restartfile if needed

If irestart=0 this routine allocates and creates the cloud of points present in the system. Otherwise it reads from a user supplied file name the
surfaces as they were at the end of a previous run. In this case, since the run output files contain all the octree+lsf+icloud+surface
informations, the routine first reads dummy parameters until it gets to the real interesting cloud information.

CT. Feb. 2007 – p. 106/190

define ov

subroutine define ov (ov,noctreemax,leveluniform oct,irestart,restartfile,ztemp)

arguments

ov is the object holding the octree

noctreemax is the maximum allowed octree size

leveluniform_oct is the minimum/uniform octree level

irestart is a flag to decide if this is a restart job or not

restartfile is the name of the restart file if it is needed

ztemp

This routine creates a uniform octree that will be used to store the velocity for the next time step or reads it from a restart file.

CT. Feb. 2007 – p. 107/190

define surface

subroutine define surface (surface,ns,irestart,restartfile,total,step,inc,current time,debug)

arguments

surface

ns

irestart

restartfile

total, step, inc

debug

if irestart=0, this routine allocates and creates the ns surfaces present in the system. Otherwise, it reads form a user supplied file name the
surfaces as they were at the end of a previous run. In this case, since the run output files contain all the octree+lsf+cloud+surface
informations, the routine first reads dummy parameters until it gets to the real interesting surface information .

CT. Feb. 2007 – p. 108/190

do leaf measurements.f90

subroutine compute e2d crit (osolve,ov,mpe,refine criterion,debug,compute qpgram)

arguments

osolve:

ov:

mpe:

refine_criterion:

debug:

compute_qpgram

This subroutine computes the following elemental quantities:

e2d =
q

J′
2(ǫ̇)

e3d = 3
q

J′
3(ǫ̇)

lode = θl =
1

3
sin

−1

0

@−
3
√

3

2

J′
3

(J′
2)3/2

1

A

q = 2µeff

q

J′
2(ǫ̇)

crit =

CT. Feb. 2007 – p. 109/190

embed surface in octree.f90

subroutine embed surface in octree (osolve,noctreemax,leveluniform oct,levelmax oct,criterion,

anglemax,surface,ismooth,is,ns,debug,istep,iter)

arguments

osolve

olsf

noctreemax

leveluniform_oct

levelmax_oct

criterion

anglemax

surface

integer ismooth

is

ns

debug

istep,iter

CT. Feb. 2007 – p. 110/190

erosion.f90

subroutine erosion (surface,olsf,is,zerosion)

input

is is the number of the surface (0 playing a special role)

zerosion is the level of erosion (between 0 and 1)

input/output

surface are the surface/sheet object

olsf is a octreelsf object containing the geometry of the current velocity octree/object

output

function: it is used to erode the surface ’surface’ according to a user supplied algorithm. At the moment it simply ’shaves’ the top of the model
at a given height.

CT. Feb. 2007 – p. 111/190

find connectivity dimension.f90

subroutine find connectivity dimension (nleaves,nface,nnode,vo,icon,iface,ndof,mpe,nz,tpl)

arguments

nleaves: number of leaves

nface: number of bad faces

nnode: number of nodes

vo: object containing the void information

icon(mpe,nleaves): connectivity matrix between nodes and leaves

iface(9,nface): bad face matrix

ndof: number of dofs per node

mpe: number of nodes per element

nz: computed total number of nonzero numbers in the global FE matrix

tpl(vo%nnode*ndof): topology array that is build in this routine; it has the dimension of the total number of dof and contains, per dof, the
list of other dofs connected to the dof

CT. Feb. 2007 – p. 112/190

find connectivity.f90

subroutine find connectivity (nleaves,nnode,vo,icon,ndof,mpe,nz,irn,jcn,idg,tpl)

arguments

nleaves is the number of leaves/fe

nnode is the number of nodes

vo is the object containing the void information

icon is the connectivity matrix

ndof is the number of dofs per node

mpe is the number of nodes per element/leaf

nz is the total number of nonzero numbers in the global matrix

irn and jcn are built in this routine and are needed by MUMPS to locate the nonzero numbers of the global stiffness matrix

idg is simply the list of the diagonal elements in the global stiffness matrix once it is unrolled as a single dimension matrix/vector

tpl is the topology array that is build in find_connectivity_dimension.f90

Having the topology dimension, we build three arrays irn, jcn, idg that ! are needed by MUMPS. This is a relatively easy operation once we
know tpl.

CT. Feb. 2007 – p. 113/190

find connectivity local.f90

subroutine find connectivity local (iproc col,n,idg,idg loc,tpl,irn,jcn,nz,irn loc,jcn loc,nz loc)

arguments

iproc_col is a flag that determines which column of the matrix is dealt with by which processor

n is the total ndof

idg is simply the list of the diagonal elements in the global stiffness matrix once it is unrolled as a single dimension matrix/vector

idg_loc is the local equivalent

tpl is the topology array that is build in find_connectivity_dimension

nz is the total number of nonzero numbers in the global matrix

irn_loc, jcn_loc and nz_loc are the local equivalent to irn, jcn, nz

This routine is used to find the local (ie for each processor) irn and jcn arrays that are needed by MUMPS to locate the nonzero numbers of
the global stiffness matrix once it has been split up between the processors. It also computes the total number of nonzero numbers in each of
the sub-matrices (parts of the global matrix distributed to each processor).

CT. Feb. 2007 – p. 114/190

find processors.f90

subroutine find processors (iproc col,n,tpl,nz loc)

arguments

iproc_col is a flag that determines which column of the matrix is dealt with by which processor; it is built in this routine.

n is the total ndof

tpl is the topology array that is build in find_connectivity_dimension

nz_loc is the total number of nonzero numbers in the local part of the global matrix; it is also built in this routine.

! This is where the division of the dofs between the processors is performed. ! Here we have decided to divide the dofs equally across the
processors in an arbitrary way that is decided by the numbering of the nodes. Note that this numbering can be modifed and/or optimized by a
call to SLOAN’s routines now built in the Octree library, but it is not done in the current version as it did not lead to better results.

CT. Feb. 2007 – p. 115/190

find void nodes.f90

subroutine find void nodes (nleaves,nnode,nface,icon,iface,mpe,vo,lsf,nlsf,materialn)

arguments

nleaves is the number of leaves/fe

nface is the number of bad faces

nnode is the number of nodes

icon is the element-node connectivity matrix

iface is the bad face connectivity matrix

mpe is the number of nodes per elements

vo is the structure containing the information on where the void is. It is constructed in this routine.

lsf contains the nodal values of the nlsf level set functions

materialn contains the material number associated to each lsf

This routine finds all nodes that are completely in the void, i.e. they are not connected by any element to a node that is not in the void. Those
nodes are given a vo%node=1 flag; all others have vo%node=0. There are vo%nnode nodes that are not in the void.
It calculates the nodes that are in the fluid vo%influid=.true.
It also caculates the number of elements (vo%nleaves) and bad faces (vo%nface) that are not in the void and corresponding flag arrays
vo%leaf and vo%flace.

CT. Feb. 2007 – p. 116/190

find void nodes.f90

The void derived type:

it is to store information on node, leaves and faces that are in the void

node=1 for nodes that are conpletely in the void (they are taken out of the equation set)

leaf=1 for leaves that are completely in the void

face=1 for faces that are completely in the void

nnode is the number of nodes to be solved for (number of nodes not in the void)

nleaves is the number of active leaves

nface is the number of active faces

rtf (restricted to full) is an array that provides the connectivity between the restricted and full node numbers
(j=rtf(i) where i is restricted node number (1 to vo%nnode) and j is full node number (1 to nnode))

ftr (full to restricted) is the complement

influid is true for nodes that are in the fluid

type void

integer,dimension(:),pointer::node,leaf,face,ftr,rtf

logical,dimension(:),pointer::influid

integer nnode,nleaves,nface

end type void

CT. Feb. 2007 – p. 117/190

find void nodes.f90

free surface

i

j

k

m

vo%influid(i)=F

vo%node(i)=1

vo%influid(j)=F

vo%node(j)=0

vo%influid(k)=T

vo%node(k)=0

vo%influid(m)=T

vo%node(m)=0
L1

L2

L3

L4

vo%leaf(L1)=1

vo%leaf(L2)=0

vo%leaf(L3)=0

vo%leaf(L4)=0

b

b

b

b

CT. Feb. 2007 – p. 118/190

improve osolve.f90

subroutine improve osolve (osolve,ov,refine criterion,istep,iter,total,step,

inc,refine ratio,refine level,debug,

nboxes,boxes,ismooth,cube faces,ref on faces)

arguments

ov is the velocity octree containing the velocity solution

osolve is the octree to be improved

refine_ratio is a parameter read in input.txt. When multiplied by the maximum of the criterion previously computed, one obtains the
threshold used to determine whether a leaf is to be refined or not.

refine_level is the level at which the osolve octree is to be refined.

This routine calculates the second invariant of the strain rate, and a value for the criterion used by the improve_octree subroutine, inside each
element by using the velocity information at the nodes. Then, the routine improves the osolve on which the solution is calculated.
Also, it refines the octree if the user has defined a box (or several boxes) in which the octree is artificially refined to a desired level. boxes and
nboxes are read from the input file.
The routine then refines user supplied rectangular areas of each of the six faces of the cubic simulation domain. The information are stored in
cube_faces read from the input file.
Finally, the octree is smoothed and super-smoothed if the user has set ismooth to 1.

CT. Feb. 2007 – p. 119/190

initialize temperature.f90

subroutine initialize temperature (ov,ztemp)

arguments

ov is the velocity octree containing the velocity/temperature solution

ztemp

This routine initializes the temperature field to some basic conductive equilibrium, The temperature should be normalized between 0 and 1.
This routine needs to be improved...

CT. Feb. 2007 – p. 120/190

interpolate leaf quantities on nodes.f90

subroutine blabla (osolve,ov)

arguments

osolve is the solution octree

ov is the velocity octree

This routine interpolates various quantities between the values known in the leaves of the osolve octree and the nodes of the ov octree. This
leads to some level of smoothing.

CT. Feb. 2007 – p. 121/190

interpolate leaf quantities on nodes

b
i

L1

L2 L3

L4

f(i) =
f(L1)V (L1)+f(L2)V (L2)+f(L3)V (L3)+f(L4)V (L4)

V (L1)+V (L2)+V (L3)+V (L4)

f(L): elemental field in leafL

V (L): volume of leafL

f(L1)

f(L2) f(L3)

f(L4)

CT. Feb. 2007 – p. 122/190

interpolate ov on osolve.f90

subroutine blabla (osolve,ov)

arguments

osolve is the solution octree

ov is the velocity octree

This routine transfers the velocity solution from the velocity octree onto the osolve octree. It also performs a transfer of the pressure from the
nodes of the ov octree to the leaves of the solution octree.
At the end, the velocity octree is redimensioned to fit the dimension of the solve octree and is thus ready for the next solution step.

CT. Feb. 2007 – p. 123/190

make cut.f90

recursive subroutine make cut (level,levelmax,levelapprox,mpe,ndof,ael,bel,icon,x,y,z,penalty,tempscale,

kfix,mat,nmat,materialn,dt,u,v,w,temp,pressure,strain,nnode,

f,lsf,nlsf,r0,s0,t0,rst,icut,ileaves,eviscosity,forces)

arguments

aaa

This subroutine is an intermediary routine between build_system and make_matrix to take into account the complex geometry of cut cells. If
we are in a non cut cell, make_matrix is called. If we are in a cut cell but at a level that it smaller than levelmax, the cell is further cut and
make_cut is recursively called. If we are in a cut cell and level is equal to levelmax, we call make_matrix with material properties that have
been interpolated from the various materail properties contribnuting to the cut cell.

CT. Feb. 2007 – p. 124/190

make_cut

z

y

x

s

r

t

CT. Feb. 2007 – p. 125/190

make_cut

cut cell

interface

+

+

+

+

+

++

+ +

++

+ +

++

+ +

++

+

+

++

+

+

++

++

++

+

+ + + + ++ + + + + + +

+ + + + ++ + + + + + +
+ + + + ++ + + + + + +

+ + + + ++ + + + + + +
+ + + + + + + +

+ + + + + + + +
+ + + + + + + +

+ + + + + + + +

CT. Feb. 2007 – p. 126/190

make matrix.f90

subroutine make matrix (mpe,ndof,ael,bel,icon,xg,yg,zg,penaltyg,tempscale,kfix,viscosity0,density,

penalty,expon,activationenergy,expansion,diffusivity,heat,plasticity type,

plasticity 1st param,plasticity 2nd param,dt,unode,vnode,wnode,temp,pressure,

strain,nnode,f,r0,s0,t0,rst,ileaves,eviscosity,forces)

arguments

aaa

This routine is called to create the FE matrix and rhs vector for both the Stokes (ndof=3) and Energy equations (ndof=1).

CT. Feb. 2007 – p. 127/190

The implemented numerical integration technique is the Gauss-Legendre, or Gauss Quadrature (see [?] p137, [?] p274, [?] p200):

Z +1

−1

Z +1

−1

Z +1

−1
F (r, s, t)drdsdt =

X

ijk

αiαjαkF (ri, si.ti)

where the αi ’s are all equal to 1 and the 8 integration points (ri, si.ti) are given by

1 → (−
q

1/3,−
q

1/3,−
q

1/3)

2 → (
q

1/3,−
q

1/3,−
q

1/3)

3 → (
q

1/3,
q

1/3,−
q

1/3)

4 → (−
q

1/3,
q

1/3,−
q

1/3)

5 → (−
q

1/3,−
q

1/3,
q

1/3)

6 → (
q

1/3,−
q

1/3,
q

1/3)

7 → (
q

1/3,
q

1/3,
q

1/3)

8 → (−
q

1/3,
q

1/3,
q

1/3)

This translates as follows in the code

r r (1)=−.577350269189626d0 ; ss(1)=−.577350269189626d0 ; t t (1)=−.577350269189626d0 ; ww(1) =1 . d0

r r (2)=.577350269189626 d0 ; ss(2)=−.577350269189626d0 ; t t (2)=−.577350269189626d0 ; ww(2) =1 . d0

[. . .]

r r (7)=.577350269189626 d0 ; ss (7)=.577350269189626 d0 ; t t (7)=.577350269189626 d0 ; ww(7) =1 . d0

r r (8)=−.577350269189626d0 ; ss (8)=.577350269189626 d0 ; t t (8)=.577350269189626 d0 ; ww(8) =1 . d0

CT. Feb. 2007 – p. 128/190

This means that one has to construct (BTCB|J|) at every integration point, hence the following loop

do i i n t =1 , n i n t

For a given value of iint between 1 and 8, we compute (ri, si.ti):

r =r0+ r s t ∗(r r (i i n t)+1 . d0) / 2 . d0 \ \

s=s0+ r s t ∗(ss (i i n t)+1 . d0) / 2 . d0 \ \

t = t0+ r s t ∗(t t (i i n t)+1 . d0) / 2 . d0 \ \

w=ww(i i n t)

CT. Feb. 2007 – p. 129/190

We then compute the shape functions at the integration point:

h1(ri, si, ti) = (1 − ri) ∗ (1 − si) ∗ (1 − ti)/8

h2(ri, si, ti) = (1 + ri) ∗ (1 − si) ∗ (1 − ti)/8

h3(ri, si, ti) = (1 − ri) ∗ (1 + si) ∗ (1 − ti)/8

h4(ri, si, ti) = (1 + ri) ∗ (1 + si) ∗ (1 − ti)/8

h5(ri, si, ti) = (1 − ri) ∗ (1 − si) ∗ (1 + ti)/8

h6(ri, si, ti) = (1 + ri) ∗ (1 − si) ∗ (1 + ti)/8

h7(ri, si, ti) = (1 − ri) ∗ (1 + si) ∗ (1 + ti)/8

h8(ri, si, ti) = (1 + ri) ∗ (1 + si) ∗ (1 + ti)/8

h (1) = (1 . d0−r)∗ (1 . d0−s)∗ (1 . d0−t) / 8 . d0

h (2) = (1 . d0+ r)∗ (1 . d0−s)∗ (1 . d0−t) / 8 . d0

h (3) = (1 . d0−r)∗ (1 . d0+s)∗ (1 . d0−t) / 8 . d0

h (4) = (1 . d0+ r)∗ (1 . d0+s)∗ (1 . d0−t) / 8 . d0

h (5) = (1 . d0−r)∗ (1 . d0−s)∗ (1 . d0+ t) / 8 . d0

h (6) = (1 . d0+ r)∗ (1 . d0−s)∗ (1 . d0+ t) / 8 . d0

h (7) = (1 . d0−r)∗ (1 . d0+s)∗ (1 . d0+ t) / 8 . d0

h (8) = (1 . d0+ r)∗ (1 . d0+s)∗ (1 . d0+ t) / 8 . d0

CT. Feb. 2007 – p. 130/190

and their derivatives

∂h1

∂r

˛
˛
˛
˛
˛
i

= −(1 − si) ∗ (1 − ti)/8
∂h5

∂r

˛
˛
˛
˛
˛
i

= −(1 − si) ∗ (1 + ti)/8

∂h2

∂r

˛
˛
˛
˛
˛
i

= (1 − si) ∗ (1 − ti)/8
∂h6

∂r

˛
˛
˛
˛
˛
i

= (1 − si) ∗ (1 + ti)/8

∂h3

∂r

˛
˛
˛
˛
˛
i

= −(1 + si) ∗ (1 − ti)/8
∂h7

∂r

˛
˛
˛
˛
˛
i

= −(1 + si) ∗ (1 + ti)/8

∂h4

∂r

˛
˛
˛
˛
˛
i

= (1 + si) ∗ (1 − ti)/8
∂h8

∂r

˛
˛
˛
˛
˛
i

= (1 + si) ∗ (1 + ti)/8

dhdr (1)=−(1.d0−s)∗ (1 . d0−t) / 8 . d0

dhdr (2) = (1 . d0−s)∗ (1 . d0−t) / 8 . d0

dhdr (3)=−(1.d0+s)∗ (1 . d0−t) / 8 . d0

dhdr (4) = (1 . d0+s)∗ (1 . d0−t) / 8 . d0

dhdr (5)=−(1.d0−s)∗ (1 . d0+ t) / 8 . d0

dhdr (6) = (1 . d0−s)∗ (1 . d0+ t) / 8 . d0

dhdr (7)=−(1.d0+s)∗ (1 . d0+ t) / 8 . d0

dhdr (8) = (1 . d0+s)∗ (1 . d0+ t) / 8 . d0

CT. Feb. 2007 – p. 131/190

∂h1

∂s

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 − ti)/8
∂h5

∂s

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 + ti)/8

∂h2

∂s

˛
˛
˛
˛
˛
i

= −(1 + ri) ∗ (1 − ti)/8
∂h6

∂s

˛
˛
˛
˛
˛
i

= −(1 + ri) ∗ (1 + ti)/8

∂h3

∂s

˛
˛
˛
˛
˛
i

= (1 − ri) ∗ (1 − ti)/8
∂h7

∂s

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 + ti)/8

∂h4

∂s

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 − ti)/8
∂h8

∂s

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 + ti)/8

dhds(1)=−(1.d0−r)∗ (1 . d0−t) / 8 . d0

dhds(2)=−(1.d0+ r)∗ (1 . d0−t) / 8 . d0

dhds (3) = (1 . d0−r)∗ (1 . d0−t) / 8 . d0

dhds (4) = (1 . d0+ r)∗ (1 . d0−t) / 8 . d0

dhds(5)=−(1.d0−r)∗ (1 . d0+ t) / 8 . d0

dhds(6)=−(1.d0+ r)∗ (1 . d0+ t) / 8 . d0

dhds (7) = (1 . d0−r)∗ (1 . d0+ t) / 8 . d0

dhds (8) = (1 . d0+ r)∗ (1 . d0+ t) / 8 . d0

CT. Feb. 2007 – p. 132/190

∂h1

∂t

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 − si)/8
∂h5

∂t

˛
˛
˛
˛
˛
i

= (1 − ri) ∗ (1 − si)/8

∂h2

∂t

˛
˛
˛
˛
˛
i

= −(1 + ri) ∗ (1 − si)/8
∂h6

∂t

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 − si)/8

∂h3

∂t

˛
˛
˛
˛
˛
i

= −(1 − ri) ∗ (1 + si)/8
∂h7

∂t

˛
˛
˛
˛
˛
i

= (1 − ri) ∗ (1 + si)/8

∂h4

∂t

˛
˛
˛
˛
˛
i

= −(1 + ri) ∗ (1 + si)/8
∂h8

∂t

˛
˛
˛
˛
˛
i

= (1 + ri) ∗ (1 + si)/8

dhdt (1)=−(1.d0−r)∗ (1 . d0−s) / 8 . d0

dhdt (2)=−(1.d0+ r)∗ (1 . d0−s) / 8 . d0

dhdt (3)=−(1.d0−r)∗ (1 . d0+s) / 8 . d0

dhdt (4)=−(1.d0+ r)∗ (1 . d0+s) / 8 . d0

dhdt (5) = (1 . d0−r)∗ (1 . d0−s) / 8 . d0

dhdt (6) = (1 . d0+ r)∗ (1 . d0−s) / 8 . d0

dhdt (7) = (1 . d0−r)∗ (1 . d0+s) / 8 . d0

dhdt (8) = (1 . d0+ r)∗ (1 . d0+s) / 8 . d0

CT. Feb. 2007 – p. 133/190

We then need the Jacobian of the transformation (x, y, z) → (r, s, t).

0

B
B
B
B
B
B
B
@

∂
∂r

∂
∂s

∂
∂t

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

1

C
C
C
C
C
C
C
A

| {z }

J

0

B
B
B
B
B
B
B
B
@

∂
∂x

∂
∂y

∂
∂z

1

C
C
C
C
C
C
C
C
A

Since x =
8P

k=1
hkxk , y =

8P

k=1
hkyk and z =

8P

k=1
hkzk , we have for instance ∂x

∂r
=

8P

k=1

∂hk
∂r

xk so that the computation of

the 3 × 3 Jacobian matrix jcb writes:

j cb =0.

do k=1 ,mpe

jcb (1 ,1)= jcb (1 ,1)+ dhdr (k)∗x (k)

j cb (1 ,2)= jcb (1 ,2)+ dhdr (k)∗y (k)

j cb (1 ,3)= jcb (1 ,3)+ dhdr (k)∗z (k)

j cb (2 ,1)= jcb (2 ,1)+ dhds (k)∗x (k)

j cb (2 ,2)= jcb (2 ,2)+ dhds (k)∗y (k)

j cb (2 ,3)= jcb (2 ,3)+ dhds (k)∗z (k)

j cb (3 ,1)= jcb (3 ,1)+ dhdt (k)∗x (k)

j cb (3 ,2)= jcb (3 ,2)+ dhdt (k)∗y (k)

j cb (3 ,3)= jcb (3 ,3)+ dhdt (k)∗z (k)

enddo

CT. Feb. 2007 – p. 134/190

One then computes J−1 . J is a 3 × 3 matrix, so we simply resort to a simple matrix inversion algorithm. We first compute
volume = Det[J] = J1,1J2,2J3,3+J1,2J2,3J3,1+J2,1J3,2J1,3−J1,3J2,2J3,1−J1,2J2,1J3,3−J2,3J3,2J1,1

volume= jcb (1 ,1)∗ j cb (2 ,2)∗ j cb (3 ,3)+ jcb (1 ,2)∗ j cb (2 ,3)∗ j cb (3 , 1) &

+ jcb (2 ,1)∗ j cb (3 ,2)∗ j cb (1 , 3) &

−j cb (1 ,3)∗ j cb (2 ,2)∗ j cb (3,1)− j cb (1 ,2)∗ j cb (2 ,1)∗ j cb (3 , 3) &

−j cb (2 ,3)∗ j cb (3 ,2)∗ j cb (1 , 1)

and then J−1 is given by:

j c b i (1 , 1) = (j cb (2 ,2)∗ j cb (3,3)− j cb (2 ,3)∗ j cb (3 , 2)) / volume

j c b i (2 , 1) = (j cb (2 ,3)∗ j cb (3,1)− j cb (2 ,1)∗ j cb (3 , 3)) / volume

j c b i (3 , 1) = (j cb (2 ,1)∗ j cb (3,2)− j cb (2 ,2)∗ j cb (3 , 1)) / volume

j c b i (1 , 2) = (j cb (1 ,3)∗ j cb (3,2)− j cb (1 ,2)∗ j cb (3 , 3)) / volume

j c b i (2 , 2) = (j cb (1 ,1)∗ j cb (3,3)− j cb (1 ,3)∗ j cb (3 , 1)) / volume

j c b i (3 , 2) = (j cb (1 ,2)∗ j cb (3,1)− j cb (1 ,1)∗ j cb (3 , 2)) / volume

j c b i (1 , 3) = (j cb (1 ,2)∗ j cb (2,3)− j cb (1 ,3)∗ j cb (2 , 2)) / volume

j c b i (2 , 3) = (j cb (1 ,3)∗ j cb (2,1)− j cb (1 ,1)∗ j cb (2 , 3)) / volume

j c b i (3 , 3) = (j cb (1 ,1)∗ j cb (2,2)− j cb (1 ,2)∗ j cb (2 , 1)) / volume

CT. Feb. 2007 – p. 135/190

Finally,

0

B
B
B
B
B
B
B
B
@

∂h
∂x

∂h
∂y

∂h
∂z

1

C
C
C
C
C
C
C
C
A

= J
−1

0

B
B
B
B
B
B
B
@

∂h
∂r

∂h
∂s

∂h
∂t

1

C
C
C
C
C
C
C
A

is implemented as follows:

do k=1 ,mpe

dhdx (k)= j c b i (1 ,1)∗dhdr (k)+ j c b i (1 ,2)∗dhds (k)+ j c b i (1 ,3)∗ dhdt (k)

dhdy (k)= j c b i (2 ,1)∗dhdr (k)+ j c b i (2 ,2)∗dhds (k)+ j c b i (2 ,3)∗ dhdt (k)

dhdz (k)= j c b i (3 ,1)∗dhdr (k)+ j c b i (3 ,2)∗dhds (k)+ j c b i (3 ,3)∗ dhdt (k)

enddo

CT. Feb. 2007 – p. 136/190

The strain rate tensor is given by ǫ = (∇v + (∇v)T)/2:

ǫxx =
∂u

∂x
ǫxy =

1

2

∂u

∂y
+
∂v

∂x

!

ǫyy =
∂v

∂y
ǫyz =

1

2

∂v

∂z
+
∂w

∂y

!

ǫzz =
∂w

∂z
ǫxz =

1

2

∂u

∂z
+
∂w

∂x

!

Since u =
P8
k=1 hkuk , v =

P8
k=1 hkvk and z =

P8
k=1 hkwk , we have for instance ∂u

∂x
=
P8
k=1

∂hk
∂x

uk and it

translates as follows in the code:

exx =0.d0

eyy =0.d0

ezz =0.d0

exy =0.d0

eyz =0.d0

ezx =0.d0

do k=1 ,mpe

i c = icon (k)

exx=exx+dhdx (k)∗unode (i c)

eyy=eyy+dhdy (k)∗vnode (i c)

ezz=ezz+dhdz (k)∗wnode(i c)

exy=exy +(dhdx (k)∗vnode (i c)+dhdy (k)∗unode (i c)) / 2 . d0

eyz=eyz +(dhdy (k)∗wnode(i c)+dhdz (k)∗vnode (i c)) / 2 . d0

ezx=ezx +(dhdz (k)∗unode (i c)+dhdx (k)∗wnode(i c)) / 2 . d0

enddo

CT. Feb. 2007 – p. 137/190

We now need to write the B matrix. We start from

0

B
B
B
B
B
B
B
B
@

∂u
∂x

∂u
∂y

∂u
∂z

1

C
C
C
C
C
C
C
C
A

i

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

8P

k=1

∂hk
∂x

uk

8P

k=1

∂hk
∂y

uk

8P

k=1

∂hk
∂z

uk

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

;

0

B
B
B
B
B
B
B
B
@

∂v
∂x

∂v
∂y

∂v
∂z

1

C
C
C
C
C
C
C
C
A

i

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

8P

k=1

∂hk
∂x

vk

8P

k=1

∂hk
∂y

vk

8P

k=1

∂hk
∂z

vk

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

;

0

B
B
B
B
B
B
B
B
@

∂w
∂x

∂w
∂y

∂w
∂z

1

C
C
C
C
C
C
C
C
A

i

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

8P

k=1

∂hk
∂x

wk

8P

k=1

∂hk
∂y

wk

8P

k=1

∂hk
∂z

wk

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

It is common to work with the following strain-rate vector (mainly in order to remove the 1/2 terms that would appear in the B matrix)

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

ǫxx

ǫyy

ǫzz

2ǫxy

2ǫxz

2ǫyz

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

CT. Feb. 2007 – p. 138/190

Let us assume that we evaluate J at a Gauss-Legendre integration point i:

ǫ̂i =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

ǫxx

ǫyy

ǫzz

2ǫxy

2ǫxz

2ǫyz

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

8P

k=1

∂hk
∂x

uk

8P

k=1

∂hk
∂y

uk

8P

k=1

∂hk
∂z

uk

8P

k=1

„
∂hk
∂y

uk +
∂hk
∂x

vk

«

8P

k=1

„
∂hk
∂z

uk +
∂hk
∂x

wk

«

8P

k=1

„
∂hk
∂z

vk +
∂hk
∂y

wk

«

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

CT. Feb. 2007 – p. 139/190

This can be written as ǫi = Biû where Bi is a 6×mpe*dof matrix and û is a vector of dimensions mpe*dof:

Bi =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

∂h1
∂x

0 0 · · · ∂h8
∂x

0 0

0
∂h1
∂y

0 · · · 0
∂h8
∂y

0

0 0
∂h1
∂z

· · · 0 0
∂h8
∂z

∂h1
∂y

∂h1
∂x

0 · · · ∂h8
∂y

∂h8
∂x

0

∂h1
∂z

0
∂h1
∂x

· · · ∂h8
∂z

0
∂h8
∂x

0
∂h1
∂z

∂h1
∂y

· · · 0
∂h8
∂z

∂h8
∂y

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

û =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

u1

v1

w1

u2

v2

w2

.

.

.

u8

v8

w8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i

do k=1 ,mpe

k1 =(k−1)∗3+1 ; k2 =(k−1)∗3+2 ; k3 =(k−1)∗3+3

b (k1 ,1)= dhdx (k) ; b (k2 , 1) =0 . d0 ; b (k3 , 1) =0 . d0

b (k1 , 2) =0 . d0 ; b (k2 ,2)= dhdy (k) ; b (k3 , 2) =0 . d0

b (k1 , 3) =0 . d0 ; b (k2 , 3) =0 . d0 ; b (k3 ,3)= dhdz (k)

b (k1 , 4) =0 . d0 ; b (k2 ,4)= dhdz (k) ; b (k3 ,4)= dhdy (k)

b (k1 ,5)= dhdz (k) ; b (k2 , 5) =0 . d0 ; b (k3 ,5)= dhdx (k)

b (k1 ,6)= dhdy (k) ; b (k2 ,6)= dhdx (k) ; b (k3 , 6) =0 . d0

enddo

CT. Feb. 2007 – p. 140/190

In the case of a more involved (plastic) rheology, the rheological law, or consitutive equation writes

σn = 2µ0e
Q/RT ǫ̇

or,

σ = (2µ0)
1/n

e
Q/nRT

ǫ̇
1/n−1

ǫ̇

The term ǫ̇1/n−1 is simply ’transformed’ into a scalar parameter by means of the second invariant of the deviatoric strain-rate tensor:

J2 =
1

2
ǫjiǫij =

ǫ2xx + ǫ2yy + ǫ2zz

2
+ ǫ2xy + ǫ2xz + ǫ2yz

e2d=(exx∗∗2+eyy∗∗2+ezz∗∗2)/2.d0+exy∗∗2+eyz∗∗2+ezx∗∗2

i f (e2d . ne . 0 . d0) e2d= s q r t (e2d)

e2dref =1.d0

v i s c o s i t y = v i s c o s i t y 0

i f (e2d . ne . 0 . d0 . and . expon . ne . 1 . d0) v i s c o s i t y = v i s c o s i t y ∗(e2d / e2dref)∗∗(1.d0 / expon−1.d0)

We then define ηeff as being

ηeff = (2µ0)
1/n

e
Q/nRT

ǫ̇
1/n−1

and the matrix C is imply given by C = 2ηeff1.

CT. Feb. 2007 – p. 141/190

In the case of a purely viscous material, the following relationship between the stress tensor and the strain-rate tensor holds:

σ = 2ηǫ̇

where η is a constant viscosity. The matrix C, defined as σ = Cǫ̇ writes C = 2η1. But since we are working wit hthe strain-rate vector defined
hereabove, we must use the followingC matrix instead:

C̃ =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

2η 0 0 0 0 0

0 2η 0 0 0 0

0 0 2η 0 0 0

0 0 0 η 0 0

0 0 0 0 η 0

0 0 0 0 0 η

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

d=0.d0

d (1 ,1)= v i s c o s i t y ∗2.d0

d (2 ,2)= v i s c o s i t y ∗2.d0

d (3 ,3)= v i s c o s i t y ∗2.d0

d (4 ,4)= v i s c o s i t y

d (5 ,5)= v i s c o s i t y

d (6 ,6)= v i s c o s i t y

CT. Feb. 2007 – p. 142/190

Here one builds the left-hand side element matrix ael of size mpe*ndof×mpe*ndof

do j =1 ,mpe∗ndof

do i =1 ,6

bd (j , i)=0 . d0

do k=1 ,6

bd (j , i)=bd (j , i)+b (j , k)∗d (k , i)

enddo

enddo

enddo

do j =1 ,mpe∗ndof

do i =1 ,mpe∗ndof

do k=1 ,6

ae l (i , j)= ae l (i , j)+b (i , k)∗bd (j , k)∗volume∗w

enddo

enddo

enddo

CT. Feb. 2007 – p. 143/190

The equilibrium equations of the element assemblage corresponding to the nodal point displacement are

K · U = R

where R = RB + RS − RI + RC . The load vector RB includes the effect of the element body forces, RS the effect of element surface
forces, RI the effect of element initial stress and RC the concentrated loads.
Only RB is of interest in our case and we have

RB =

Z

V
H
T

f
BdV

where fB are the body forces, i.e. fB = (0, 0, ρg). The matrixH is given by u = H · û. From

u =

8X

k=1

hkuk v =

8X

k=1

hkvk w =

8X

k=1

hkwk

CT. Feb. 2007 – p. 144/190

it follows that H is a (dof,mpe*dof) array:

0

B
B
@

u

v

w

1

C
C
A

=

0

B
B
B
B
B
B
B
@

h1 0 0 h2 0 0 h8 0 0

0 h1 0 0 h2 0 . . . 0 h8 0

0 0 h1 0 0 h2 0 0 h8

1

C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

u1

v1

w1

u2

v2

w2

.

.

.

u8

v8

w8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

CT. Feb. 2007 – p. 145/190

H
T

f
B

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

h1 0 0

0 h1 0

0 0 h1

h2 0 0

0 h2 0

0 0 h2

.

.

.

h8 0 0

0 h8 0

0 0 h8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
@

0

0

ρg

1

C
C
A

= ρg

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

h1

0

0

h2

.

.

.

0

0

h8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

One then builds the right-hand side element vector bel of length mpe*ndof

do j =1 ,mpe

j j =(j −1)∗ndof+ndof

be l (j j)= be l (j j)+h (j)∗volume∗w∗dens i t y

enddo

End of the loop on the Gauss-Legendre integration points

end do

CT. Feb. 2007 – p. 146/190

One adds a compressibility term (1 point integration)

viscomean=viscomean / n i n t

d l =0. d0

d l (1 ,1)= c o m p r e s s i b i l i t y∗viscomean

d l (1 ,2)= c o m p r e s s i b i l i t y∗viscomean

d l (1 ,3)= c o m p r e s s i b i l i t y∗viscomean

d l (2 ,1)= c o m p r e s s i b i l i t y∗viscomean

d l (2 ,2)= c o m p r e s s i b i l i t y∗viscomean

d l (2 ,3)= c o m p r e s s i b i l i t y∗viscomean

d l (3 ,1)= c o m p r e s s i b i l i t y∗viscomean

d l (3 ,2)= c o m p r e s s i b i l i t y∗viscomean

d l (3 ,3)= c o m p r e s s i b i l i t y∗viscomean

dl =

0

B
B
B
B
B
B
B
B
B
B
@

x x x 0 0 0

x x x 0 0 0

x x x 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
A

CT. Feb. 2007 – p. 147/190

This unique point of integration is situated in the middle of the cube, and its weight is 1:

r =0.d0

s =0.d0

t =0.d0

w=8.d0

One then computes the derivatives of the shape function:

dhdr (1)=−(1.d0−s)∗ (1 . d0−t) / 8 . d0

. . .

dhds(1)=−(1.d0−r)∗ (1 . d0−t) / 8 . d0

. . .

dhdt (1)=−(1.d0−r)∗ (1 . d0−s) / 8 . d0

. . .

dhdt (8) = (1 . d0+ r)∗ (1 . d0+s) / 8 . d0

CT. Feb. 2007 – p. 148/190

Then, the jacobian and its inverse:

j cb =0.

do k=1 ,mpe

jcb (1 ,1)= jcb (1 ,1)+ dhdr (k)∗x (k)

j cb (1 ,2)= jcb (1 ,2)+ dhdr (k)∗y (k)

j cb (1 ,3)= jcb (1 ,3)+ dhdr (k)∗z (k)

j cb (2 ,1)= jcb (2 ,1)+ dhds (k)∗x (k)

j cb (2 ,2)= jcb (2 ,2)+ dhds (k)∗y (k)

j cb (2 ,3)= jcb (2 ,3)+ dhds (k)∗z (k)

j cb (3 ,1)= jcb (3 ,1)+ dhdt (k)∗x (k)

j cb (3 ,2)= jcb (3 ,2)+ dhdt (k)∗y (k)

j cb (3 ,3)= jcb (3 ,3)+ dhdt (k)∗z (k)

enddo

volume= jcb (1 ,1)∗ j cb (2 ,2)∗ j cb (3 ,3)+ jcb (1 ,2)∗ j cb (2 ,3)∗ j cb (3 , 1) + jcb (2 ,1)∗ j cb (3 ,2)∗ j cb (1 , 3) &

−j cb (1 ,3)∗ j cb (2 ,2)∗ j cb (3,1)− j cb (1 ,2)∗ j cb (2 ,1)∗ j cb (3 , 3) −j cb (2 ,3)∗ j cb (3 ,2)∗ j cb (1 , 1)

j c b i (1 , 1) = (j cb (2 ,2)∗ j cb (3,3)− j cb (2 ,3)∗ j cb (3 , 2)) / volume

j c b i (2 , 1) = (j cb (2 ,3)∗ j cb (3,1)− j cb (2 ,1)∗ j cb (3 , 3)) / volume

j c b i (3 , 1) = (j cb (2 ,1)∗ j cb (3,2)− j cb (2 ,2)∗ j cb (3 , 1)) / volume

j c b i (1 , 2) = (j cb (1 ,3)∗ j cb (3,2)− j cb (1 ,2)∗ j cb (3 , 3)) / volume

j c b i (2 , 2) = (j cb (1 ,1)∗ j cb (3,3)− j cb (1 ,3)∗ j cb (3 , 1)) / volume

j c b i (3 , 2) = (j cb (1 ,2)∗ j cb (3,1)− j cb (1 ,1)∗ j cb (3 , 2)) / volume

j c b i (1 , 3) = (j cb (1 ,2)∗ j cb (2,3)− j cb (1 ,3)∗ j cb (2 , 2)) / volume

j c b i (2 , 3) = (j cb (1 ,3)∗ j cb (2,1)− j cb (1 ,1)∗ j cb (2 , 3)) / volume

j c b i (3 , 3) = (j cb (1 ,1)∗ j cb (2,2)− j cb (1 ,2)∗ j cb (2 , 1)) / volume

CT. Feb. 2007 – p. 149/190

Then, ∂h/∂x, ∂h/∂y, ∂h/∂z:

do k=1 ,mpe

dhdx (k)= j c b i (1 ,1)∗dhdr (k)+ j c b i (1 ,2)∗dhds (k)+ j c b i (1 ,3)∗ dhdt (k)

dhdy (k)= j c b i (2 ,1)∗dhdr (k)+ j c b i (2 ,2)∗dhds (k)+ j c b i (2 ,3)∗ dhdt (k)

dhdz (k)= j c b i (3 ,1)∗dhdr (k)+ j c b i (3 ,2)∗dhds (k)+ j c b i (3 ,3)∗ dhdt (k)

enddo

Then, Bi :

do k=1 ,mpe

k1 =(k−1)∗3+1

k2 =(k−1)∗3+2

k3 =(k−1)∗3+3

b (k1 ,1)= dhdx (k)

b (k2 , 1) =0 . d0

. . .

b (k3 , 6) =0 . d0

enddo

CT. Feb. 2007 – p. 150/190

Finally one computes an additional term to the ael matrix:

do j =1 ,mpe∗ndof

do i =1 ,6

bd (j , i)=0 . d0

do k=1 ,6

bd (j , i)=bd (j , i)+b (j , k)∗ d l (k , i)

enddo

enddo

enddo

do j =1 ,mpe∗ndof

do i =1 ,mpe∗ndof

do k=1 ,6

ae l (i , j)= ae l (i , j)+bd (i , k)∗b (j , k)∗volume∗w

enddo

enddo

enddo

CT. Feb. 2007 – p. 151/190

Add fixed velocity boundary conditions:

do i i =1 ,mpe

do k=1 , ndof

i j =(icon (i i)−1)∗ndof+k

i f (k f i x (i j) . eq . 1) then

i f (k . eq . 1) f i x t =unode (icon (i i))

i f (k . eq . 2) f i x t =vnode (icon (i i))

i f (k . eq . 3) f i x t =wnode(icon (i i))

i =(i i −1)∗ndof+k

do j =1 ,mpe∗ndof

be l (j)= be l (j)−ae l (j , i)∗ f i x t

ae l (i , j) =0 . d0

ae l (j , i) =0 . d0

enddo

ae l (i , i) =1 . d0∗pena l tyg

be l (i)= f i x t∗pena l tyg

endif

enddo

enddo

CT. Feb. 2007 – p. 152/190

make pressure.f90

subroutine make pressure (mpe,ndof,icon,xg,yg,zg,viscosity0,penalty,expon,

unode,vnode,wnode,temp,pressure,strain,nnode,

r0,s0,t0,rst)

arguments

mpe

ndof

icon

xg,yg,zg

viscosity0

penalty

expon

unode,vnode,wnode

temp

pressure

strain

nnode

r0,s0,t0

rst

eviscosity

q

This routine is a stripped down version of make_matrix but is used in the calculation of the pressure. It computes the trace of the strain-rate
tensor and multiplies it by the penalty factor to obtain the pressure.

CT. Feb. 2007 – p. 153/190

module colormaps.f90

red jet, green jet, blue jet (ic,nc)

arguments

ic

nc

These functions compute the jet-rgb values for a given index comprised between 1 and nc.

red hot, green hot, blue hot (ic,nc)

arguments

ic

nc

These functions compute the hot-rgb values for a given index comprised between 1 and nc.

CT. Feb. 2007 – p. 154/190

module constants.f90

It contains the definition of the following constants :

pi: π

Rgas: Perfect Gas ConstantR = 8.31447215J.K−1.mol−1

sqrt2:
√

2

sqrt3:
√

3

CT. Feb. 2007 – p. 155/190

module definitions.f90

It contains the definition of the derived types used in the code:

type edge: it is used to store edges in a trianglulation.

type sheet: it is used to store surfaces tracked by particles.

type octreev: it is used to store velocity/temperature octree.

type octreelsf: it is used to store level set function.

type octreesolve: it is used to store velocity,temperature,lsf,strain,...

type material: it is used to define different materials.

type void: it is used to store information on node, leaves and faces that are in the void.

type cloud: it is used to store volumetric cloud of points.

type topology: it is used to store the matrix topology for the solver.

type box: it is is used to store the geometrical information about a general box that is used to refine an octree.

type face: it is used to store the refinement informations on a given face of the cube

type cross section: it is used to store all the informations related to the output of cross sections

CT. Feb. 2007 – p. 156/190

module distributions.f90

subroutine cumulative distribution (array size,array,nb of intervals,namefile)

arguments

array_size

array

nb_of_intervals

namefile

This subroutine computes the distribution of values contained in the array of size array_size passed as argument. The values in the array can
be negative and positive. The distribution, computed on nb_of_intervals points is written in file namefile.

subroutine distribution (array size,array,nb of intervals,namefile)

arguments

array_size

array

nb_of_intervals

namefile

This subroutine computes the distribution of values contained in the array of size array_size passed as argument. The values in the array can
be negative and positive. The distribution, computed on nb_of_intervals points is written in file namefile.

CT. Feb. 2007 – p. 157/190

module DoRuRe.f90

DoRuRe = Douar Run Report

module_DoRuRe.f90:

io_DoRuRe

write_dt_stats

write_cloud_stats

write_diag_stats

write_leaf_stats

write_forces_stats

write_nelem_stats

write_octree_stats

write_qpgram

write_skyline_stats

write_solver_stats

write_conv_stats

write_maxdeltauvw_stats

write_div_stats

write_nonlin_stats

write_velocity_stats

write_gnuplot_surfstats

produce_texfiles

write_ss

timestring

To produce report.pdf:

> ./DORURE/generate_report

CT. Feb. 2007 – p. 158/190

module gauss.f90

This module contains the definition of the ww, rr, ss, tt arrays:

ww = (1, 1, 1, 1, 1, 1, 1, 1)

rr = (−
√

3

3
,

√
3

3
,

√
3

3
,−

√
3

3
,−

√
3

3
,

√
3

3
,

√
3

3
,−

√
3

3
)

rr = (−
√

3

3
,−

√
3

3
,

√
3

3
,

√
3

3
,−

√
3

3
,−

√
3

3
,

√
3

3
,

√
3

3
)

rr = (−
√

3

3
,−

√
3

3
,−

√
3

3
,−

√
3

3
,

√
3

3
,

√
3

3
,

√
3

3
,

√
3

3
)

which are the coordinates and associated weights of the Gauss-Legendre integration points:
0. 5 7 7 3 5 . . .0. 5 7 7 3 5 . . .

0 . 5 7 7 3 5 . . .0. 5 7 7 3 5 . . .

CT. Feb. 2007 – p. 159/190

module invariants.f90

function trace (exx,eyy,ezz,exy,eyz,ezx)

arguments

exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

this function returns the trace of the tensor:

trace = ǫ̇xx + ǫ̇yy + ǫ̇zz

subroutine deviatoric (exx,eyy,ezz,exy,eyz,ezx)

arguments

exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

this routine returns the deviatoric part of the strain-rate tensor.

ǫ̇xx = ǫ̇xx −
1

3
(ǫ̇xx + ǫ̇yy + ǫ̇zz)

ǫ̇yy = ǫ̇yy −
1

3
(ǫ̇xx + ǫ̇yy + ǫ̇zz)

ǫ̇zz = ǫ̇zz −
1

3
(ǫ̇xx + ǫ̇yy + ǫ̇zz)

CT. Feb. 2007 – p. 160/190

module invariants.f90 (2)

function second invariant (exx,eyy,ezz,exy,eyz,ezx)

arguments

exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

This function returns the second invariant of the symmetric tensor passed as argument:

second_invariant =
1

2

X

ij

ǫ̇ij ǫ̇ij =
1

2
(ǫ̇2xx + ǫ̇2yy + ǫ̇2zz) + ǫ̇2xy + ǫ̇2yz + ǫ̇2zx

function third invariant (exx,eyy,ezz,exy,eyz,ezx)

arguments

exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

This function returns the third invariant of the symmetric tensor passed as argument:

third_invariant =
1

3

X

ijk

ǫ̇ij ǫ̇jkǫ̇ki =
1

3
ǫ̇xx(ǫ̇2xx + 3ǫ̇2xy + 3ǫ̇2zx)

+
1

3
ǫ̇yy(3ǫ̇

2
xy + ǫ̇

2
yy + 3ǫ̇

2
yz)

+
1

3
ǫ̇zz(3ǫ̇2zx + 3ǫ̇2yz + ǫ̇2zz)

+ 2ǫ̇xyǫ̇yzǫ̇zx

CT. Feb. 2007 – p. 161/190

module invariants.f90 (3)

function lode angle (J2d,J3d)

arguments

J2d,J3d: the second and third ivariant of a given tensor

This function returns the Lode angle associated to the invariants passed as argument. This angle is comprised between −π/6 and +π/6.

lode_angle =
1

3
sin−1

0

@−
3
√

3

2

J′
3

(J′
2)3/2

1

A

CT. Feb. 2007 – p. 162/190

module kernel.f90

function kernel (r,kappah)

function kernel p (r,kappah)

function kernel pp (r,kappah)

arguments

r: distance between two particles

kappah: cutoff radius

these functions return respectivelyW (r/κh),W ′(r/κh),W ′′(r/κh), whereW is the so-called kernel of the interpolation:

CT. Feb. 2007 – p. 163/190

module random.f90

It contains the definition of the ran function, from Numerical Recipes
This implements the random number generator of Park and Miller combined with a Marsaglia shift sequence. It returns a uniform random deviate
between 0.0 and 1.0 (exclusive of the endpoint vlaues).

CT. Feb. 2007 – p. 164/190

move cloud.f90

subroutine move cloud (cl,octree,noctree,unode,vnode,wnode,nnode,

icon octree,nleaves,dt,niter move)

arguments

cl is the cloud of points to be moved

octree is the velocity octree

noctree is its size

unode,vnode and wnode are the components of the velocity

icon_octree is the connectivity matrix on the octree

nleaves is the number of leaves in the octree

dt is the time step

levelmax_oct is the maximum level of refinement for the solve octree

niter_move is the number of iterations used to move the particles (read in input.txt)

This subroutine moves a set of particles from a velocity field known at the nodes of an octree. Here we use a simple method that performs a
given (niter_move) number of iterations in a mid-point algorithm.

CT. Feb. 2007 – p. 165/190

move surface.f90

subroutine move surface (surface,surface0,flag0,octree,noctree,unode,vnode,wnode,nnode,icon octree,nleaves,dt,niter move,normaladvect)

arguments

surface is the surface on which the particles need to be moved

surface0 is the surface in its initial geometry

flag0 is 1 if in midpoint configuration and 0 if at the end of the timestep

octree is the velocity octree

noctree is its size

unode,vnode and wnode are the components of the velocity

nnode is the number of nodes on the octree

icon_octree is the connectivity matrix on the octree

nleaves is the number of leaves in the octree

dt is the time step

niter_move is the number of iterations used to move the particles. It is read in input.txt

normaladvect

This subroutine moves a set of particles on a surface from a velocity field known at the nodes of an octree. Here we use a simple method that
performs a given (niter_move) number of iterations in a mid_point algorithm. We also advect the normals by using the velocity gradient
computed from the finite element shape function derivatives.

CT. Feb. 2007 – p. 166/190

pressure cut.f90

recursive subroutine pressure cut (level,levelmax,levelapprox,mpe,ndof,icon,x,y,z,mat,nmat,materialn,u,v,w,

temp,pressure,strain,nnode,lsf,nlsf,r0,s0,t0,rst,icut,ileaves)

arguments

level is current level in cut cell algorithm. It varies between 0 and levelmax.

levelapprox is used to improve the postitive volume calculation by further division

mpe is number of nodes per element (8)

ndof is the number of degrees of freedom per node (3)

icon is connectivity array for the current element

x,y,z are the global coordinate arrays of length nnode

mat is the material matrix for the nmat materials

materialn contains the material number associated to each lsf

u,v,w is the velocity array (obtained from previous time step or at least containing the proper velocity at the fixed dofs)

temp, pressure and strain are temperature, pressure and strain

nnode is number of nodes

lsf is global array of level set functions defining the surfaces

nlsf is number of lsfs

r0,s0,t0 are the bottom left back corner of the part of the element. We are now integrating (in local r,s,t coordinates)

rst is the size of the part of the element we are integrating

icut is returned (0 if homogeneous element - 1 if cut element)

This is an intermediary routine between compute_pressure and make_pressure in the same way as make_cut is between build_system and
make_matrix.

CT. Feb. 2007 – p. 167/190

read controlling parameters.f90

subroutine read controlling parameters (infile,irestart,restartfile,ns,nmat,nboxes,nsections,doDoRuRe)

arguments

ns is the number of surfaces in the system

isrestart

restartfile

nmat is the number of different material property arrays

nboxes is the number of user supplied refinement boxes

nsections is the number of cross-sections

doDoRuRe

This subroutine reads the main controlling parameters.

CT. Feb. 2007 – p. 168/190

read input file.f90

subroutine read input file (infile,nstep,ns,dt,nmat,material0,mat,

leveluniform oct,levelmax oct,

levelcut,levelapprox,noctreemax,

penalty,tempscale,refine ratio,refine criterion,

octree refine ratio,courant,stretch,

surface,npmin,npmax,griditer,tol,

criterion,anglemax,niter move,irestart,

restartfile,ismooth,boxes,nboxes,sections,nsections,

ierosion,zerosion,ref on faces,cube faces,

nonlinear iterations,initial refine level,

compute reaction forces,compute qpgram,debug,

normaladvect,ztemp,visualise matrix,smoothing type,

renumber nodes)

This routine uses scanfile to read in the supplied infile (input.xxxxx) all the parameters of the run. Values are read on the master node and then
broadcast to the others if necessary.

CT. Feb. 2007 – p. 169/190

refine surface.f90 (1)

subroutine refine surface (surface,ed,nedge,nedgen,refine,nadd,naddp,nedgepernode,

nodenodenumber,nodeedgenumber,nnmax)

arguments

surface is the sheet/surface to be refined

ed is the computed edge aray

nedge is the number of edges

nedgen

refine

nadd

naddp

nedgepernode

nodenodenumber

nnmax

This routine refines a surface of particles based on the value of an integer refine array of length nedge, number of edges in the triangulation
connecting the particles.

CT. Feb. 2007 – p. 170/190

refine surface.f90 (2)

b

b

b

b

edge to be refined

b

b

b

b

b

surface%nsurface=4
surface%nt=2
nedge=5

nnodemax=surface%nsurface+nadd=4+1=5
nelemmax=surface%nt+(nadd-naddp)*2+naddp=2+(1-0)*2+0=4
nedgemax=nnodemax+nelemmax-1=5+4-1=8

nadd=1

naddp=0

CT. Feb. 2007 – p. 171/190

scanfile.f90

subroutine iscanfile (fnme,text,res,ires)

It reads the value of an integer parameter whose name is stored in text from file fnme. The result is stored in res and the flag ires is set to 1 if
all went well.

subroutine dscanfile (fnme,text,res,ires)

It reads the value of an double precision parameter whose name is stored in text from file fnme. The result is stored in res and the flag ires is
set to 1 if all went well.

subroutine cscanfile (fnme,text,res,ires)

It reads the value of a character string parameter whose name is stored in text from file fnme. The result is stored in res and the flag ires is set
to 1 if all went well.

CT. Feb. 2007 – p. 172/190

slices.f90

subroutine slices (osolve,sections,nsections,istep,iter,inner)

arguments

osolve

sections

nsections

istep,iter,inner

this subroutine outputs cross sections. all parameters have been read in input.xxxx and stored in the derived type cross_section.

12 34
5 786

CT. Feb. 2007 – p. 173/190

slices.f90 (2)

subroutine write square (iunit,alpha,alpha offset,beta,beta offset,dxyz,colour)

subroutine write filled square (iunit,alpha,alpha offset,beta,beta offset,

dxyz,ratio,flag colour,colour,colormap,ncolours)

arguments

iunit:

alpha, beta

alpha_offset, beta_offset

dxyz

ratio

flag_colour

colour

colormap

ncolours

These routine write in the file associated with unit iunit a filled rectangle line at pointα, β, offset by (αoffset, βoffset) whose size is

dxyz, aspect ratio is ratio. It can be black and white or in colour, depending on the flag flag colour. Its colour is given by colour,
comprised between 1 and ncolours, and taken in colormap. The write square routine only draws an empty square.

CT. Feb. 2007 – p. 174/190

slices.f90 (3)

subroutine write colormap (iunit,alpha,alpha offset,beta,beta offset,

dxyz,ratio,flag colour,colormap,ncolours)

arguments

iunit:

alpha, beta

alpha_offset, beta_offset

dxyz

ratio

flag_colour

colormap

ncolours

These routine write in the file associated with unit iunit the colormap rectangle at pointα, β, offset by (αoffset, βoffset) whose size

is dxyz, aspect ratio is ratio. It can be black and white or in colour, depending on the flag flag colour.

Jet:

hot:

CT. Feb. 2007 – p. 175/190

slices.f90 (4)

subroutine write line (iunit,alpha,alpha offset,beta,beta offset,

valpha,vbeta,colour,flag colour,colormap)

arguments

iunit:

alpha, beta

alpha_offset, beta_offset

valpha,vbeta

colour

flag_colour

colormap

This routine writes in the file associated to iunit a line starting at point α, β, offset by (αoffset, βoffset) whose direction and length

is given by the vector (vα, vβ).

CT. Feb. 2007 – p. 176/190

smooth pressures.f90 (1)

subroutine smooth pressures (osolve,smoothing type)

arguments

osolve

smoothing_type:

0 : no smoothing

1 : center → nodes → center
2 : center → nodes → center, weighted by neighbouring leaves volumes

3 : regular grid + SPH

4 : SPH

This routine performs the smoothing of the elemental pressure field.

CT. Feb. 2007 – p. 177/190

smooth pressures.f90 (2)

On the figure hereunder is represented a part of a 2D octree. One wants to smooth the pressure inside the i leaf.

i98
1 0

7 6 5
41 32A B

CD

CT. Feb. 2007 – p. 178/190

smooth pressures.f90 (3)

smoothing_type=1

PA =
1

4
(P1 + P2 + P10 + Pi) PB =

1

4
(P3 + P4 + P5 + Pi)

PC =
1

4
(P5 + P6 + P7 + Pi) PD =

1

4
(P7 + P8 + P9 + Pi)

⇒ P
new
i =

1

4
(PA + PB + PC + PD)

=
1

4

„

Pi +
1

4
(P1 + P2 + P3 + P4 + 2P5 + P6 + 2P7 + P8 + P9 + P10)

«

CT. Feb. 2007 – p. 179/190

smooth pressures.f90 (4)

smoothing_type=2

PA =
P1V1 + P2V2 + P10V10 + PiVi

V1 + V2 + V10 + Vi

PB =
P3V3 + P4V4 + P5V5 + PiVi

V3 + V4 + V5 + Vi

PC =
P5V5 + P6V6 + P7V7 + PiVi

V5 + V6 + V7 + Vi

PD =
P7V7 + P8V8 + P9V9 + PiVi

V3 + V4 + V5 + Vi

⇒ Pnew
i =

1

4
(PA + PB + PC + PD)

Pb: this lead to different weights for leaves 2 and 3, for instance which is not really logical

CT. Feb. 2007 – p. 180/190

smooth pressures.f90 (5)

smoothing_type=3

i98
1 0

7
5

41 32A BCD
W (r)

Pnew
i =

16P

j=i
WijPj

16P

j=1
Wij

CT. Feb. 2007 – p. 181/190

smooth pressures.f90 (6)

smoothing_type=4

i981 0
7 6 541 32A BCD

W (r)
P

new
i =

NiP

j=i
WijPj

NiP

j=1
Wij

Pb: this method works rather fine, but since it has not been parallelised yet, the neighbour algorithm is in nleaves2 so it takes a lot of time to
complete...

CT. Feb. 2007 – p. 182/190

toolbox.f90

subroutine show time (total,step,inc,flag,message)

This routine is used to time the main process and track progress of the run by simple output to the maain screen.

subroutine stop run (messsage)

This subroutine stops an mpi run properly to ensure that no process remains and outputs a message to the screen.

subroutine write error vtk (leaf,volume,icon,x,y,z)

This subroutine prints out the 8 nodes numbers and their coordinates of the leaf that has caused a problem. It also outputs error.vtk that
simply contains the 8 nodes coordinates, which can be visualised in Mayavi with the Glyph module.

CT. Feb. 2007 – p. 183/190

toolbox.f90 (2)

subroutine output octree lsf (olsf,surface,is,istep,iter)

This subroutine writes out a triangulated surface and its corresponding octree (+lsf field) in ’./DEBUG/OLSF/olsf_.....txt’, which is to be
processed with ’./DEBUG/OLSF/post’ to obtain the corresponding vtk file.

subroutine output surf (surface,is,string,istep,ref count)

When using the debugging command in DOUAR, this produces vtk files of the surface passed as argument in ’./DEBUG/SURFACES/surf_....’

subroutine output osolve forces (osolve,nnode,force,istep,iter)

When reaction forces computations are turned on, this routine outputs in ’./DEBUG/FORCES/osolve_forces_xxxx_xx.txt’ the necessary
octree and forces data so that ’./DEBUG/FORCES/post’ can process it and create the corresponding vtk file.

subroutine output bc (nnode,kfix,kfixt,x,y,z,u,v,w,temp)

This subroutine writes in ’./DEBUG/BC/bc.vtk’ the coordinates of the points on which mechanical boundary conditions are imposed and their
assigned velocities, and in ’./DEBUG/BC/bct.vtk’ the coordinates of the points on which thermal boundary conditions are imposed.

CT. Feb. 2007 – p. 184/190

update cloud fields.f90

subroutine update cloud fields (cl,ov,osolve,dt)

arguments

cl is the cloud object

ov is the velocity octree

osolve is the octree

dt is time step

This routine is used to update the total strain value stored on the particles of the 3D cloud from the strainrate obtained by interpolation and
differentiation of the velocity field from the octreev structure.

CT. Feb. 2007 – p. 185/190

update cloud structure.f90

subroutine update cloud structure (cl,os,npmin,npmax,ninject,nremove,levelmax oct)

arguments

cl is the cloud

os is the octree solve

npmin is the minimum number of particles in any leaf of the octree solve

npmax is the maximum number of particles in the smallest leaves of the octree solve

ninject is number of new particles injected in the cloud

nremove is number of particles removed from the cloud

levelmax_oct is maximum level of octree solve

This file contains the operations done on a 3D cloud of particles to check the density of particles, accordingly add or remove particles and
transfer the fields carried by the cloud (here the original position of the particles). First it initializes the fields to the current (thus original)
position, then we also interpolate the fields (original position) onto the corresponding fields of the octree solve in order for the information to
be available during matrix building operation.

CT. Feb. 2007 – p. 186/190

visualise matrix.f90

subroutine visualise matrix (nz,irn,jcn,n,istep,iter)

arguments

nz

irn

jcn

istep,iter

This subroutine outputs a visual representation of the FEM matrix in ./DEBUG/MATRIX/ for each time step and each generated grid.

CT. Feb. 2007 – p. 187/190

vrm.f90

subroutine vrm (J2d,J3d,viscosity,pressure,plasticity parameters,plasticity type,is plastic)

arguments

J2d: J′
2(ǫ̇)

J3d: J′
3(ǫ̇)

viscosity

pressure

plasticity_parameters

plasticity_type

is_plastic

This routine computes the rescaled viscosity in the element in the case the failure criterion is positive

CT. Feb. 2007 – p. 188/190

vrm.f90 (2)

Mohr-Coulomb

µ′ =
1

2
q

E′
2

c cosφ − p sinφ

ζ(θl, φ)

Tresca

µ′ =
1

2
q

E′
2

c

cos θl

von Mises

µ′ =
1

2
q

E′
2

c

Drucker-Prager

µ′ =
1

2
q

E′
2

(c − αp)

with

ζ(θl.φ) = cos θl −
1

√
3

sin θl sinφ

CT. Feb. 2007 – p. 189/190

vrm.f90 (3)

subroutine compute plastic params (plasticity parameters,plasticity type)

arguments

plasticity_parameters

plasticity_type

This routine computes derived plasticity parameters that wil be used a lot and stores them in vacant spaces in plasticity_parameters(8,9):

plasticity parameters 1 2 3 4 5 6 7 8 9

vM σy

DPI,II φ c α k

DP III α k

MC φ c sinφ cosφ

Tr σy

CT. Feb. 2007 – p. 190/190

write global output.f90

subroutine write global output (istep,iter,current time,osolve,ov,vo,surface,ns,cl,outputtype)

arguments

istep

iter

current_time

osolve

vo

surface

ns

cl

outputtype

Thsi subroutine writes out all the necessary data relative to the run at given istep (and iter if outputtype is set to ’debug’ instead of final), for
restart and plotting purposes. The files are stored in ./OUT/ . In case of a restart, the data file under consideration is accessed by
define_surface, define_ov and define_cloud.

CT. Feb. 2007 – p. 191/190

Douar Run Reports

CT. Feb. 2007 – p. 192/190

DoRuRe (1)

unit file name produced in associated gnuplot script postscript file

99 screen.txt

199 debug.txt

60x work_0x_stats.dat compute_vol_work gnuplot_script_surfstats work_xx_stats.ps

65x vol_0x_stats.dat compute_vol_work gnuplot_script_surfstats vol_xx_stats.ps

70x surface_0x_stats.dat write_ss gnuplot_script_surfstats surface_xx_stats_nt.ps

surface_xx_stats_nsurface.ps

surface_xx_stats_nedge.ps

surface_xx_stats_nadd.ps

804 p_stats.dat write_leaf_stats.dat gnuplot_script_e2d_p_q p_stats.ps

805 q_stats.dat write_leaf_stats.dat gnuplot_script_e2d_p_q q_stats.ps

806 solver_stats.dat write_solver_stats gnuplot_script_solver solver_stats_n.ps

solver_stats_nz.ps

solver_stats_rinfog3.ps

solver_stats_infog3.ps

solver_stats_fact_time.ps

solver_stats_bcksub_time.ps

solver_stats_factvsn

solver_stats_factvsnleaves

807 octree_stats.dat write_octree_stats gnuplot_script_octree octree_stats_nleaves.ps

octree_stats_nnode.ps

octree_stats_nface.ps

octree_stats_nnodevsnleaves.ps

CT. Feb. 2007 – p. 193/190

DoRuRe (2)

unit file name produced in associated gnuplot script postscript file

808 level_stats.dat write_octree_stats gnuplot_script_levels level_stats_04.ps

level_stats_05.ps

level_stats_06.ps

level_stats_07.ps

level_stats_08.ps

level_stats_09.ps

level_stats_10.ps

809 frontpage.dat

810 conv_stats.dat write_conv_stats gnuplot_script_conv conv_stats.ps

811 level_stats_volumes.dat write_octree_stats gnuplot_script_levels level_stats_voltot.ps

812 cloud_stats.dat write_cloud_stats gnuplot_script_cloud cloud_stats_npoints.ps

cloud_stats_nremove.ps

cloud_stats_ninject.ps

cloud_stats_strain.ps

cloud_stats_temp.ps

cloud_stats_press.ps

813 maxdeltauvw.dat write_maxdeltauvw_stats gnuplot_script_max maxdeltauvw.ps

815 divergence_stats.dat write_div_stats gnuplot_script_div div_stats.ps

816 e2d_stats.dat write_leaf_stats.dat gnuplot_script_e2d_p_q e2d_stats.ps

CT. Feb. 2007 – p. 194/190

DoRuRe (3)

unit file name produced in associated gnuplot script postscript file

817 forces_stats.dat write_forces_stats.dat gnuplot_script_forces forces_x_stats.ps

forces_y_stats.ps

forces_z_stats.ps

818 gnuplot_script_qpgram write_qpgram

819 qpgram_list.tex write_qpgram

820 diag1_stats.dat write_diag_stats gnuplot_script_diag diag1_stats.ps

821 diag3_stats.dat write_diag_stats gnuplot_script_diag diag3_stats.ps

822 nelem1_stats.dat write_nelem_stats gnuplot_script_nelem nelem1_stats.ps

823 nelem3_stats.dat write_nelem_stats gnuplot_script_nelem nelem3_stats.ps

824 skyline1_stats.dat write_skyline_stats gnuplot_script_skyline skyline1_stats.ps

825 skyline3_stats.dat write_skyline_stats gnuplot_script_skyline skyline3_stats.ps

826 nonlin_stats write_nonlin_stats gnuplot_script_nonlin nonlin_stats.ps

827 velocity_stats write_velocity_stats gnuplot_script_vel u_stats.ps

v_stats.ps

w_stats.ps

828 temp_stats.dat write_temp_stats gnuplot_script_temp temp_stats.ps

829 e3d_stats.dat write_leaf_stats gnuplot_e2d_p_q e3d_stats.ps

830 dt_stats.dat write_dt_stats gnuplot_script_dt dt_stats.ps

CT. Feb. 2007 – p. 195/190

Compiling and linking

CT. Feb. 2007 – p. 196/190

input.txt

CT. Feb. 2007 – p. 197/190

input.xxxx

debug: debug is a parameter that switches on/off various prints and outputs (the level of printing for error, warning and messages of the
solver cntl(4) is set to the debug value) if 0 : no debugging ; if 1 : same + display of conv,nleaves,nnode,nsurface ; if 2 : same + intermediate
write_global_output.

DoRuRe:

compute qpgram: this is a flag. If set to 0, it switches off the qp-gram calculations

compute reaction forces: this a flag. If set to 0, it switches off the reaction forces calculations

irestart: this is a flag. If set to 0, this is a new run.

restartfile: if irestart 6= 0, then it indicates the run should start at step irestart, and restart from a previously obtained output file.

dt: this is the time step length (if dt is negative, courant condition is used and automatic time stepping is turned on)

nstep: this is the number of time steps

courant: courant is only used when dt is negative; it determines the size of the time step from the maximum value of the velocity field
amplitude. The time step is the product of courant by the ratio of the smallest leaf size by the maximum velocity.

normaladvect: this is a flag used to determine which algorithm is to be used to calculate the new geometry of the normals to the
surfaces at the nodes on the surfaces. if normaladvect=1, the normals are advected using the velocity gradient, if normaladvect=0, the
normals are re-computed from the geometry of the surface.

griditer: griditer is a flag that allows for nonlinear iterations; when positive, a fixed number (griditer) of iterations is permitted; when
negative, the number of nonlinear iterations is determined by a convergence criterion.

octree refine ratio: octree_refine_ratio is the threshold value used to determine whether the octree has converged or not. the
larger the value, the less stringent the test.

nonlinear iterations :nonlinear_iterations is the maximum number of nonlinear iterations (i.e. the iterations on a given
constant grid). If nonlinear_iterations is positive, it simply is the number of nonlinear iterations performed for each grid. When negative it
indicates an upper bound of nonlinear iterations, but the actual number of nonlinear iterations is determined by a convergence criterion (see
the ’tol’ parameter).

CT. Feb. 2007 – p. 198/190

input.xxxx (2)

tol: tol is the relative tolerance used to estimate convergence on the computed velocity field

leveluniform oct: leveluniform_oct is the level of uniform discretization of space; note that a level is a power of two used to divide
the unit cube.

levelmax oct: levelmax_oct is maximum level of octree discretization.

ismooth: this is a flag to impose an additional level of smoothing after refinement for the surfaces and strain rate. It ensures that no leaf
is flanked by other leaves differing by more than 1 level of refinement. If ismooth is 0, no smoothing is performed; if ismooth is set to 1,
smoothing is performed (default is 1).

noctreemax: noctreemax is the maximum size of any octree used in all computations.

refine ratio: refine_ratio is used to determine octree refinement based on a given criterion. All leaves where the criterion is larger
than refine_ratio times the maximum of this criterion are refined.

refine criterion: Several criteria exist for the refinement of the osolve octree. 1 is the second invariant of the strain-rate tensor; 2
is the second invariant of the deviatoric strain-rate tensor; 3 is sqrt((du/dx)**2+(dv/dy)**2+(dw/dz)**2); 4 is
sqrt((du/dx)**2+(dv/dy)**2+(dw/dz)**2)*leaf_size; any other value sets the criterion to zero and leads to no refinement.

initial refine level: initial_refine_level is the initial level at which the refinement of the octree will be performed. it has to be
smaller than levelmax_oct.

renumber nodes:

smoothing type:

CT. Feb. 2007 – p. 199/190

input.xxxx (3)

npmin, npmax

levelcut

levelapprox

penalty

ztemp

CT. Feb. 2007 – p. 200/190

input.xxxx (4)

nmat

material0

For each material i

densityi

viscosityi

penaltyi

exponi

diffusivityi

heati

activation_energyi

plasticity_typei

plasticity_1st_parami

plasticity_2nd_parami

plasticity_3rd_parami

plasticity_4th_parami

plasticity_5th_parami

plasticity_6th_parami

plasticity_7th_parami

plasticity_8th_parami

plasticity_9th_parami

CT. Feb. 2007 – p. 201/190

input.xxxx (5)

ns

for each surface j

leveltj

itypej

surface_type_j

randj

surface_param_01_j

surface_param_02_j

surface_param_03_j

surface_param_04_j

surface_param_05_j

surface_param_06_j

surface_param_07_j

surface_param_08_j

surface_param_09_j

surface_param_10_j

materialj

activation_time_j

CT. Feb. 2007 – p. 202/190

input.xxxx (6)

niter_move

stretch

criterion

anglemax

CT. Feb. 2007 – p. 203/190

input.xxxx (7)

nboxes

for each box k

boxkx0

boxkx1

boxky0

boxky1

boxkz0

boxkz1

boxklevel

ref_on_faces

level_face1, b1,t1,l1,r1

level_face2, b2,t2,l2,r2

level_face3, b3,t3,l3,r3

level_face4, b4,t4,l4,r4

level_face5, b5,t5,l5,r5

level_face6, b6,t6,l6,r6

CT. Feb. 2007 – p. 204/190

input.xxx (7)

ierosion=0

zerosion=.81d0

visualise matrix:

CT. Feb. 2007 – p. 205/190

input.xxxx (8)

nsections: number of cross-sections to be output in ./XSC/

For each cross-section i:

xyz_i: 1,2, or 3. If equal to one it corresponds to a x = constant plane, etc ...

slice_i : between 0 and 1. Coordinate of the cross-section plane.

flag_press_i: yes or no.

flag_e2d_i: yes or no.

flag_e3d_i: yes or no

flag_lode_i: yes or no

flag_crit_i: yes or no

flag_grid_i: yes or no

flag_mu_i: yes or no

flag_u_i: yes or no

flag_v_i: yes or no

flag_w_i: yes or no

flag_q_i: yes or no

flag_uvw_i: yes or no

flag_lsf_i: yes or no

flag_vfield_i: yes or no

flag_colour_i: yes or no

flag_plastic_i: yes or no

scale_i: size of the output image of the cross-section.

colormap_i: jet, hot. Type of colormap.

ncolours_i: 64,128,256, ... number of colours that compose the colormap.

CT. Feb. 2007 – p. 206/190

Visualisation

CT. Feb. 2007 – p. 207/190

Benchmarks

CT. Feb. 2007 – p. 208/190

titre

x

y

z

CT. Feb. 2007 – p. 209/190

	who?
	The physics
	Incompressible fluid flow (1)
	Incompressible fluid flow (2)
	Incompressible fluid flow (3)
	Incompressible fluid flow (4)
	Incompressible fluid flow (5)
	Incompressible fluid flow (6)
	The Stokes equation
	Re and Pr
	The penalty method
	The heat transport equation
	Stress tensor (1)
	Stress tensor (2)
	Invariants
	Plasticity
	The von Mises yield criterion
	The Drucker-Prager yield criterion
	The Drucker-Prager yield criterion
	The Drucker-Prager yield criterion
	The Drucker-Prager yield criterion
	The Mohr-Coulomb yield criterion
	The Mohr-Coulomb yield criterion
	The Mohr-Coulomb yield criterion
	The Tresca yield criterion
	Other yield criterions
	the vrm algorithm
	Nonlinear viscosity
	material density
	The FEM method
	Gaussian quadrature
	global/local coordinates
	coordinates change
	divfem
	fundamental concept
	Octrees
	Terminology
	Leaf size and levels (1)
	Leaf size and levels (2)
	Leaf size and levels (3)
	Leaf size and levels (4)
	Internal structure
	The OctreeBitPlus library
	octree_init
	octree_create_from_particles
	octree_find_leaf
	octree_smoothen
	octree_find_element_level
	octree_create_uniform
	octree_find_node_connectivity
	octree_find_bad_faces
	octree_interpolate
	The NN library
	The NN library - files (1)
	The NN library - files (2)
	The NN library - bibliography (1)
	The NN library - bibliography (2)
	NN - basic principles (1)
	NN - basic principles (2)
	NN - basic principles (3)
	NN - basic principles (4)
	NN - basic principles (5)
	The ALE concept
	The solver
	The code files and routines
	sl build_edge
	sl build_edge (2)
	sl build_edge (3)
	sl build_edge (4)
	sl build_surface_octree
	sl build_surface_octree: criterion=1
	sl build_surface_octree: criterion=2
	sl build_surface_octree: criterion=3
	sl build_system.f90
	sl calculate_lsf.f90 (1)
	sl calculate_lsf.f90 (2)
	sl calculate_lsf
	sl
	sl
	sl check_delaunay.f90
	sl check_delaunay (1)
	sl compute_convergence_criterion.f90
	sl compute_dhdx_dhdy_dhdz.f90 (1)
	sl compute_dhdx_dhdy_dhdz.f90 (2)
	sl compute_dhdx_dhdy_dhdz.f90 (3)
	sl compute_divergence.f90
	sl compute_normals.f90
	sl compute_positive_volume.f90
	sl volume_lsf
	sl compute_pressure.f90
	sl compute_vol_work.f90
	sl create_surfaces.f90
	sl create_surfaces.f90 (2)
	sl create_surfaces.f90 (3)
	sl create_surfaces.f90 (4)
	sl create_surfaces.f90 (5)
	sl create_surfaces.f90 (6)
	sl create_surfaces.f90 (7)
	sl create_surfaces.f90 (8)
	sl create_surfaces.f90 (9)
	sl create_surfaces.f90 (10)
	sl create_surfaces.f90 (11)
	sl create_surfaces.f90 (12)
	sl define_bc
	sl define_cloud
	sl define_ov
	sl define_surface
	sl do_leaf_measurements.f90
	sl embed_surface_in_octree.f90
	sl erosion.f90
	sl find_connectivity_dimension.f90
	sl find_connectivity.f90
	sl find_connectivity_local.f90
	sl find_processors.f90
	sl find_void_nodes.f90
	sl find_void_nodes.f90
	sl find_void_nodes.f90
	sl improve_osolve.f90
	sl initialize_temperature.f90
	sl interpolate_leaf_quantities_on_nodes.f90
	sl interpolate_leaf_quantities_on_nodes
	sl interpolate_ov_on_osolve.f90
	sl make_cut.f90
	make_cut
	make_cut
	sl make_matrix.f90
	sl make_pressure.f90
	sl module_colormaps.f90
	sl module_constants.f90
	sl module_definitions.f90
	sl module_distributions.f90
	sl module_DoRuRe.f90
	sl module_gauss.f90
	sl module_invariants.f90
	sl module_invariants.f90 (2)
	sl module_invariants.f90 (3)
	sl module_kernel.f90
	sl module_random.f90
	sl move_cloud.f90
	sl move_surface.f90
	sl pressure_cut.f90
	sl read_controlling_parameters.f90
	sl read_input_file.f90
	sl refine_surface.f90 (1)
	sl refine_surface.f90 (2)
	sl scanfile.f90
	sl slices.f90
	sl slices.f90 (2)
	sl slices.f90 (3)
	sl slices.f90 (4)
	sl smooth_pressures.f90 (1)
	sl smooth_pressures.f90 (2)
	sl smooth_pressures.f90 (3)
	sl smooth_pressures.f90 (4)
	sl smooth_pressures.f90 (5)
	sl smooth_pressures.f90 (6)
	sl toolbox.f90
	sl toolbox.f90 (2)
	sl update_cloud_fields.f90
	sl update_cloud_structure.f90
	sl visualise_matrix.f90
	sl vrm.f90
	sl vrm.f90 (2)
	sl vrm.f90 (3)
	sl write_global_output.f90
	Douar Run Reports
	DoRuRe (1)
	DoRuRe (2)
	DoRuRe (3)
	Compiling and linking
	input.txt
	input.xxxx
	input.xxxx (2)
	input.xxxx (3)
	input.xxxx (4)
	input.xxxx (5)
	input.xxxx (6)
	input.xxxx (7)
	input.xxx (7)
	input.xxxx (8)
	Visualisation
	Benchmarks
	titre

