
Physics of the Earth and Planetary Interiors 171 (2008) 76–91

Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journa l homepage: www.e lsev ier .com/ locate /pepi

DOUAR: A new three-dimensional creeping flow numerical model for the
solution of geological problems

Jean Brauna,∗, Cédric Thieulota,1, Philippe Fullsackb, Marthijn DeKoolc,2,
Christopher Beaumontb, Ritske Huismansb,1

a Géosciences Rennes, Université de Rennes 1, Rennes Cedex CS 35042, France
b Department of Oceanography, Dalhousie University, B3H 4J1 Halifax, N.S., Canada
c Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

a r t i c l e i n f o

Article history:
Received 29 October 2007
Received in revised form 18 April 2008
Accepted 9 May 2008

Keywords:
Geodynamics
Lithosphere
Deformation
Numerical modelling
Finite elements
Octree

a b s t r a c t

We present a new finite element code for the solution of the Stokes and energy (or heat transport) equa-
tions that has been purposely designed to address crustal-scale to mantle-scale flow problems in three
dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we
named DOUAR (‘Earth’ in Breton language), has the ability to track interfaces and, in particular, the free
surface, by using a dual representation based on a set of particles placed on the interface and the compu-
tation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency.
The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the
particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles
remains uniform and/or dynamically adapted to the curvature of the interface. The finite element dis-
cretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows
efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high
interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1–p0 interpolation
scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with
by introducing linear constraints among nodal degrees of freedom. Discontinuities in material proper-
ties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to
integrate the finite element equations in which the elemental volume is divided by a local octree to an
appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear
and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator
has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly
irregular octree discretization and the tri-linear (or q1–p0) finite element. A three-dimensional cloud of
particles is used to track material properties that depend on the integrated history of deformation (the
integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The
large system of algebraic equations that results from the finite element discretization and linearization of
the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that
can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the
presence of the free surface. The code is almost entirely parallelized. We present example results including

the onset of a Rayleigh–Taylor instability, the indentation of a rigid-plastic material and the formation of
a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of
the new code to solve complex
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. Introduction

In recent years, modelling the Earth’s crust and upper mantle

eformation has led to increased insight concerning the way the
arth responds to both tectonic and erosional forciong and indi-
ectly to the climate (Willett et al., 1993; Batt and Braun, 1997;
eaumont et al., 2001). Apart from a few exceptions (Braun, 1993,
994; Braun and Beaumont, 1995), such modelling has been limited
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o two-dimensional analysis, mostly for computational efficiency
easons. Convection or mantle-scale flow calculations have been
ore easily performed in three dimensions, in part due to the rela-

ively simple geometry of the problem and the lack of interactions
ith a free or eroding upper surface (Houseman, 1988; Albers,

000; Tackley, 1998, among many others).
The need for a three-dimensional model capable of taking into

ccount the large stresses arising from surface topography gradi-
nt is however growing (Braun, 2006). Key questions regarding the
otential couplings and feedbacks between tectonics, erosion and
limate can only be properly addressed using a plan-view surface
rocesses model and, thus a full three-dimensional representation
f deformation in the underlying crust (Stolar et al., 2005).

Three dimensional calculations are inherently computationally
ostly. Using a uniform spatial discretization, most three-
imensional convection models are limited in their spatial
esolution to meshes of the order of 1003 elements or nodes
Tackley, 1998, for example). Owing to the non-linear and local-
zing nature of lithospheric rheologies, deformation gradients are

uch greater in the lithosphere than in the convecting parts of
he Earth’s mantle and a finer spatial discretization is required to
apture them. This is the reason why complex meshing algorithms
ave been developed and are commonly used for the solution of

ithospheric-scale deformation or flow problems in two dimensions
Braun and Sambridge, 1994). These are, however, difficult to gener-
lize to three dimensions. Furthermore, the evolving nature of the
eformation or velocity field (in part due to the formation of shear
ones or faults) requires the use of adaptative meshing techniques
n which the numerical spatial discretization evolves with the flow.

Two contrasting methodologies have commonly been used
o solve lithospheric-scale deformation problems. Explicit time-
tepping methods are based on the dynamical force balance
quation (F = m�) in which a pseudo-mass (m) has been intro-
uced to damp numerical oscillations. These methods require
elatively few operations per time steps but a large number of time
teps. There have been several implementations of these implicit
lgorithms to solve problems of lithospheric deformation in two
imensions (Poliakov et al., 1993; Hassani et al., 1997). Remarkably,
one of these have been so far ported to three-dimensions. Implicit
ethods in which the equations of static equilibrium have been

inearized to form a large system of algebraic equations require
ess time steps but become computationally expensive in three
imensions. Multigrid iterative methods are commonly used to
olve these large systems of equations but their convergence is poor
hen dealing with highly non-linear problems or those involving
free surface (Moresi and Solomatov, 1998).

Here we present a newly developed finite element code to solve
he three dimensional Navier–Stokes equations that we purposely
eveloped to address Re = 0, high Ra and infinite Pr flows charac-
erized by a free and/or eroding surface. The new model, that we
alled DOUAR, is in principle capable of tracking any interface, such
s the Moho or a stratigraphic marker, deforming with the flow. It is
ased on a multi-scale octree-based discretization method and uses
fast, yet accurate direct solver for the solution of the large system
f algebraic equations resulting from the implicit time-stepping,
nite element discretization of the static force balance equations.

n this paper, we present in detail the various components of this
ew code that are based on existing and novel algorithms. We also
resent the results of selected computations that demonstrate the
sefulness and accuracy of the methodology.
. Basic equations

The deformation of the Earth’s lithosphere and underlying man-
le are commonly regarded as similar to that of a high viscosity,

w

m
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iscoplastic material deforming at a sufficiently low speed that
nertial forces can be neglected (zero Reynolds number flow) and
hat heat is conducted faster than dissipated by viscous flow (infi-
ite Prandtl number flow). Under such conditions, the velocity field
and pressure p must obey the following simplified form of the
omentum or Navier–Stokes equations, sometimes referred to as

he Stokes equations:

· �(∇v + ∇vT) − ∇p = �g (1)

here g is the gravitional acceleration vector. Under the assump-
ion that such a flow is incompressible, the divergence of the
elocity must also be nil:

· v = 0 (2)

ressure can be eliminated from these equations by making the
pproximation that the material is nearly compressible and intro-
ucing a so-called penalty or compressibility factor, �:

�∇ · v = p (3)

has the dimensions of a viscosity (Pa s) and is commonly taken
o be eight orders of magnitude larger than the shear viscosity, �,
hich ensures a nearly incompressible behaviour for the flow.

At high temperature, rocks deform by creep, a non-linear form
f viscous deformation that is commonly approximated by defining
stress or strain rate dependent and thermally activated viscosity

n the above equation:

= �0�̇1/(n−1) eQ/nRT (4)

t low temperature, rocks deform by brittle failure that is also
pproximated by adapting the viscosity to limit the stress that
s generated during deformation. This ‘cap’ on the stress level is
arameterized by various failure criteria that have been derived
rom laboratory experiments. These criteria usually take the form
f a yield criterion F that is expressed in terms of the stress tensor
and of material constants:

(�, �0, . . .) = 0 (5)

s the yield criterion should be independent of the orientation of
he coordinate system employed, it should only be a function of
tress invariants:

J1 = �ii

J′2 = 1
2 sijsij

J′3 = 1
3 sijsjkski

(6)

here s is the deviatoric stress tensor defined as follows:

= � − 1
3 Tr[�]1. (7)

The Mohr–Coulomb criterion is commonly used to represent the
ehaviour of rocks and requires two rheological parameters, � the
imensionless internal angle of friction and c the cohesion that has
nits of pressure:

= c − �n tan � (8)

here � is the magnitude of the shearing stress and �n is the normal
tress. It can also be expressed in terms of stress invariants:

J′2 = m(	l, �) sin �
J1 + m(	l, �) c cos � (9)
3

here:

(	l, �) =
√

3√
3 cos 	l + sin 	l sin �

(10)
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nd 	l is the Lode angle, defined as:

l = −1
3

sin−1

[
3
√

3
2

J′3/2
3
J′2

]
(11)

nder some circumstances or in different materials, this pressure
ependence can be neglected and the equation is simplified to
ecome the von Mises criterion:

vM = J′2 − �0 = 0 (12)

hich depends on a single parameter �0, the yield constant.
Because rock material properties such as density and viscosity

epend on temperature, it is also necessary to compute the tem-
erature within the deforming system. This is done by solving the
nergy or heat transport equation which has temperature T as an
nknown:

c

(
∂T

∂t
+ v · ∇T

)
= ∇ · k∇T + �H (13)

is the thermal conductivity, � is density, c is heat capacity and
is heat production per unit mass. The relative importance of the

dvective term with respect to the conductive term is measured by
he value of the dimensionless Peclet number, Pe = v0L/� where v0
nd L are typical velocity and length characterizing the system and
= k/�c is the thermal diffusivity. In most active tectonic systems,

e is large (1 < Pe < 100) and, therefore, the advective term must
e included.

The density � varies as a function of temperature according to:

= �0(1 − ˛(T − T0)) (14)

here ˛ is the coefficient of thermal expansion and �0 is the value
f the density at T = T0.

. Finite element discretization

Among the many methods that have been devised to solve this
et of partial differential equations, the finite element method
s one of the most commonly used, mainly because of its geo-

etrical flexibility, i.e. how it can solve problems with complex
non-rectangular) geometries or those requiring a non-uniform dis-
retization to represent efficiently localized flow/deformation. It is
ased on the assumption that the solution of the PDEs, in our case,
he components of the velocity field, the pressure and the temper-
ture, can be approximated by their values at a finite number of
oints or nodes and, between these points, by a set of piecewise

nterpolation functions (or shape functions) defined inside finite
lements connecting the nodes. Under this set of assumptions, a
ood approximation of the solution to the PDEs can be obtained
y solving the following set of integral equations, obtained by the
o-called Galerkin method or approximation:[∫

V

BT
v�Bv dV+

∫
V

BT
v�Bv dV

]
v=

∫
V

NT
v�g dV

[∫
V

NT
t �cNt dV

]
Ṫ +

[∫
V

N∗T
t vBt dV+

∫
V

BT
t kBt dV

]
T=

∫
V

NT
t �H dV

(15)

here V is the problem domain over which the solution is sought
nd Nv,t and Bv,t are the shape function matrix and the shape func-

ion derivative matrix, approximating the velocity and temperature
nd their spatial derivatives within each element from their val-
es at the nodes connected by the elements. This is a standard
pproximation used in problems involving visco-plastic rheolo-
ies (Hughes et al., 1979) and has been used to study mantle flow

fi

v
w
s
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roblems (Tackley, 2000a), but also to represent the non-linear,
rittle and viscous behaviours of the Earth’s crust (Fullsack, 1995),
s well as strain localization in the mantle (Tackley, 2000b) and in
he lithosphere (Huismans and Beaumont, 2002; Huismans et al.,
005). Note that to ensure stability of the solution of the heat equa-
ion in cases where advection dominates over conduction (large Pe
umber cases), a modified version of the shape function matrix
∗ = N + �vB is used where � = �l

√
15/‖v‖ and �l is a length rep-

esenting the linear dimension of the finite element (Hughes and
rooks, 1982).

In a classical finite element implementation, the integrals in the
bove equations are evaluated element by element and using an
pproximate integration scheme (Gauss–Legendre) that requires
stimating the integrant at a finite number of points within each
nite element. Note that the integration of the compressiblility
erm has to be performed using a lower order integration scheme (1
oint integration) than for the other terms (8 point integration) to
void ‘locking’ of the solution. We will show how this ‘mixed-order’
ntegration scheme can be improved upon when dealing with prob-
ems where material properties, such as the viscosity or the density,
ary within an element.

These finite element equations are then transformed into a set
f linear algebraic equations having the degrees of freedom (or

dofs’) of the problem, i.e. the nodal velocities and temperatures,
s unknowns. This linearization involves decoupling the two sets
f equations (momentum and energy), linearizing the viscosity
resulting from the implementation of Eqs. (4), (12) and (8)) and
erforming a series of iterations, or successive solutions of the
quations in which the non-linear parameters/terms are updated.
hese equations are usually written as:

Avv = bv

AtT = bt

(16)

here v and T are the vectors of the nodal velocities and tempera-
ures, which are regarded here as the unknowns. Note that the use
f a penalty method to eliminate the pressure from the momen-
um/incompressibility equations will affect the conditioning of the
esulting finite element matrix Av, whereas the advection terms in
he energy equation renders the resulting finite element matrix At

on-symmetrical; both of these characteristics will determine the
hoice of a particular method of solution of these very large sets of
quations.

. Octree division of space

As stated above, many problems require a non-uniform dis-
retization of space. The use of irregular triangular meshes is
ommon in two-dimensional analyses but becomes relatively
mpractical in three dimensions. For this reason, we chose an
ctree-based discretization of space (Cheng et al., 1986) which com-
ines the flexibility of a non-uniform discretization while being
egular. An octree is a geometrical construct that divides three-
imensional space in a space-filling set of cubes of varying size that
re used here as basic eight-noded or q1–p0 finite elements (Fig. 1).

The unit cube is said to be of level zero as it counts only (20)
3 = 1

eaf. After one division, the octree comprises (21)
3 = 8 leaves and is

f level L = 1. Performing another subdivision of each leaf leads to a
egular level L = 2 octree of (22)

3 = 64 leaves. Consequently, a 32 ×
2 × 32 grid, which is a standard grid for most three-dimensional

nite element codes, is a level 5 octree with 32,768 leaves.

In the simple q1–p0 finite element, the basis functions for the
elocity are tri-linear whereas the pressure is assumed uniform
ithin each element (Cheng et al., 1986). Where cubes of different

ize share a common face, some of the nodes that are at the corners



J. Braun et al. / Physics of the Earth and Planetary Interiors 171 (2008) 76–91 79

F divid
a e oct
d

o
T
c

o
i
e
m
d
a
t
c
f
m
t
c
p

F
T
t
fi
s
o
n
a
s

b
o
c
n
a
(
a
f
f
c
a
d

ig. 1. Example of a simple octree discretization of the unit cube. The unit cube is
nd so on. The sub-cubes that remain undivided at the end of the construction of th
ifferential equations are solved.

f the small elements do not exist in the adjacent large elements.
hese are called ‘bad faces’ that are dealt with by imposing linear
onstraints (Webb, 1990) as shown in Fig. 2.

The q1–p0 elements are known to be affected by the presence
f a “checkerboard” mode in the pressure field (Bathe, 1982). The
ntroduction of the linear constraints into the set of finite element
quations may also contribute to these unwanted oscillations. To
inimize them, we “smooth” the pressure field by performing a

ouble interpolation of the elemental pressure onto the nodes,
nd then back onto the elements. The element-to-node interpola-
ion is performed by averaging the elemental values from elements
ommon to each node; the node-to-element interpolation is per-
ormed by averaging the nodal values element-by-element. This
ethod is not only very efficient but produces a smoothing of
he pressure that is adapted to the local density of the octree and
an be shown to be equivalent to a least-square smoothing of the
ressure.

ig. 2. The interface between two sets of leaves of different level is called a ‘bad face’.
hese bad faces contain nodes that belong to the smaller elements on one side of
he face and not to the larger element on the other side of the face. These nodes are
lled in black and grey on the figure. Using the finite element method, one can only
olve for velocity components and temperature on nodes that belong to elements
n both sides of the face (the white nodes). To obtain values at the incompatible
odes, one needs to impose additional linear constraints that constrain the solution
t the grey mid-side nodes to be the mean of the two adjacent red nodes, and the
olution at the central black node to be the mean of the four corners nodes.
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ed in eight sub-cubes, which can be arbitrarily divided into eight sub-sub-cubes,
ree are called leaves which are used here as finite elements with which the partial

Octrees are very simple and memory-efficient entities that can
e built as a single integer array containing, for each cube of the
ctree, the address in the array of the first of its eight ‘children
ubes’. In the scheme we have developed here, when a cube is
ot divided, it becomes a leaf to which a name/number is associ-
ted and is stored in the octree integer array as a negative number
to indicate that it corresponds to a leaf number and not a child’s
ddress). This scheme is memory efficient (most octrees are only a
ew kilobytes in size) but requires additional operations when per-
orming operations on the octree. However, most of the operations
ommonly needed in the construction of a finite element problem
re done with great efficient when using the octree storage scheme
escribed above. Most global operations (i.e. those affecting all the

eaves of an octree) require only ∼N arithmetic or conditional oper-
tions. For example, for an octree of maximum depth Lmax (level of
he smallest leaf or finite element in the octree) and made of N
eaves:

to create a leaf at level L around a point of known coordinates;
this requires L conditional statements;
to locate a point of known coordinates, i.e. to find the
name/number of the leaf it belongs to; we will call this a ‘location’
operation and is achieved through Lmax conditional statements
for each of the point coordinates;
to determine the size of all leaves/elements; this operation
involves ∼N conditional statements
to find the list of neighbouring leaves/elements; this operation
involves ∼26N location operations;
to interpolate a field known at the nodes of an octree; this oper-
ation involves a location and a trilinear interpolation operation
per interpolation;
to unite two octrees; this involves checking the depth of one
octree for each leaf of the other octree and, if necessary, creating
a leaf;
to smooth an octree (see Fig. 3); this requires ∼6N location and
conditional operations.

When using the simple scheme described above to store the
ctree, one operation becomes however relatively costly: to find

he connectivity matrix between nodes and leaves/elements. This
s done here by first numbering the nodes in a redundant manner,
.e. by giving to each element a set of eight nodes, regardless of con-
ectivities between the elements and the possibility that a single
ode is given many different names/numbers in the sequence, i.e.
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Fig. 3. Example of an octree designed to represent a spherical shell of unit radius.
The octree in the top panel has been constructed so that the region surrounding the
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hell is discretized with ‘leaves’ of level 6. The octree depicted in the bottom panel
as been “smoothed”, i.e. the condition that no two adjacent leaves (or elements)
an vary in size by more than one level of octree division has been applied.

f it belongs to more than one element. Then the node numbers are
rdered (Press et al., 1992) according to their x, y and z positions
nd checked for common values of one of their coordinates at a
ime. Redundant nodes are removed and the connectivity matrix is

odified accordingly. Note that because nodal coordinates are mul-
iples of 2Lmax , where Lmax is the maximum level of any leaf of the
ctree, it is a well-posed problem to rank and compare them. Once
he connectivity matrix is known, the node numbers are ordered
o minimize the bandwidth of the resulting finite element matrix
sing the method developed by Sloan (1989). See Samet (1989), for
xample, for more detailed information on octree structures.

. Interface tracking
Material interfaces can be numerous in large-scale tectonic
roblems. Chief among them is the upper free surface. Its defor-
ation generates large differential stresses that can influence

T
o

n

ig. 4. One of DOUAR’s main feature is its ability to track interfaces. All interfaces
re tracked through a set of particles defined by their coordinates x and their normal
o the interface n. The particles are connected by triangles.

nd potentially drive crustal-scale deformation and flow (Braun,
006). A wide range of tectonic problems, including those in which
rosional (and thus potentially climatic) feedback is addressed,
equire the accurate tracking of the deforming free surface. To
rack any interface, a dual approach is used combining parti-
le tracking and the definition of a level set function, similar
o that of Enright et al. (2005); this ensures both accuracy and
fficiency.

.1. Interface particles

Each interface is first defined by a set of particles of coor-
inates x = (x, y, z) and to which unit vectors pointing in the
irection normal to the interface n = (nx, ny, nz) are attached (see
ig. 4).

At each time step, the global coordinates of the interface parti-
les, x are advected by interpolation of the computed flow velocities
t the mid-point configuration, i.e. the locations half-way between
heir original and final positions for this time step:

′ = x + v
(

x + x′

2

)
�t (17)

his method is second-order accurate. It does not require the use
f the velocity field at the previous time step. Note that during
he non-linear iterations, each interface (its defining particles and
ormals) is advected to its mid-point position, i.e. its position at
ime t + �t/2. This leads to a more accurate (and stable) solution
ecause interfaces usually define regions differing by their material
roperties (density, viscosity, etc.). Advecting the interfaces there-
ore ensures that the equations of static equilibrium (Eq. (15)) are
olved in the mid-point configuration.

To advect the normals, we devised a simple, yet accurate algo-
ithm: one first needs to compute two orthogonal directions, n1
nd n2 located in the tangential plane to the interface. Two such
irections are given by:

n1 = (cos 	 cos �, cos 	 sin �, − sin 	)

n2 = (− sin 	, cos 	, 0)
(18)

here:

	 = tan−1

√
n2

x + n2
y

nz

� = tan−1 ny

nx

(19)
he normals are then advected using a second-order scheme
btained by Taylor expansion of the velocity field:

′ = n + (Ln1 × n2 + n1 × Ln2)�t + (Ln1 × Ln2)�t2 (20)
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here L, defined as:

=

⎛
⎜⎜⎜⎜⎜⎝

∂vx

∂x

∂vx

∂y

∂vx

∂z

∂vy

∂x

∂vy

∂y

∂vy

∂z

∂vz

∂x

∂vz

∂y

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎠ (21)

s the velocity gradient matrix computed inside each element using
he shape function derivative matrix B.

The time step is chosen to be smaller than that imposed by the
ourant condition:

t < min
all elements

(
�x

vx
,

�y

vy
,

�z

vz

)
(22)

.2. Interface triangulation

The particle coordinates are used to define a triangulation on
he interface that is used to add or remove particles according to a
et of rules/criteria to ensure that the interface geometry is prop-
rly tracked, and to compute a level set function at each node of
he octree as shown below. Many criteria can be used to main-
ain the appropriateness of the particle set to represent the surface
ith accuracy. For example, on highly deformed interfaces, a con-
ition is imposed that the normals to two particles connected by an
dge of the triangulation do not diverge by more than a prescribed
ngle or that the length of any edge is smaller than a set distance; if
hey do, particles are injected to reduce the local curvature between
djacent particles or the length of an edge.

Ideally, we would like to use the Delaunay triangulation because
t produces relatively evenly shaped triangles, i.e. maximizing the
mallest internal angle made by any two sides of any triangle
Sambridge et al., 1995). However, the Delaunay triangulation is
ommonly defined on a planar surface. To generalize its use to
urved, arbitrary surfaces (such as the interfaces tracked in DOUAR),
e introduced a new measure of distance between two particles,
efined as the ratio of the Euclidian distance between the two par-
icles to the dot product of the two normals to the interface raised
o a set power, m:

¯ 12 = d12

(n1 · n2)m (23)

is a free parameter that can be adjusted to adapt the method
o various types of surfaces (smooth versus creased surfaces for
xample). For a given Euclidian distance between two points, this

istance grows with the local curvature of the surface; it becomes
quivalent to the Euclidian distance on a flat surface.

To construct this pseudo-Delaunay triangulation, we first com-
ute any arbitrary triangulation and we update it by performing the
o-called ‘in-circle test’ between any two pairs of triangles sharing

t
v
g

o

ig. 5. After deformation of the surface by advection of the particles, each edge of the trian
s illustrated here. The two adjacent triangles shown in the left panel are “Delaunay” as th
ther three particles; the triangles in the central panel are not Delaunay and their commo
netary Interiors 171 (2008) 76–91 81

n edge (Sambridge et al., 1995). If the third vertex (i.e. not belong-
ng to the common edge) of any of the two triangles lies within the
ircumcircle constructed from the three nodes of the other triangle,
he common edge has to be ‘flipped’, as shown in Fig. 5. We do this
or every pair of triangles (or every edge common to two triangles)
o obtain the pseudo-Delaunay triangulation connecting the parti-
les. This algorithm is also used to update the triangulation from
tep to step, as it is deformed by the computed velocity field.

On a planar surface, the in-circle test is equivalent to solving a set
f 4 algebraic equations to compute the centre of the circle and its
adius. The distance between the fourth point and the centre of the
ircle is then computed and compared to the radius of the circle. In
ur case, we wish to perform the in-circle test by using the general-
zed measure of distance between the particles only (because they
re the only locations where the normal to the surface is known).
s shown by Pritchard (2005), the two sums of alternate angles in
convex, cyclic 2n-gon are equal to (n − 1)
. By definition, the cor-
ers of cyclic polygons lie on a circle. Thus, the sum of two alternate
ngles of any quadrilateral inscribed on a circle is 
. Consequently,
ne can easily show that if a point, X lies inside/outside the circum-
ircle of three other points A, B, C, the sum of the angles AB̂C and
X̂C is greater/smaller than 
. By analogy to the 2D (planar) situa-

ion, in our construction of the pseudo-Delaunay triangulation on
curved interface, we have thus replaced the in-circle test by this

est on angles AB̂C and AX̂C that can be easily computed from the
istances between the points according to:

d̄2
AC = d̄2

AB + d̄2
BC − 2d̄ABd̄BC cos AB̂C

d̄2
AC = d̄2

AX + d̄2
XC − 2d̄AXd̄XC cos AX̂C

(24)

Note that our algorithm is not completely internally consis-
ent. Indeed, Pritchard (2005)’s property cannot be generalized
o any non-Euclidian metric. Our experience shows however that
he construction of the pseudo-Delaunay triangulation we propose
ere is accurate when the particle density is relatively high, espe-
ially in regions where the surface curvature is high. We therefore
aution against using this algorithm for poorly sampled surfaces
nd acknowledge that further work needs to be done to improve
he method we propose. We have also tested this algorithm for
onstructing a pseudo-Delaunay triangulation by using another
easure of distance, namely the distance measured at the surface

f the sphere defined by the four points of two adjacent trian-
les. When the point density remains relatively high, especially in
egions of high surface curvature, the two methods converge.

As stated above, during deformation of the interface, particles
re injected when the distance between two particles belonging

o an edge of the triangulation becomes larger than a prescribed
alue or when the dot product of the normals at the ends of any
iven edge becomes smaller than a set value.

To illustrate this algorithm, we have computed the triangulation
f an initial set of 512 = 2601 particles regularly spaced on a plane

gulation is considered for the “n-circle” test/property of the Delaunay triangulation,
e particle on one side of the edge is not contained within the circle defined by the
n edge must be “flipped” as indicated in the right panel.
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ig. 6. Geometry and triangulation of an originally flat surface deformed by
prescribed periodic and incompressible velocity field. The bottom panel is a

lose-up of a region (indicated on the top panel) where the surface curvature has
ecome very large.

f dimension 1 × 1, defining 2 × 502 = 5000 triangles, and located
t z = 0 and subjected to an imposed velocity field given by:

vx = sin(2
x) cos(4
y) sin(
z)
2

+ sin(
x) cos(2
y) sin(
z)

vy = cos(2
x) sin(4
y) sin(
z)
4

+ cos(
x) sin(2
y) sin(
z)
2

vz = cos(2
x) cos(4
y) cos(
z) + cos(
x) cos(2
y) cos(
z)

(25)

After 1200 steps, the number of particles has grown to 48,038
nd the number of triangles to 95,172. The deformed interface and
he updated triangulation are shown in Fig. 6.

. Level set functions

Knowing the geometry of interfaces, we need to pass that infor-
ation onto the finite element grid (here an octree) to build the

nite element equations that are functions of material properties
such as density or viscosity) which vary strongly across interfaces.
or each interface, we first build an octree that has high resolution,

.e. small leaves, in the vicinity of the particles defining the interface.

We calculate the signed distance between the interface and the
ubset of nodes of the octree located in the vicinity of the inter-
ace. This subset is built by determining the leaves of the octree
hat contain the particles used to track the interface deformation.

a
t
l
(
c

ocated on the interface (x1, x2, x3). Three cases are considered depending on the
ocation of the projection (xp). See text for details of the method.

he function is called a level set function; its sign (+1 or −1) is
ropagated to the other nodes of the octree. Level set functions are
idely used in finite element analysis of two phase flows for exam-
le (Sussman et al., 1994). To each interface are then associated an
ctree and a level set function. All the octrees and their level set
unctions are merged to form a global octree with a collection of
evel set functions, one per interface. This global octree forms the
asis of the finite element grid (the solve octree or Os) on which
he Stokes and temperature equations are solved. The values of the
evel set functions are used to estimate on which side of the surface
ies any node of the octree and thus whether an element (a leaf of
he octree) is cut by any or several of the surfaces.

To calculate the value of the level set function corresponding
o a given interface on the nodes of a given octree, we use the
articles representing the surface, their normals and the associ-
ted Delaunay triangulation. For each triangle connecting three
articles, we first compute the normal to the triangle, (nx, ny, nz)
t the centre of the triangle (xc, yc, zc); we then find the leaves of
he octree cut by the triangle; for each node, (x0, y0, z0) of each

eaf, we call (xp, yp, zp) the orthogonal projection of the node
x0, y0, z0) onto the plane of the triangle; we then consider three
ases, depicted in Fig. 7:
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1. (xp, yp, zp) falls within the triangle, i.e. it is to the right of the
planes defined by each of the sides of the triangle and its normal;
in this case the level set function, �0, is the signed distance to the
plane of the triangle given by

� = (x0 − xc)nx + (y0 − yc)ny + (z0 − yc)nz (26)

. (xp, yp, zp) lies to the left of one of the edges of the triangle and
its orthogonal projection onto that side lies between the two
particles defining the edge; in this case the level set function is
the distance to the edge, its sign is determined by the dot product
of the mean of the normals attached to the two particles and the
projection direction;

. (xp, yp, zp) lies outside at least one of the edges of the triangle and
its orthogonal projection onto any of the two sides lies outside
the two particles defining any of the two edges; in this case the
level set function is the distance to the closest particle defining
the triangle and its sign is determined by the dot product of the
normal attached to the particle and the projection direction.

Note that in order to define a consistent ‘left’ and ‘right’ side
o a plane defined by a side of the triangle and its normal, one
eeds to be consistent in ordering the particles within each trian-
le. We also wish to point out that our method differs from those
ased on updating the level set function nodal values directly by
dvection of the values computed at the previous time step, such as
n so-called ‘fast-marching algorithms’ (Adalsteinsson and Sethian,
995). In our algorithm, the level set function is not updated but
omputed from the surface geometry at each time step.

. Octree refinement

.1. Grid adaptivity

The solve octree constructed from the union of the individual
nterface octrees is further refined according to a set of criteria:

refinement based on the previous time step/iteration solution;
imposed refinement in a series of rectangular boxes defined by
the user;
imposed refinement on the faces of the unit cube to accurately
represent complex boundary conditions for example.

hich leads to the creation of the solve octree Os, i.e. the octree
hose leaves are used to perform the finite element discretization

f the equations to be solved.
In what follows we have used functions of the velocity field

nown on the previous solve octree Ops (corresponding to the last
ime step/iteration) to improve the resolution of Os. In particular,
he second invariant E′

2 of the strain-rate tensor �̇ is measured for
ach leaf i of Ops, and Emax is its maximum on the whole octree.
aving defined a tolerance � (typically of the order of a few per-
ents), the center of each leaf i of Ops that satisfies (E′

2)
i
≥ �Emax

2
efines a location in space where the solve octree is further refined
o a prescribed level L.

.2. Progressive adaptive grid

Were we to use the solution obtained at uniform level (typically
) to refine the grid to a much larger level (let’s say 9) of discretiza-
ion, the resulting grid would more than likely exceed the memory

imit on most computers. Instead the refinement has to be done in

more progressive manner. We use the following algorithm. The
olve octree is first initialised at a uniform level Lu (typically 5),
o that the octree counts (25)

3
= 32,768 leaves. According to the

efinement criterion presented in the previous paragraph, only a

e
i
m
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ubset of leaves will be refined to a given level L > Lu. The value of
progressively increases one unit at a time to reach the authorised
aximum level Lmax. This increase takes place when both following

tatements are true:

for a given grid the non-linear iterations performed on this grid
have converged, i.e. the L2-norm of the velocity field difference
between two consecutive iterations k and k + 1 is less than a given
parameter �.

‖{v}k+1 − {v}k‖2 < � (27)

the refinement based on Ops has lead to a solve octree Os whose
number of leaves Ns is close to the number of leaves Nps of Ops,
i.e.∣∣∣∣Ns − Nps

Ns + Nps

∣∣∣∣ < � (28)

where � is a user supplied parameter; if this condition is not ful-
filled it means that the octree O is not yet at equilibrium with the
calculated strain rate field; it will be modified accordingly and a
further iteration performed.

Schematically, the code structure is built upon three nested
oops, as sketched on Fig. 8: the outer one is the timestepping, the
econd one is the progressive adaptive grid construction, and the
nner third one is the non-linear iterations.

. The free surface

In problems involving a free surface, one of the interfaces (the
ne representing the free surface) is given special properties. All
egrees of freedom corresponding to nodes belonging to elements
ompletely contained in the ‘void’, i.e. the space above the interface,
re removed from the equation set to be solved. The finite elements
or cells) that are cut by the free surface are named ‘cut cells’. Mate-
ial properties for the parts of the cut cells above the free surface are
et to values approximating ‘void behaviour’: extremely low viscos-
ty (10−8× smallest rock viscosity), nil density, and extremely high
hermal diffusivity (106× rock diffusivity). Zero stress boundary
onditions are imposed on the top surface of the model.

Furthermore, the geometry of this special interface can be mod-
fied to represent erosional processes, i.e. the transport of mass at
he surface of the Earth by processes such as fluvial incision, trans-
ort and deposition, hill-slope processes and/or ice erosion. At the
nd of each time step, the position of the particles on the interface
orresponding to the free surface is thus modified to take these
rocesses into account. The level set function of the free surface is
onstructed first and used to adjust the position of the particles on
ll other interfaces in case they are located above the free surface.
his ensures that internal interfaces are also affected by erosion
f they are advected towards the free surface by tectonic or ero-
ional processes. Any erosional model can be used to compute the
eometry of the free surface; in the current version of the code, the
implest erosion model only has been implemented: a reference
evel, zr, is set above which erosion/deposition is instantaneous.

e are currently coupling DOUAR to a much more sophisticated
urface processes model, CASCADE (Braun and Sambridge, 1997).

. DivFEM
From the values of the level set functions, the position of each
lement with respect to each interface is known as well as possible
ntersections between the element and the interfaces. This infor-

ation is used to determine the material making up the element,



84 J. Braun et al. / Physics of the Earth and Planetary Interiors 171 (2008) 76–91

he thr

a
i
f
o
a
t
d

f
c
i
p
i
o
r
u

˛

o
l

R
e
p
i
d
a
t
t
t
i

1

m
o

a
o
p
a
c
w
r

o
a
i
o
a
u
s
nodal velocities, using the same algorithm as used for the particles
defining the interfaces; the strain (second invariant of the strain
tensor) is updated by interpolation of the derivatives of the velocity
field. For consistency, both interpolations are performed using the
finite element interpolation functions.
Fig. 8. Schematic overview of DOUAR structure for the mechanical part: t

ssuming that interfaces are material boundaries. When an element
s intersected by one or several interfaces, the values of the level set
unctions at the nodes of the elements are used to compute the part
r volume of the element that is occupied by each of the materi-
ls. These volumes are used to perform the volume integration of
he finite element equations (Eq. (15)). We call this procedure the
ivFEM (division of Finite Element Method).

To determine the volume that is on the positive side of the inter-
ace cutting a given element (the cut cell), an octree division of
ut cells is performed down to level l. Within each of the result-
ng leaves (cubes) an 8-point Gauss integration scheme is used to
erform the required volume integrals. The level set function is

nterpolated to the internal nodes and used to determine which part
f the volume (positive or negative) each sub-cell belongs to. The
elative positive volumes, ˛, in the remaining cut cells are estimated
sing the following approximate formula:

= 1
2

⎛
⎜⎜⎜⎜⎝

8∑
i=1

�i

8∑
i=1

‖�i‖
+ 1

⎞
⎟⎟⎟⎟⎠ (29)

In those cut cells, material properties are averaged if possible,
therwise the property corresponding to material representing the
argest volume in the cut cell is used.

To test the accuracy of the divFEM, we perform simple 2D
ayleigh–Taylor instability tests for which an analytical solution
xists (Van Keken, 1993). We computed the growth rate of a small
eriodic perturbation (10−4× the vertical size of the problem) of the

nterface separating two fluids of equal viscosity (1) and differing
ensities, the lower fluid being lighter than the upper one. The rel-
tive error between the analytical solution and that obtained with
he divFEM method for increasing levels of octree division within
he element is shown in Fig. 9. In practice, we limit the elemen-
al octree division to level l = 3, thus minimizing the relative error
ntroduced by divFEM to less than 10−3.
0. Material memory

In many geodynamical problems, we need to track dynamic
aterial properties, i.e. those that are derived from the solution

f the equations but need either to be integrated over time, such

F
u
e

ee nested loops are represented, as well as the ALE character of the code.

s accumulated strain, or simply to be stored for computation
f geological observables in a post-processing stage, such as the
ressure-temperature-time paths of particles reaching the surface
t the end of the model run. This is performed by injecting a large
loud of particles inside the computational domain, the density of
hich is dynamically adjusted to achieve a balance between accu-

acy and efficiency.
At every time step, the number of particles in any leaf of the solve

ctree is imposed to remain between two set limits (commonly 8
nd 27). Injection of each new particle is performed by randomly
njecting 10 test particles inside the element/leaf among which one
nly is kept, i.e. the one furthest away from the preexisting particles
nd the boundaries of the element. Local particle density is also
sed to perform the removal operation. At the end of each time
tep, the particles are advected by interpolation of the computed
ig. 9. Error in calculating the growth rate of a Rayleigh–Taylor instability in 2D
sing the divFEM. The problem was solved on a regular 32 × 32 × 32 mesh. The
rror decreases strongly with the level of octree division l, within each element.
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End do
swap START with END
If (LSF (any node) = 0) goto BEGIN LOOP
J. Braun et al. / Physics of the Earth a

When new particles are injected, the strain (or any other field
arried by the particles) is interpolated from the existing particles
nto the nodes of the solve octree and interpolated back onto the
ew particles. This method may lead to some numerical diffusion
hich is however limited by the high density of the solve octree

eaves (and thus high density of particles) in regions of diverging
ow/deformation. Further improvement of this method is however
equired.

1. Direct solver

The most time consuming part of a large-scale three-
imensional finite element computation is the solution of the large
et of coupled algebraic equations generated by the finite element
iscretization of the partial differential equations and, in the case of
on-linear problems, their linearization. This system is represented

n matrix notation as Ax = b where x is the solution vector, b is the
ight-hand side vector and A is a matrix containing the coefficients
ultiplying the unknowns in each of the coupled equations.
It is common practice to use iterative methods based on a spec-

ral acceleration called multigrid to obtain an approximate solution
o these equations. Such solvers are tuned to the nature of the set
f equations to solve as their convergence rate is affected by the
ature and conditioning of the system to be solved or matrix A to
e inverted. For non-linear problems or those characterized by large
hanges in material properties across interfaces, and, in particular,
hose characterized by a free surface, convergence may be slow.

A direct solver is based on the factorization of the matrix A in
ither of two forms, depending on its symmetry: A = LTL for sym-
etric matrices and A = LU for non-symmetric matrices where L

s a lower triangular matrix and U the corresponding upper trian-
ular matrix. After factorization, two successive backsubstitutions
re performed to obtain the solution vector: LTy = b (or Uy = b in
he case of a non-symmertical system) and Lx = y. These require a
elatively small number of arithmetic operations compared to the
actorization step.

Direct solvers have the following advantages:

1. They can solve ill-conditioned matrices (robustness to ill-
conditioning).

. They can reuse the factorized matrix and apply it to the solutions
of multiple right-hand sides.

. They can be used as black boxes with little or no need for tuning
by users.

. They are versatile and application independent, being based on
algebra and graph theory rather than on any specific construction
of the system of equations. For example, they can handle broad
classes of systems (e.g. symmetric definite positive systems). Any
grid or method of connecting equations can be used.

. They have a high computational intensity and can execute well
in hierarchical computer memories. Computational intensity is
loosely defined here as the ratio between the time spent to per-
form arithmetic operations and the time spent to bring data into
and out of the registers.

Direct methods have the following drawbacks:

1. They typically need to build the entire matrix of the system,
which means that big systems may not fit in memory and not

be usable.

. Memory requirements for the storage of the numerical factor
(number of nonzeros in the Cholesky matrix) grow very fast as
the number of equations/ grid size increases, especially in 3D.

. Same observation for the operation count.

F

netary Interiors 171 (2008) 76–91 85

. Their abstraction ignores/sacrifices the specifics of the problem.

. They are harder to parallelize efficiently on a large number of
processors

. The solution has to be completely recomputed in non-
incremental methods (i.e. those requiring the computation of
the matrix A at each iteration, as is the case in DOUAR).

We elected to use a direct solver mostly because these are
ell suited for highly non-linear problems or those characterized

y ill-conditioned matrices. In DOUAR, the ill-conditioning of the
atrix arises from the presence of the free surface and the incom-

ressibility. This choice limits us in the size of the problems that
an be solved. For instance, our 256GB RAM cluster is limited
o the solution of approximately 2,000,000 simultaneous equa-
ions.

Two such direct solvers have been used, WSMP (Watson Sparse
atrix Package)1(Gupta, 2000) and MUMPS (MUltifrontal Mas-

ively Parallel sparse direct Solver)2(Amestoy et al., 2001). For
eason of ease of access to the source code, we selected MUMPS
ut did not perform extensive tests to determine which of the two
olvers leads to better performances in our problems. We noted
owever that such solvers make extensive use of basic scalar and
arallel algebraic functions (BLAS, BLACS and SCALAPACK) and that
heir efficiency is thus mostly affected by the quality of the imple-

entation of such low level routines on the computer used for the
omputations. MUMPS can be used to solve symmetrical and non-
ymmetrical systems and is thus used in its symmetrical form to
olve the Stokes equations and its non-symmetrical form to solve
he energy equation.

2. Parallelization

The construction of the finite element matrix is fully paralleliz-
ble because all the information required to build the finite element
atrix is known at the nodes of the element (such as the level

et function values). The advection of the particles used for inter-
ace tracking as well as those carrying the material memory is also
ully parallelizable. The non-uniform octree discretization limits
he number of particles in the 3D cloud which, in turn, allows for
ts complete storage in all processors. This greatly simplifies the
nter-processor communication required to perform operations on
he cloud particles (such as their advection).

Calculating the value of the level set functions in the vicinity
f the interface they represent is also fully parallelizable as each
eaf of the octree cutting a given interface is treated separately and
ndependently. The propagation of the sign of the level set func-
ion to the other nodes of the octree cannot be parallelized as it
s, by nature, a sequential operation. Consequently, it has to be
erformed by all processors; this operation can be sped up by per-
orming a series of tests through the entire collection of elements
n alternating orders:

TART = 1 and END = nleaves
EGIN LOOP
o LEAF = START to END

f (any LSF(LEAF) /= 0) then
here LSF(LEAF) = 0 LSF(LEAF) = sign (any non nil LSF(LEAF))

nd if
INISH

1 http://www-users.cs.umn.edu/∼agupta/wsmp.html.
2 http://graal.ens-lyon.fr/MUMPS/.

http://www-users.cs.umn.edu/~agupta/wsmp.html
http://graal.ens-lyon.fr/MUMPS/
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ig. 10. Prandtl’s rigid-plastic solution. The indenter is shown in light grey while th
ach other at 
/2 angles.

3. Rectangular punch problem

In order to illustrate how the octree refinement algorithm works
ractically, to justify its implementation in DOUAR and to demon-
trate its efficiency, we have carried out numerical experiments of
wo-dimensional and three-dimensional punches indenting a rigid,
erfectly plastic von Mises half-space. The analytical solution to the
wo-dimensional problem is to be found in many textbooks (Hill,
950; Kachanov, 2004 or Freudenthal and Geiringer, 1958) for a

ore mathematical approach.
Moreover, since the late 1970s, a simple analogy has been made

etween the tectonics of Asia and the deformation of a rigidly
ndented rigid-plastic solid: India is analogous to the indenter and

s
c
s
f

ig. 11. Cross-section of the octree at x = 0.5 and for z < 0.2. (a–b) E′
2 field and velocity no

rst and last generated grid at level 6; (g–h) at level 7; (i–j) at level 8.
erial that has a non-zero velocity is shown in dark grey. ˛ and ˇ slip lines intersect

he great strike–slip faults, such as the Kunlun Fault System, corre-
pond to slip lines (Molnar and Tapponier, 1975). This analogy has
een the subject of physical (Davy and Cobbold, 1988) and numeri-
al modelling (Houseman and England, 1993, among many others)
nd has given rise to an abundant literature. More recently, GPS
ata seem to indicate that the velocity measurements fit to a certain
egree an indenter type of velocity field (Zhang et al., 2004).

In the two-dimensional case, the analytical solution is known,
nd the slip-line solution is shown on Fig. 10. The slip lines con-

ist of a curvilinear mesh of two families of lines, which always
ross each other at right angles. The velocity distribution and stress
tate can be determined from the geometry of these lines. An unde-
ormed wedge of material forms an active so-called “Rankine zone”

rm field computed on finest grid; (c–d) first and last generated grid at level 5; (e–f)
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ig. 12. Final octree (Lu = 5, Lmax = 9) generated by DOUAR for the square punch
omputations. Colour (from blue to red) indicates E′

2. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version
f the article.

elow the punch with angles 
/4. This wedge pushes material out-
ards, causing passive Rankine zones to form with angles 
/4. The

ransition zones are circular.
In order to carry out two-dimensional simulations with our 3D

ode, we have set no-slip boundary conditions on the walls of the
ube so that no flux of material is allowed outside the unit cube,
nd we have imposed a velocity v = (0, 0, −w) for nodes whose
oordinates (x, y, z) verify x ∈ [0 : 1], y ∈ [−�y/2, �y/2] and z = 1.
n fact, this corresponds to replicating the 2D punch problem (plane
yz) in the third dimension (along Ox).

The (dimensionless) parameters used to run the simulations are:

ravity g = 0, punch width �y = 0.08, viscosity �0 = 104, imposed
elocity w = 1.0, penalty � = 108, refinement ratio � = 0.06, von
ises yield �0 = 1, convergence criterions � = 10−5 (Eq. (27)), and
= 0.025 (Eq. (28)). In the absence of gravity, the value of the

ensity � is meaningless.

a
t
h
f
f

ig. 13. Cross-section of the octree at x = 0.5 and for z < 0.2. (a and d) E′
2, (b and e) ve

nterface. See comments in the text for further description of these results.
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In Fig. 11a and b are presented the solutions obtained on the
nal grid of maximum level Lmax = 8. One sees that the code has
aptured the slip-lines reasonably well: the lightblue colour indi-
ates regions where E′

2 is maximal, the velocity norm shows a rigid
edge and two regions on each side of constant velocity, and the

elocity field displays three regions of apparent rigid movement
nd two of rotation, as expected.

In Fig. 11c–j are shown the succession of increasing level grids
hat were built in order to reach the final grid. Fig. 11c represents
he portion of the initial uniform grid of interest. The solution is
rst computed on this grid, and is used to refine a new grid down
o level 6 (Fig. 11d). Once the solution is obtained on this grid, and
s long as the refinement based on this solution leads to an octree
hat does not comply with the C2 criterion, the process is iterated,
ntil we reach a stable grid (Fig. 11e). It is then used to generate
level 7 grid (Fig. 11f). After some grid iterations, the algorithm

arries on to level Lmax = 8 (Fig. 11i and j).
It should be that this algorithm allows for grids to evolve

o a given maximum level of refinement, and that, given the
et of refinement parameters input by the user, it computes the
est/smallest grid satisfying the conditions, hence ensuring that no
emory is wasted. The transition from level 7 to level 8 grids is a

ood illustration of this process: the refinement criterion based on
he velocity field computed on grid (h) overestimates the grid struc-
ure (i) that ultimately evolves into (j). Similar qualitative results
ave already been obtained previously by Zienkiewicz et al. (1995)
ith mainly adaptive triangular meshes.

While these simulations prove that the code captures the
hysics of such a classical problem, they are quite heavy in terms
f cpu time and memory usage because of the redundant nature of
he setup (we are in fact performing what others may call a pseudo-
D punch). No exact solution exists for the three-dimensional
quare punch, even in the simple case of an isotropic homoge-
eous weightless plastic material. Many authors have tackled this
roblem numerically since it is encountered in bearing capacity cal-
ulations which are an important part of the design of foundations
Taiebat and Carter, 2000, 2002; Salgado et al., 2004; Gourvenec

nd Randolph, 2003; Gourvenec et al., 2006). However, it is impor-
ant to notice that most of these three-dimensional experiments
ave been performed on carefully chosen grids, giving rise to dif-

erent sets of tailored grids for square, rectangular and circular
ootings.

locity norm and (c and f) velocity direction. (a–c) Rough interface; (d–f) smooth
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ig. 14. Results of a 3D folding experiment in a material subjected to surface eros
olding layer is progressively exhumed at both ends of the model leading to chang
imple pure-shear shortening (f–h). The free surface is not represented but correspo
urface.
In Fig. 12 is shown the full octree at Lmax = 9, in the case of a
quare punch. One clearly sees that the structure is highly refined
lose to the punch area, while a vast proportion of the unit cube is
emained at the uniform level Lu = 5.

d
e
z

dimentation. (a–h) Equally spaced time steps in the evolution of the system. The
ortening mechanism from folding and growth of a mechanical instability (a–e) to
regions where the two surfaces of the folding layer are intersected by an horizontal
Using the same simulation parameters as in the two-
imensional case, we have performed two square punch
xperiments. The first one is usually called smooth as only the
-component of the velocity is imposed on the nodes under
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ig. 15. Final stratigraphy of the basin formed during the folding experiment descr
urfaces. (b–d) Each of the three stratigraphic markers is shown as an opaque cyan

he punch, while the second one is called rough since all three
omponents are assigned (the x- and y-components are set to
ero).

In both cases, the boundary conditions imposes fourfold sym-
etry, with displacements orthogonal to the edges but also

ymmetric about the diagonals. In Fig. 13a and b are shown the
aterial displacement (blue colour gradient) as well as the veloc-

ty field on a plane perpendicular to the edges and passing through
he center of the square.

As observed already by Gourvenec et al. (2006), a double-wedge
ill-type deformation pattern is observed in the smooth case, while
simple-wedge deformation pattern appears in the rough case. The
btained velocity fields clearly indicate the different direction of
aterial displacement below the punch. The material displacement

s also much shallower in the smooth case than in the rough case,
hile its extent on the sides of the punch is larger in the latter case.

4. Folding experiments with a free eroding surface

To demonstrate the surface tracking capabilities of DOUAR, we
ave performed a folding experiment in which a thin layer of
on-linear (n = 3) viscous material is embedded in another, less
iscous, non-linear fluid. The thickness of the layer (h = 0.02) and
he viscosity ratio (r = 192) are chosen such that a folding insta-
ility develops at a wavelength (� ≈ 0.4) that is fully contained
ithin the unit box in which the experiment is performed. Simi-

ar experiments have already been performed in three dimensions
o investigate the importance of an imposed velocity in a direc-

ion perpendicular to the shortening (folding) direction (Kaus and
chmalholz, 2006). Here, the system is further characterized by a
ree surface located at distance �z = 0.05 from the top of the com-
etent layer and subjected to very efficient erosion, i.e. regions of
ositive topography are instantaneously eroded and the resulting

t
m
c
f
l

in Fig. 14. (a) The three stratigraphic markers are shown as semi-transparent cyan
e.

ass is instantaneously and uniformly deposited in the regions
f negative topography simulating surface processes and assum-
ng mass conservation. An initial small perturbation in the layer
hickness is imposed in the upper quarter of the model (x and y
0.5) to force the folding to initiate near the center of the model

s well as to introduce an asymmetry in the system and produce
non-cylindrical fold. The evolution of the model is shown in

ig. 14.
The non-linear viscosity leads to the formation of a single, asym-

etrical fold which grows rapidly and leads to the exhumation
f the folding layer, first in the right corner of the experiment (as
een from the reader’s point of view), then in the front corner. Fur-
her shortening leads to complete erosion of the folding layer along
he left boundary of the model and the concomitant filling of the
epression created by the down-going limb of the fold near the
enter of the model. The folding instability arises from the pres-
nce of the more competent layer; as deformation progresses and
he layer is exhumed, the instability stops (Fig. 14e) and shortening
s accommodated by pure shear of the entire model leading to a
rogressive tightening of the fold (Fig. 14f–h).

Tracking interfaces can also be used to compute the stratigraphy
ithin the evolving basin by injecting interfaces at regular time

ntervals that have the same geometry as the free surface. These
urfaces are then passively advected like any other interface and
roded with the free surface, if necessary. The resulting stratigra-
hy is shown in Fig. 15. In the bottom part of the basin (closest
o the reader), a broad depression has formed and evolved mono-
onically with time. In the upper part of the basin (furthest from

he reader) the situation is drastically different: the depression is

uch narrower and the shortening has led to the formation of a
entral ridge separating two sub-basins. This asymmetry results
rom the initial perturbation introduced in the model and the non-
inear viscosity of the viscous material involved which has led
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o the localization of the deformation in the upper part of the
odel.

5. Discussion and conclusions

We have presented here a new three-dimensional finite element
ode for solving Stokes equations in the context of geological prob-
ems that are characterized by a free surface. The design of this tool
as driven by the need to track complex interfaces as well as mate-

ial properties. Efficiency is achieved through the use of a regular
ut non-uniform octree division of space and a direct solver. We
ave shown the results of some computations for problems which
ither have an analytical solution against which the accuracy and
esolution of the new code can be tested or which demonstrate the
exibility and suitability of the code to be used to solve interesting
eological problems.

Further development and testing is however required, as well as
mprovements to algorithms that have already been implemented
n the code. In particular, the following are required

A more robust algorithm to triangulate the particles on curved
interfaces; the current method is efficient and adapted to many
problems but breaks down where the surface geometry is com-
plex, i.e. characterized by extreme curvature. Note that the
triangulation of the particles on the surface is only required to
compute the value of the level set function associated with the
surface onto the nodes of the octree attached to the surface. We
have already tested meshless methods that compute the level set
function values from the position of and normal attached to a
finite (reduced) set of particles. This requires solving a local min-
imization problem to find, for example, the best fitting quadratic
surface representing the geometry of the interface.
A more precise algorithm for the advection of the particles that
would allow the use of longer and thus fewer times steps;
An implicit or semi-implicit algorithm for the advection of the
free surface. In problems characterized by a free surface, the time
step is limited by the stresses generated by the deformation of
the free surface in comparison to the viscous stresses produced
in the fluid by the deformation/flow. In cases where the internal
density differences driving the flow are much smaller than the
density difference across the free surface, this restriction may lead
to small steps that are impractical. This implies, in turn, that the
size of the problems characterized by a free surface is currently
limited.

Finally, further work is also required to improve the predictive
apabilities of DOUAR, and, in particular, to use the accurate P–T
nd deformation paths derived from the tracking of Lagrangian,
aterial particles, to produce estimates of thermochronological

ges, metamorphic grade distribution, integrated strain patterns,
r other geological observables.

Yet, as we have shown in this paper, DOUAR currently repre-
ents an efficient and reasonably accurate method to solve various
arge-scale problems, as presented here, and holds promise for the
olution of more demanding fully 3D thermo-mechanical problems
n geodynamics.
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