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MODELS OF INCOMPRESSIBLE FLUID FLOW

To set the scene for subsequent chapters, the basic PDE models that are the focus
of the book are derived in this chapter. Our presentation is rudimentary. Readers
who would like to learn more about the physics underlying fluid flow modelling
are advised to consult the books of Acheson [1] or Batchelor [12]. The funda-
mental principles are conservation of mass and conservation of momentum, or
rather, that forces effect a change in momentum as described by Newton’s famous
Second Law of Motion.

Consider a fluid of density p moving in a region of three-dimensional space f2.
Suppose a particular small volume of fluid (imagine a dyed particle or bubble
moving in the fluid) is at the position & with respect to some fixed coordinates
at time ¢. If in a small interval of time d¢ this particle moves to position & + 6,
then the velocity at position Z and time ¢ is

4= (Ug, Uy, Uuy) i= Jltiinofs—:.
Each of the velocity components ., u, and u; is a function of the coordinates
z, y and z as well as the time ¢. Inside any particular fixed closed surface
dD enclosing a volume D C 2, the total mass of fluid is J, ppdf2, where
df? = dzdydz is the increment of volume. The amount of fluid flowing out

of D across 9D is
/ pit - dS,
oD

where 7 is the unit normal vector to D pointing outwards from D and dS is
the increment of surface area. Therefore, since mass is conserved,

the rate of change of mass in D equals
the amount of fluid flowing into D across dD.

We express this mathematically as

d/ / o
— dR =— pi - ndS.
dt Jp” aD

Employing the Divergence theorem, which says that for a smooth enough vector
field ¢ and any region R with smooth enough boundary dR,

/ 17-ﬁ‘dS:/V-iz‘d0,
OR R
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and noting that D is fixed, yields

0, 4
& pdn+/ pﬂ-r‘idSz/ LY. (pi)dR2 =0,
dt Jp oD p Ot
where we have swapped the order of differentiation (with respect to time) and
integration (with respect to space) in the first term. Since D is any volume, it
follows that
op 5
— +V-(p) =0 in £2.
5 TV (o)
For an incompressible and homogeneous fluid the density is constant both with
respect to time and the spatial coordinates. Hence
L Oup | Ouy | Ou
¥ s oz * oy 0z
In order to express the conservation of momentum, we need to define the
acceleration of the fluid. To this end, suppose that the velocity of the small
(dyed) volume of fluid at time ¢ is @ as above and that at ¢ + &t it is @ + 0. Since
the velocity depends on both position and time, we explicitly write i = q(&,t)
so that

in 2.

i+ 00 = (T + 0Z,t + 0t)
or, rearranging slightly,
0t = §(& + 0%, t + 6t) — (7, 1)
= §(Z + 67, t + 6t) — §(&, t + 6t) + G(F, t + dt) — 4(Z, 1)
Then, using Taylor series we get
G(F + 0, t + 6t) — 4, t + 6t) = (6% - V) G(, t + ot) + o(||6z)|?)
and
(&, t + 0t) — (&) = 5t%?j(f, t) + O(5t?).
Dividing by 6t, taking the limit as 6t — 0 and using the definition of @ := 8/6t,
we see that the acceleration is given by
da . ou _ 0u
AU a0t ot
This derivative, the so-called convective derivative,
0. %) 4 @y,

expresses the rate of change of either a scalar quantity (or of each scalar com-
ponent of a vector quantity) that is “following the fluid”. Thus to summarize,

+ (@ V).

i
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the fluid acceleration is the convective derivative of the velocity. Note that the
acceleration is nonlinear in .

For the volume D, which is fixed in space and time, the rate of change of
momentum is the product of the mass and the acceleration, or

/Dp (%ﬁ + (@ V)ﬂ‘) an.

An ideal fluid is an incompressible and homogeneous fluid that has no viscos-
ity. For such a fluid, the only forces are due to the pressure, p, and any external
body force, f, such as gravity. Thus, the total force acting on the fluid con-
tained in D are the pressure of the surrounding fluid, and the effect of the body
force f,

/aDp(—ﬁ)dS+/Dpfd.Q.

Taking ¥ = p¢ in the Divergence theorem with ¢ being a constant vector pointing
in an arbitrary direction gives

/V-(pE)dQ:/ pc-idS.
D aD
However,

V. (pé)=pV-é+¢-Vp=c-Vp

since ¢ is constant. Moreover, & can be taken outside the integrals since it does
not vary in D or on dD. This leads to

c- (/ Vpd.(l—/ pﬁdS):O.
D oD

Since ¢ points in an arbitrary direction it then follows that

/Vde:/ pitds.
D oD

Newton’s Second Law of Motion applied to the fluid in D requires that,

the rate of change of momentum of fluid in D equals
the sum of the external forces.

Expressed in mathematical terms, we have that

/Dp(‘?a—fﬂa-vw) :/aDp(-ﬁ)dSJr/Dpfdn.

This leads to

/p(‘;’)—’fﬂﬁ.vm) +Vp—pfdR =o0.
D
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Then, since D is an arbitrary volume, we obtain the Euler Equations for an ideal
incompressible fluid,
- 1 Ik
%:*+(i~v)ﬂ=4;Vp+f in 2
V-i=0 in 2.

Written in “longhand” and assuming that f = (gz, 9y, g.)T, the Euler system is
as follows,

Oy Oug Oy Oug 109p

o T gy T, b ST T
Ouy Ouy Ouy %_71@

W+uma—+uyay F ot = p3y+9y
L R P B . o 008 L,
Ty Ty T g T poe .

Oug 5 % g Ou, —id
Ox Ay 9z
To fully define a model of a physical problem, appropriate initial and boundary
conditions need to be specified. For example, for flow inside a container one must
have no flow across the boundary, hence one applies @ - 7i = 0 on 9f2.

The Euler equations can be hugely simplified by assuming that the vorticity,
W := V x 1 is zero. This is called irrotational flow, and is a reasonable assumption
in a number of important applications, for example, when considering the motion
of small amplitude water waves. For irrotational flow, taking any fixed origin O
the line integral

P
¢(P) == / a-dT
o
uniquely defines the value of a fluid potential ¢ at the point P. This is a
consequence of Stokes’ Theorem: if C' is a closed curve in three-dimensional
space and S is any surface that forms a “cap” on this curve (think of a soap
bubble blown from any particular shape of plastic loop) then

/ﬂ‘-dz‘:/Vxﬂ-ﬁdS.
c s

In other words, the line integral defining ¢(P) is independent of the actual
path taken from O to P. Differentiation of this line integral in each coordinate
direction then gives

g=-Ve¢.

Notice that choosing a different origin O simply changes ¢ by a constant value in
space. The value of this constant clearly does not alter @ even though there may

e Tul W
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be a different constant for every time ¢. (The minus sign is our convention —
other authors take a positive sign.) Combining the definition of the potential
with the incompressibility condition V - @ = 0 yields Laplace’s equation

—V2$=0 in 0.

This, in turn, is a particular case of the Poisson equation

~Vi=f in0

that is the subject of Chapters 1 and 2.

_, For such potential flow problems, if the body forces are conservative so that
f = —VZ for some scalar potential =, then the pressure can be recovered using
a classical construction as follows. Substituting the vector identity

(@-V)i=1V(i @) — @ x (Vxad)
into the Euler equations and enforcing the condition that V x @ = 0 gives

i 1 i
E-%—;VpT-O in 02,

where pr = % pi - @+ p+ pZ is called the total pressure. If we rewrite this as

06 pr\ _ . .
V( 8t+7)_0 in 2

and integrate with respect to the spatial variables, we see that

0¢  pr

A h(t),
where h is an arbitrary function of time only. Since h(t) is constant in space,
one can consider the value of ¢ to be changed by this constant and so without
any loss of generality can take h(t) = 0. Thus, to summarize, having computed
the potential ¢ by solving Laplace’s equation together with appropriate bound-
ary conditions, the velocity @ and pressure p can be explicitly computed via
i =—V¢, and

respectively.
For a “real” viscous fluid, each small volume of fluid is not only acted on by
pressure forces (normal stresses), but also by tangential stresses (also called shear
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stresses). Thus, as in the inviscid case the normal stresses are due to pressure
giving rise to a force on the volume D of fluid,

Anm—md&

which can be written using the unit diagonal tensor

[t oo
I=|0 10
001

/ —pIAdS.
oD

(The tensor vector product is like a matrix vector product.) The shear stresses
on the other hand can act in any direction at the different points on @D so that
a full tensor

Tow Toy Te:
T=|Typ Ty Ty
Tow Toy T

is needed, and the force due to the shear stresses is given by

T ds.
8D

Applying the Divergence theorem to each row of the shear stress tensor T, we
arrive at the shear forces

/V"f‘dﬂ,
D

where V - T is the vector

0Ty i My | OTys
ox dy 0z
Ty Oy . 0Tz
5z "oy T oz
Ty | 0Ty | 0T
oz & Ay g 0z

r"'
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A Newtonian fluid is characterized by the fact that the shear stress tensor is a
linear function of the rate of strain tensor,

Oug, g _6_21 Ou, Ou,

0 wta ® e
ae Lo oy _ 1 [0uy | Oug Ouy Ouy | Ou,
€:= 2[Vu+(Vu) ]72 52+ o % e F ay

ou, Ouy Ouy " % 26u,
o 9z 0Oy 0z 0z

In this book, only such Newtonian fluids are considered. These include most
common fluids such as air and water (and hence blood, etc.). Any fluid satisfying
a nonlinear stress-strain relationship is called a non-Newtonian fluid. For a list of
possibilities, see the book by Joseph [116]. For a Newtonian fluid, we have that

T = ;€ + ATrace(e)T,

where p and A\ are parameters describing the “stickiness” of the fluid. For
an incompressible fluid, the parameter A is unimportant because Trace(€) =
V - =0. However the molecular viscosity, p, which is a fluid property measuring
the resistance of the fluid to shearing, gives rise to the viscous shear forces

V2u, + (—(%) (V-

uv-€=p Vzuy+(%) (V@) | =p | V| =puVii.

&

Vu, + (%) (V-a@)

Application of Newton’s Second Law of Motion in the case of a Newtonian
fluid then gives

/ p (Zt—" + (a@- V)ﬁ) = / —pfﬁds+/ uV2ade +/ pfds.
D aD D D
We can convert the pressure term into an integral over D exactly as is done in

the case of an ideal fluid above. Then, using the fact that D is an arbitrary
region in the flow leads to the following generalization of the Euler equations,

0 s L o P o
5+(u-V)u~—;Vp+uVu+f in 2
V-i=0 in £,

where v := pu/p is called the kinematic viscosity.
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The focus of this book is steady flow problems. In this case, the time-derivative
term on the left-hand side is zero. Then, absorbing the constant density into the
pressure (p < p/p), leads to the “steady-state” Navier-Stokes equations,

—wVi+i-Vi+Vp=f in 0
V.i=0 inf,

which when combined with boundary conditions forms one of the most general
models of incompressible viscous fluid flow. This system is the focus of Chapters
7 and 8.

As observed above, the Navier-Stokes equations are nonlinear. However,
simplification can be made in situations where the velocity is small or the
flow is tightly confined. In such situations, a good approximation is achieved
by dropping the quadratic (nonlinear) term from the Navier-Stokes equa-
tions and absorbing the constant v into the velocity (@« vi), giving the
Stokes equations

—V2E+Vp:f in 2
V-4=0 in 2.

There is little loss of generality if f is set to zero. A conservative body force (e.g.
that due to gravity when the fluid is supported below) is the gradient of a scalar
field, that is, f = —VZ, and thus it can be incorporated into the system by
redefining the pressure (p < p+ Z). The numerical solution of Stokes equations
in this form is described in Chapters 5 and 6.

Another linearization of the Navier—Stokes equations replaces the term i - Vi
with 17 - Vi where @ is a known vector field (often called the wind in this context).
If the pressure term is dropped from the momentum equation, the resulting
Convection—Diffusion equation

— V24 - Vii=f,

is an important equation for various reasons. As well as describing many signi-
ficant physical processes like the transport and diffusion of pollutants, it turns
out to be very important to have efficient methods for this equation in order
to get good numerical solution strategies for the Navier-Stokes equations. As
given here, this is just three uncoupled scalar equations for the separate velocity

—
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components and so is no more or less general than the equation for convection
and diffusion of a scalar quantity u with a scalar forcing term f,

—vV2u+@-Vu=f in .

Numerical methods for the solution of this equation together with suitable
boundary conditions are described in Chapters 3 and 4.




-. The Stokes equation system is a fundamental model of viscous flow. The variable v is a vector-valued function representing the velocity of
the fluid, and the scalar p represents the pressure.

HAvV — Vp+pg = O
V - v = 0

» p is the density of the material
» g is the gravitationnal acceleration

B s the shear viscosity

.. assumptions
» highly viscous material deforming at a sufficiently low speed — inertial forces can be neglected (low Reynolds number flow)
B nheatis conducted faster than dissipated by viscous flow (low Prandtl number flow),

B  fluid is assumed to be incompressible



Re and Pr

-. Re: in fluid mechanics, the Reynolds number is the ratio of inertial forces to viscous forces and consequently it quantifies the relative
importance of these two types of forces for given flow conditions. Thus, it is used to identify different flow regimes, such as laminar or turbulent
flow.

It is one of the most important dimensionless numbers in fluid dynamics and is used, usually along with other dimensionless numbers, to
provide a criterion for determining dynamic similitude. When two geometrically similar flow patterns, in perhaps different fluids with possibly
different flowrates, have the same values for the relevant dimensionless numbers, they are said to be dynamically similar.

It is named after Osborne Reynolds (1842-1912), who proposed it in 1883. Typically it is given as follows:

pvgL vg L Inertial forces
Re = = =
% v Viscous forces

where v g is the mean fluid velocity, L a characteristic length, w the dynamic fluid viscosity, v the kinematic fluid viscosity v = ©/p, and p
is the fluid density.

-. P r: the Prandtl number is a dimensionless number approximating the ratio of momentum diffusivity (viscosity) and thermal diffusivity. It is
named after Ludwig Prandtl.

It is defined as:

v viscous diffusion rate
Pr = — =
lo% thermal diffusion rate

where v is the kinematic viscosity, v = p/ p, and « is the thermal diffusivity, « = k/(pCp).
Typical values for P r are around 0.7 for air and many other gases, around 7 for water, and around 71021 for Earth’s mantle.



e penalty metho

-. A slightly compressible material may be modelled by replacing th divergence-free constraint by the relation
p=—AV -v

where we have introduced a so-called penalty or compressibility factor \:

& )\ has the dimensions of a viscosity (Pa. s)
P s commonly taken to be several orders of magnitude larger than the shear viscosity n

A

B thisensures a nearly incompressible behaviour for the flow.

-. Pressure can be eliminated from the Stokes equations and they become:

UAvVv + AVYV - v+ pg =0

e

This called the penalty method. The idea was popularised by Hughes et al. in the classic paper Finite element analysis of incompressible viscous flows by
the penalty function formulation in the Journal of Computational Physics 30, p1-60, 1979.

e

The attraction of this approach is that the resulting linear algebra system is symmetric and positive definite. Discretisation of the penalty
formulation is tricky however. Typically different quadrature rules must be applied to the @ and the X terms. If the same quadrature is used for

both terms, it implies instability in the incpmpressible limit.
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Because rock material properties such as density or viscosity depend on temperature, it is also necessary to compute the temperature within
the deforming system.

This is done by solving the energy or heat transport equation which has temperature T as an unknown:

oT
pc| — +v - VT | =Vk -VT +pH
adv conv.

B ks the thermal conductivity,
B s the density,

B s the heat capacity and
B [ is the heat production.

The relative importance of the advective term with respect to the conductive term is measured by the value of the dimensionless Peclet
number, Pe = v L /K where vy and L are typical velocity and length characterizing the system and = = k/ pc is the heat diffusivity.

In most active tectonic systems, Pe is large, i.e. comprised between 1 and 100. Thus the advective term, cannot be neglected.



’ The state of stress for a three-dimensional point is defined by a matrix containing nine stress components:

Txx Txy Oxy
o =

Tyx Tyy Tyz

Ozx Ozy Ozz

’ Moment equilibrium demands the following relationships on shear stresses:
Oxy — Oyx ; Oxz — Ozx ; Ozy — Oyz
’ As a result there are only six independent stress components:

B  three normal stresses (cxx.oyy . Tzz)

B three shear stresses (cxy oyz.0x2)




-. In the absence of body moments, the stress tensor is symmetric and can always be resolved into the sum of two symmetric tensors:

$ ameanor hydrostatic stress tensor, involving only pure tension and compression. It is defined as the average of normal stresses in three

directions:

1
p = g(amx +oyy +0zz) = gT”'[U]

1

B ashear or deviatoric stress tensor, involving only shear stress, defined by

or,

’ One usually defines the three following quantities:

S

ij = ij — Pij

s =0 —pl

E:C"ii

7
1
2
1

3

~SijSji

D 5ijSikSki
ijk




D voment equilibrium demands o ; ; = o ;; so that these invariants can be written

J1 = fom
A

1 9 2 2

/
J2 = E(Smm—‘—syy—l—szz)—'—s

1
2 2
J3 = gsxa;(sxx + 3s

1 2 2
+ gsyy (3Sm,y + SYy + 3s
1 2

gszz(?)sxz + 383z + s

QSmfyszSyz

’ One also defines the Lode angle as follows:

/
1 _1<_3\/§ T4

2 2 2
Ty + Syz t Szx

2)

Ty + 3852

2
'yz)

2
zz)

) o) € [—g; g]




In physics and materials science, plasticity is a property of a material to undergo a non-reversible change of shape in response to an applied
force. Plastic deformation occurs under shear stress, as opposed to brittle fractures which occur under normal stress. Examples of plastic
materials are clay and mild steel. In engineering, the transition from elastic behavior to plastic behavior is called yield.

There are several mathematical descriptions of Plasticity. One is deformation theory (see e.g. Hooke’s law) where the stress tensor (of order d
in d dimensions) is a function of the strain tensor. Although this description is accurate when a small part of matter is subjected to increasing
loading (such as strain loading), this theory can not account for irreversibility.

materials can sustain large plastic deformations without fracture. However, even ductile metals will fracture when the strain becomes large
enough - this is as a result of work-hardening of the material, which causes it to become brittle. Heat treatment such as annealing can restore
the ductility of a worked piece, so that shaping can continue.

rs
Stress

Fracture
Plastic region

Elastic region

Strain



We assume that the plastic flow does not depend on the hydrostatic pressure, sothat F' (o) = f(J2).

9
9

The von Mises criterion states that flow occurs only at those points where the second invariant Jo reaches a certain value depending on the
material.

-. The yield function can then be written as

F:\/E—c




-. The von Mises yield criterion is not suitable for modelling the yielding of frictional material as it does not include the effect of mean stress as
observed in experiments.

9

To overcome this limitation, Drucker and Prager (1952) proposed the following revised function for frictional materials:

F =

Jé—l—ap—k:

where o and k are material constants. In principal stress space, the Drucker-Prager surface has the form of a circular cone, whilst the von

Mises yield surface is an infinitely long cylinder.

$ pp

$ pp

2 sin ¢
V3(3 — sin ¢)
6c cos ¢
V3(3 — sin ¢)

tan ¢

\/9 + 12tan? ¢
3c

\/9 + 12tan? ¢




0.6

05

04

0.3

0.2

0.1

: -
-

0 6

4

3

w2






12

0.8

0.6

0.4

0.2

Kppi
Kppii

2




in 3D the yield criterion is given by:

c the cohesion that has units of pressure

-. The Mohr-Coulomb criterion is commonly used to represent the behaviour of rocks and requires two rheological parameters:
B  the dimensionless angle of friction

In 2D, the yield criterion is in terms of shear stress — and normal stress o, acting on a plane. It suggest that the yielding begins as long as
the shear stress and the normal stress satisfy the following equation:

F = psin ¢ +

.

1
J! (cos 9 — —— sin 6; sin ¢) —c cos ¢
2 l V3 l

c(6;.9)

c+ on tan ¢




T
4

6

— : —] ¢ € [0:
6

s 7T

0, € [—




™
6

0; € [—

sin 0] sin ¢

1
— 1
V'3

cos Ol




’ The yield criterion is given by

F =

/
Jg

cos@l —c




o

Matsuoka-Nakai (MN) (work in progress)

P A2 (9 + 8tan? &)
I3
Lade-Duncan (LD) (work in progress)
13
F=— —%k
I3

Griffith-Murrel (GV) (work in progress)
— / /
F =4J;5 cos 0] + g(Ql)le2 —al] — k
Hoek-Brown (HB) (work in progress)

Cam-Clay (CC) (work in progress)
F = Jé - M2(p(po - p))

where M is a soil constant, and p(y a history variable.




J4=second_invariant(cr) = 24 second_invariant(¢) = 2 Y,
From
F(o)=0

avalue 1’ of the viscosity is computed that by simple rescaling allows for the point to be placed on the yield surface.

yield envelope




-. At high temperature, rocks deform by creep, a non-linear form of viscous deformation that is commonly approximated by defining a stress or

strain rate dependent and thermally activated viscosity:

(1-
n= pgé

where

°
o
°
o
o
°

1 is the viscosity of the material at T = T
n is the nonlinear exponent

R is the perfect gas constant

Q is the activation energy

T is the temperature

€is.. 7

) cp (_



| I

In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids the amount of
expansion will normally vary depending on the material’s coefficient of thermal expansion.

The density p varies as a function of temperature according to:

p=po(l—a(T —1TyH))

where
B . s the coefficient of thermal expansion (K

$ po is the value of the density at T' = Ty

_1)




The FEM method




9
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In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function
values at specified points within the domain of integration.

An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for
polynomials of degree 2n — 1, by a suitable choice of the n points r; and n weights w; .

The domain of integration for such a rule is conventionally taken as [— 1, 1], so the rule is stated as
n

1
/_1 f(r)dr ~ Z wj; f(r;)

1=1
in three dimensions this becomes

1 1 1 no>r
/+ /+ /+ f(r,s,t)drdsdt ~ Z Z Z w,; w wwk:f(rl,sj, tr)
—1 /-1 /= =

1=1:=1

in DOUAR we set n = 2 so that r; = :I:@/% = 1+0.57735026919...and w; = 1

y

y =




-. In order to perform the numerical integration described previously, one needs to change from the global coordinate system (x, vy, z) to a

local coordinate system (r, s, t).

v

Y




-. When changing from a coordonate system to another coordinate system , one often require the derivatives 8 /0x, 8 /0y, 8/90z, and it
seems natural to use the chain rule as follows:

o or 0O Os

Ox Ox Or Ox Os

with similar relation ships for 8 /8y and 8/ 9z, so that one can write

o ox Oy
or or or
9 = Ox Oy
Os Os Os
¥ol oz Oy
ot ot ot
.. in matrix notation
o
Or N Ox

where J is the Jacobian operator.

F
o

SR
S

it
S

-. the volume integration extends over the natural coordinate volume, and the volume differential d V' need also to be written in terms of the

natural coordinates. In general we have

dV = det(J)drdsdt



divfem

oo 00 b

°

From the values of the level set functions, the position of each element with respect to each interface is known as well as possible.
This information is used to determine the material making up the element, assuming that interfaces are material boundaries.

When an element is intersected by one or several interfaces, the value of the level set functions at the nodes of the elements are used to
compute the part or volume of the element that is in each of the materials.

These volumes are used to perform the volume integration of the finite element equations.

To determine the volume that is on the positive side of the interface cutting a given element (the cut cell), an octree division of cut cells is
performed down to level 3 (8 X 8 X 8). The level set function is interpolated to the internal nodes and used to determine which part of the
volume (positive or negative) each sub-cell belongs.

The relative positive volumes, «, in the remaining cut cells (the gray cells) are estimated using the following approximate formula and in those
cut cells, material properties are averaged.

8
2 P4
a=3 | —+1

S || cut cell
i=1 " /

v4 /\interface

CT E




~ fundamental concept

Ku=F
property behaviour action
property behaviour action
elastic stiffness displacement force

thermal | conductivity | temperature | heat source

fluid viscosity velocity body force




Octrees




. Teminology

nodes leaves

N

4 * \ 4 /  J
bad face
hanging node
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level = 0 leaf size=2=1




level = 1 leaf size=2"1=0.5




level = 2 leaf size=2-2=0.25
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level | leaf size
0 |2=1
1 21 =05
2 272 =10.25
3 |273=0.125
4 | 274 =10.0625
5 | 27°=0.03125
6 | 279=0.015625
7 277 =(.0078125
8 | 278 =0.00390625
9 | 279 =10.001953125
10 | 271 = 0.0009765625




nternal structure

o o

Octrees are very simple and memory-efficient entities that can be built as a single integer array containing, for each cube of the octree, the
address in the array of the first of its eight children cubes.

When a cube is not divided, it becomes a leaf to which a name/number is associated and stored in the octree integer array as a negative

number (to indicate that it corresponds to a leaf number and not a child’s address).

<)
9

D R S-S SR S <
L L L ¥ ¥ v v v v

octree(1)=maximum level (unit cube is level 0)

octree(2)=number of leaves

ool

octree(3)=total length of octree

For each cube in the octree (at location loc)
-. octree(loc)=level

-. octree(loc+1)=address of parent

-. octree(loc+2 to loc+9)=address of children

(if negative the child is a leaf and the value is the leaf number in the sequence of leaves)




.. All the following routines are in /OCTREE/OctreeBitPlus.f90:

o
o
o
o
o
o
o
o
o
o
o
o
o
o

octreed nit

find.i nteger coordi nates, find.real _coordi nat es
octreecreatefromparticl es

octreefind.l eaf

octree_snoot hen, oct r ee_super _snoot hen
octreefind.el enent | evel

i octree_nunber _of el enent s

i octree_maxi numl evel ,i octreesize
octreecreate_uniform

octree_r enunber _nodes
octreefind.node_connectivity
octreefind.bad.-faces

octreed nterpol ate

octreed nterpol at ecmany, oct r eedi nt er pol at e_many_deri vati ve



subroutine octree_init (octree,noctree)
integer noctree,octree(noctree)

octree(1)=1
octree (2)=8
octree (3)=13
loc=4
octree (loc)=1
octree (loc+1)=0
do k=1,8

octree (loc+1+k)=—k
enddo
return
end

This routine initialises the octree structure by creating an octree of level 1, containing 8 leaves.




This routine updates the octree by creating a leaf at points (x(1:np),y(1:np),z(1:np)) of level level(1:np). If the leaf (or a cube of smaller level) exists,
the routine has no effect on the octree.

subroutine octree_create_from_particles (octree,noctree , x,y,z,np,level)
integer noctree,octree(noctree),np

double precision x(np),y(np),z(np)
integer level(np)

return
end

call octree_create_from_particles (octree,noctree,x,y,z,1,3)

level =1 level =3




Given an octree of size noctree, this routine returns the leaf number in which a point (x,y,z) resides, the level of the leaf (0 is unit cube), the location

in the octree of the part describing the parent of the leaf (loc), the centroid of the leaf (x0,y0,z0) and its size (dxyz).

subroutine octree_find_leaf (octree,noctree,x,y,z,leaf, level,hloc,x0,y0,z0,dxyz)
integer noctree,octree(noctree)

double precision x,y,z,x0,y0,z0,dxyz

integer leaf,level,loc

return

end




This routine smoothens the octree: it ensures that no two adjacent leaves are more than one level apart.

subroutine octree_smoothen (octree,noctree)
integer noctree,octree(noctree)

return
end

call octree_smoothen (octree,noctree)




This routine returns the level of each leaf. The result is returned in the array levs of dimension nleaves

subroutine octree_find_element_level (octree,noctree,levs,h nleaves)
integer noctree,octree(noctree),nleaves,levs(nleaves)

return
end

call octree_find_element_level (octree,noctree,levs,nleaves)

nleaves=10
s nnode=17

levs(1:10)=(1,1,1,2,2,2,3,3,3,3)




This routine generates a uniform octree down to level levelt.

subroutine octree_create_uniform (octree,noctree,levelt)
integer noctree,octree(noctree),levelt

return
end

call octree_create_uniform (octree,noctree,2)

level =0 level = 2




octree find node connectivity

This routine

-. finds the number (na) and locations (xa,ya,za) of the nodes of the octree.

-. computes the connectivity array between nodes and leaves (icon).

Icon is dimensioned icon(8,nleaves) and contains the number of the 8 nodes connected by each leaf. When calling this routine, na should have the
dimension used to dimension the coordinate arrays in the calling routine. On return na contains the true dimension of these array (ie how many
nodes there are in the octree)

subroutine octree_find_node_connectivity (octree,noctree ,hicon,nleaves,hxa,ya,za,na)
integer noctree,octree(noctree),nleaves,icon(8,nleaves),na
double precision xa(=),ya(x*),za(x)

[...]

return
end
1 10 3 nleaves=7
nnode=14
4 5
1 11 12 13
6 7 icon(1:4,2)=(4,5,7,8)
a 14 icon(1:4,7)=(6,12,13,14)
2 3
[/ 9




octree find bad faces

this routine returns the bad faces as an array (iface) of 9 nodes per face.
iface is the resulting bad face information iface(9,nface).
nface is the number of bad faces found.

icon is the connectivity array of dimension nelem

subroutine octree_find_bad_faces (octree,noctree,iface ,h nface,icon,hnelem)
integer noctree,octree(noctree)

integer nface,iface(9,nface),nelem,icon(8,nelem)

return
end

bad face




This function returns the value of a field (field) known at the nodes of an octree by trilinear interpolation.

icon is the connectivity matrix, nleaves is the number of leaves in the octree, field is the array of dimension nfield containing the field known at the
nodes of the octree and to be interpolated, x,y,z are the location of the point where the field is to be interpolated, f is the resulting interpolated field.

subroutine octree_interpolate (octree,noctree ,hicon,hnleaves,field ,nfield ,x,y,z,f)
integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nfield

double precision field(nfield),x,y,z,f

return

end




The NN library




-. The library contains five fortran files:
®  delaunf
£ subroutine delaun

B del subf

subroutine visiblelist
subroutine addpoint
subroutine insertpoint
subroutine Triloc_del

=]
o

subroutine nn2d_setup

subroutine nn2D

subroutine nn2DL

subroutine build_nv

subroutine calculate hulltriangles

subroutine Triloc

subroutine ccentres

subroutine nn2Di

subroutine nn2Do

subroutine nn_tri

subroutine nn2Dr, subroutine nn2Drd

subroutine nn2Df, subroutine nn2Dfd, subroutine nn2Dfdd

subroutine first_voronoi, subroutine second_voronoi, subroutine second_voronoi_d
subroutine circum, subroutine circum_d, subroutine circum_dd

subroutine second_v_area, subroutine second_v_area_d, subroutine second_v_area_dd

®  nnplot.f
®  ghullf_dummyf

Pebeobooeoooooe, bbb



’ The library contains six C files:
> stack.c(c)

stackinit

push

pop

stackempty

stackflush

B  stackpair.c(c)

stackpairinit

pushpair

poppair

stackpairempty

stackpairflush

bbb

bbb

® volume.c(c)
cvolume
cvolumef
cvolumeb
cdvda
cdvdaf
cvolumebj

L ) ) ) )
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~ NN-basic principles (1)

a) b)

Voronoi cells Delaunay Triangulation

a) The Voronoi diagram for a set of 16 nodes in a plane. b) The corresponding Delaunay triangulation. The thick perimeter line connects the nodes
in the convex hull.




a) The original Voronoi diagram for 5 neighbouring nodes and an interpolation point X. b) The new Voronoi cell about X (shaded). The overlap of the
new Voronoi cell with the original cells forms 5 second-order Voronoi cells between X and its neighbours.




Region of influence about node i

The shaded region about node i shows that the area that it can influence in natural-neighbour interpolation.




A perspective view of the influence surface about node i seen from the direction of the arrow on previous figure. The height of the surface at any
point is the value of its natural-neighbour coordinate with respect to node i.



NN - basic principles (5)

Walking triangle algorithm
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An example of the path (shaded triangles) taken by the walking triangle algorithm. The initial triangle is in the lower right corner (black) and the final
triangle is in the top left corner (black). The nearly direct path taken by the algorithm enables it to locate efficiently a point in any triangle.
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The ALE concept




The solver




The code files and routines




build_edge

subrouti ne buil d_edge (surface, ed, nedge, refi ne, nadd, naddp, stretch, angl emax,

nedgeper node, nodenodenunber, nodeedgenunber, nnnmax, di stance_exponent)

.. arguments

surface is the sheet/surface to be refined
ed is the computed edge array

nedge is the number of edges

refine is the integer array determining the edges to be refined
stretch is the maximum stretching allowed (set in the input.txt file)
nadd is the number of edges to be refined

anglemax is the maximum authorised angle between two normals

ool

nedgepernode,nodenodenumber and nodenodenumber contain the list of edges that start from each node; for a given node i their
number is nedgepernode(i), the edge number in the list of edges is nodeedgenumber(j,i) and the node at the end of the edge is
nodenodenumber(j,i) for j=1,nedgepernode(i)

-. This routine builds an edge array between a set of particles on a surface. It uses the delaunay triangulation and then steps through the
triangles to build the edge information. In a second step, the routine checks for refinement and computes an integer array (refine) which
contains the list of edges that need to be refined.

It uses the delaunay triangulation and then steps through the triangles to build the edge information. In a second step, the routine checks for
refinement and computes a integer array (refine) which contains the list of edges that need to be refined.
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the edge derived type:

-. it is to store edges in a trianglulation

c. it is used to update (in a generalized Delaunay sense) the triangulation of the 3D points on the surfaces

.. for each edge:
& 11, n2 are the node numbers defining the edge
$ 11 t2arethe triangle numbers on either side of the edge going from n1 to n2, t1 is to the left and t2 is to the right

& m1, m2 are the node numbers of the two other nodes making t1 and t2

edge%ml

edge%itl

edge%n2

edge%t2

edge%nl

edge%m?2




332

211

123

nedgeper node(i ) =3

nodeedgenunber (1,i) =211

nodeedgenunber (2,i) =123

nodeedgenunber ( 3, i) =332

nodenodenunber (1, i) =m

nodenodenunber (2,i) =k

nodenodenunber ( 3, i) =k




edge%n2

edge%t1=0

edge%nl

unit cub

edge%t2

b border

edge%m?2



builld_surface_octree

subrouti ne buil dsurface_octree (surface, ol sf, | evel uni formoct, | evel max_oct,

criterion, angl emax, i snoot h)

.. arguments

® surface is the surface represented by particles

® oisfis the octree that we must build (it has already been dimensioned to noctreemax in the main program)

y leveluniform_oct is the base level for the octree

o levelmax_oct is the maximum level allowed for leaves of the octree

® i criterion=1 all triangles of the surface must be entirely comprised in leaf of maximum order. If criterion=2 the octree is discretized to la
level computed from the angle made by the normals; when the angle varies between 0 and angle max, the level varies from levelmin to
levelmax.

&  ismooth determines whether additional smoothing is to be performed. (ismooth is set in the input.txt file). Additional smoothing imposes

that no leaf touches other leaves that are different in size by more than one level.

.. This subroutine builds the olsf octree to carry a level set function used to represent a surface. The criterion is used to define the octree in the
vicinity of the suface:
®  criterion 1 correponds to imposing that each leaf that is cut by a triangle of any surface will be refined to levelmax_oct.
® criterion 2 corresponds to imposing that discretization is proportional to the curvature of the surface; curvature is calculated from the
local divergence of the normals.

angle

level = max |level, Ly + nint | min(
anglemax

® criterion 3 corresponds to imposing that all leaves that contain at least one particle of any surface is at levelmax_oct.
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build_surface_octree: criterion=1

surface

Isf isosurface

surface octree cutplane
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build_surface_octree: criterion=2

surface
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surface octree cutplane
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build_surface_octree: criterion=3

surface (cosinus)

surface octree

Isf isosurface
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build_system.f90

subrouti ne buil dsystem (nl eaves, nface, nnode, nz,a,irn,jcn,idg,icon,iface, ndof, npe, x,vy, z, kfix,|sf,nlsf,

mat , nmat , materi al n, dt, u, v, w, tenp, pressure, strain, rhs, penalty, tenpscal e, vo,

| evel cut, | evel approx,iproccol,eviscosity,istep,iter,iternl,doDoRuRe, forces)

.. arguments
nleaves
nface
nnode
nz

a
irn,jcn,idg
icon
iface
ndof
mpe
X,Y,Z

kfix
Isf,nlsf
mat,nmat
materialn
dt

u,v,w
temp, pressure, strain
rhs
penalty

tempscale

coboboooooooooobooool
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calculate_Isf.f90 (1)

subrouti ne cal cul at el sf (I'sf,octreed sf, noctreed sf,icondsf,

nl eaves. sf, nal sf, x|, yl, zl

i con, nel em na, | evel max_oct)

.. input

octree_lIsf(noctree_lsf) is the octree on which the Isf is to be built known
icon_lsf(8,nleaves_lsf) is the node-leaf connectivity of the octree
xl(na),yl(na),zl(na) are the coordinates of the na particles on the surface

icon(3,nelem) is the connectivity matrix defining the triangulation

ool

levelmax_oct is the maximum level of refinement of the octree

.. output

o Isf(na_lsf) is the values of the Isf at the nodes (main output of the routine)

-. function: this subroutine calculates the Isf (level set function) on an octree from the position of a series of particles connected by a 2D
triangulation
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calculate_Isf.f90 (2)

subroutine distanceto.triangle (x1,vy1,z1,x2,y2,22,%x3,y3, 23,

x1ln,yln, z1n, x2n, y2n, z2n, x3n, y3n, z3n, x0, y0, z0, di st)

.. input
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m nval (xI (icon(1:3,it)))

maxval (x| (icon(1:3,it)))

I —— s
X

I

I

I

I

I

I

I

I

I

I

——t——+ - - —
10 11 12 13 14 15 16 17 18 nodes
i 2

Y

i 2-i 1 leaves




P; = (=1,v1, 21)
Py = (z2,v2, 22)
P3 = (z3,v3, 23)
n; = (Tin>Y1n> %1n)
ng = (z2n, Y2n, 22n)
n3 = (Z3n, Y3n, 23n)

barycenter

ro = (z1 +x2 +23)/3
yo = (y1 +y2 +v3)/3
zo = (21 + 22 + 23)/3

xc=(x1+x2+x3)/3.d0
yc=(yl+y2+y3) /3. d0
zc=(z1+z2+z3)/3.d0
xn=(y2-y1)*(z3-z1)-(y3-yl)*(z2-z1)
yn=(z2-z1) *(x3-x1)-(z3-2z1) *(x2-x1)
zn=(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1)
Xyzn=sqrt (Xnx*2+yn**2+zn**2)
Xn=xn/xyzn

yn=yn/ xyzn

zn=zn/ xyzn

al pha=xn=*(x0- xc) +yn*(y0-yc) +zn*(z0- zc)

_ _P1 Py \PyPg
| P1 P2 A\ P P3|

=n-C_150




P 1_’P2 An

| P1 Py A nl

= npq - Pl_’PO

np;

— defines the 7P plane

do k=1,3

xnp(k)=(y(k+1)-y(k))*zn-(z(k+1)-z(k))*yn
ynp(k)=(z(k+1)-z(k))*xn-(x(k+1)-x(k))*zn
znp(k)=(x(k+1)-x(K))*yn-(y(k+1)-y(k))*xn
xyzn=sqrt(xnp(k)**2+ynp(k)**2+znp(k)**2)
xnp(K)=xnp(k)/xyzn

ynp(k)=ynp(k)/xyzn

znp(k)=znp(k)/xyzn
alphap(k)=(x0-x(k))*xnp(k)+(y0-y(k))*ynp(k)+(z0-z(k))*znp(k)
enddo

Pq




check_delaunay.f90

subrouti ne check_del aunay (ed, nedge, x, Yy, z, Xn, yn, zn, nnode, i con, nel em

nedgeper node, nodenodenunber, nodeedgenunber, nnmax, di stance_exponent)

.. arguments

type (edge) ed(nedge)

nedge
x(nnode),y(nnode),z(nnode)
xn(nnode),yn(nnode),zn(nnode)
nnode

icon(3,nelem)

nelem

nedgepernode(nnode)
nodenodenumber(nnmax,nnode)
nodeedgenumber(nnmax,nnode)

nnmax

ool

distance_exponent

.. This subroutine calculates the Delaunay triangulation around a set of points located on a surface in three dimensional space. A non Euclidian
metrics is used that takes into account the divergence of normals attached to the points such that folding over of the surface is impossible.
The Delaunay triangulation is UPDATED, not reconstructed at each time step.
First the delaunay triangulation is checked along each edge between two adjacent triangles using a generalized in-circle test based on the
calculation of distances only; the test is based on an angle. There the test is positive, edge flipping takes place and all the arrays are
permutated (icon, edge, and subsidiary arrays )
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compute_convergence_criterion.fo0

subrouti ne conput e_convergencecriterion (osol ve,ov,vo,istep,iter,iternl,tol,refinelevel, debug, vel ocity_conver g

-. arguments

type (octreesolve) osolve
type (octreev) ov

type (void) vo
istep,iter,iter_nl
tol,maxu,maxv,maxw
refine_level

debug

velocity _converged
doDoRuRe

oo b

.. This subroutine computes a convergence criterion based on the difference between the velocity field obtained at this iteration (osolve) and the
previous velocity field (ov). This is based on the 2-norm.
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compute dhdx dhdy dhdz.fo0 (1)

subrouti ne conput e.dhdx_dhdy_-dhdz (npe, r, s, t, x,vy, z, dhdx, dhdy, dhdz, vol une)

9o arguments

mpe

r,s,t

X,Y,Z
dhdx,dhdy,dhdz

ool

volume
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Given a point (r, s, t) in a leaf (in local coordinates) - it usually is a Gauss integratoin point- the shape functions are computed:

Their derivatives with respect to r, s,

Ohq
or
Ohq
Os
Oh1q

ot

7

hi(ri,sirty) = (L —mry)*x (1 —s;)*x(1—1;)/8
ho(rgssi,ty) =  (L4+7;) (1 —s;)*(1—1t;)/8
hg(ri,si,t;) = (L—ry) = (1+s;)=(1—1t;)/8
hga(ri,s;t;) = (L +mr;)*x(1+s;)=(1—1t;)/8
hg(ri,s;,t;) = (L—ry)*x (1 —s;)*(1+1t;)/8
hg(ri,s; ti) = (I +mr;)*x (1 —s;)*(1+1t;)/8
h(rg,si,ty) = (A —ry)*x(1+s;)*(1+1;)/8
hg(rissirti) = (L4+7r;)*(1+s;)*(1+1t;)/8

t are then calculated as follows:

—(1 —s;) (1 —1t;)/8

—(1—=7;) x (1 —1t;)/8

—(1—=r;)*x(1—s;)/8

Ohg
or
Ohg

dhg
ot

= (L) (L4 t)/8

1

=) s (L4 )/8

1

=1 +7r;)*(1+s;)/8

1




We then need the Jacobian of the transformation (z, v, z) — (r, s, t).

9 ox Oy Oz o
or or or or ox
9 — oz 9y oz 9
Os Os Os Os oy
0o Ox oy Oz 9
ot ot ot ot Oz
J
_ 8 8 8 _ o 8 oh
Sincex = > hpxp,y= > hpygandz = > hkzk,wehaveforlnstancea—fj = 3 8rk Ty
k=1 k=1 k=1 k=1

One then computes J — 1l Jgisa3 x 3 matrix, so we simply resort to a simple matrix inversion algorithm. We first compute

volume = Det[J] = J1 1J2 273 3+J1,2J2,373,1+J2,1J3,271,3—J1,3J2,2J3,1 —J1,272,1J3,3—J2,373,271,1,

andthen J— 1.

Finally,
Oh Oh
ox or
oh | _ 3-1| on
oy - Os
Oh Oh
Oz ot



compute_divergence.fo0

subrouti ne conput e_di vergence (nl eaves, nnode, npe, i con, xnode, ynode, znode, unode, vnode, wnode, vol eaf , i step,iter, doDc

O guments
9
»
»
»
»
»
»
»
»

.. This subroutines computes the elemental divergence of the velocity field in every leaf.

nleaves:

nnode:

mpe:

icon:
xnode,ynode,znode:
unode,vnode,znode:
voleaf:

istep,iter

doDoRuRe
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compute_normals.f90

subrouti ne conmput e_nornmal s (ns,x,y,z,nt,icon, xn,yn, zn)

-. arguments

ns
x(ns),y(ns),z(ns)
nt

icon(3,nt)

eeobobob

xn(ns),yn(ns),zn(ns)

.. given a set of points, and a connectivity array of their triangulation, this routine computes the normal to each point through cross-products: at

first one computes the normal to each triangle and add the vector to the three points that make the triangle, then one loops over the points,
and normalises the vectors.
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compute_positive_volume.f90

subroutine conput e_positivevol une (phi,vol, I evel max)

.. input

® phiare the Isf values

®  levelmax is the max level for accuracy (power of 2)

9 output

B \olis the returned volume

-. function: finds the volume of a cube that is defined by the positive value of a Isf known at the nodes of the cube

subroutine vol une.l sf (phi,volp,level,I|evel max)
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Voliume_ISs

I

I

I

| phip(1)=(phi(1)+phi(2))/2.d0
b6 : phip(2)=phi(2)

I

I

I

’8 phip(3)=(phi(1)+phi(2)+phi(3)+phi(4))/4.d0
phip(4)=(phi(2)+phi(4))/2.d0
phip(5)=(phi(1)+phi(2)+phi(5)+phi(6))/4.d0
phip(6)=(phi(2)+phi(6))/2.d0
7 | phip(7)=(phi(1)+phi(2)+phi(3)+phi(4)+phi(5)+phi(6)+phi(7)+phi(8))/8.d0
7 | phip(8)=(phi(2)+phi(4)+phi(6)+phi(8))/4.d0

I I ®3
7 I
d |
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7/ /
/ /
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compute_pressure.fo0

subrouti ne conput e_pressure (nl eaves, nf ace, nnode, i con, ndof , npe, X, vy, z, | sf, nl sf, mat, nmat , mat eri al n,

u,Vv,w tenp, pressure, strain,vo, |l evel cut, | evel approx, octree, noctree)

.. arguments
nleaves
nface
nnode
icon

ndof

mpe

X,Y,Z

Isf,nlsf
mat,nmat
materialn
u,v,w
temp,pressure,strain
VO

levelcut
levelapprox

ool

octree,noctree

-. This subroutine computes the elemental pressure in each leaf. It calls pressure_cut, which itself calls make_pressure. It is based on the same
principle as build_system, make_cut and make_matrix.
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compute_vol_work.fo0

subrouti ne comput e_vol .wor k (osolve,ov,istep,iter,iteronl)

-. arguments
osolve
ov
istep

iter

ool

iter_nl
-. this routine computes the respective volume and work rate of each material associated to each surface.

The work rate is computed as follows

W:/ o édV
14

o] = M.L.T 2 [¢]l=T"1 = W] =wmL27—2 171
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create_surfaces.f90

subroutine createsurf (surface,is, debug)

’ arguments

® surface
9 i
® debug

.. This routine creates a surface through a set of points. Each of these points is assigned a normal. The topology of the points can either be
based on a regular grid or on a random distribution. The Delaunay triangulation of these points is computed by means of the natural
neighbours library. The surface is output in the file '/VTK/surf_xxxx_init.vtk’.

subroutine zpoints (ns,x,y,z,surfacetype, |l evelt,sp0l, sp02, sp03, sp04, sp05, sp06, sp07, sp08, sp09, spl0)

.. arguments

ns is the number of points on the surface

X,y,z are the arrays that contain the coordinates of the points
surface_type

levelt is the level of the surface
sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10

eeoobob

.. This routine computes the z coordinate of the points generated by create_surf according to the type of surface under consideration
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create_surfaces.f90 (2)

The convex hull is first built. Then, random points in the unit square a generated (figure a), so that the total number of points is (2le”elt + 1)2.
The points are triangulated. The neighbouring list nn(i) is built for each point i. Then the barycenter r,lL? of the nb(i) neighbours of point i is computed,

and once this is done, for every point r ;

(figure b).

a)

s

v:.é

Ty

AT
LA

7

TS

B

ZA

KD
ASK

%

1
avy
B

ekt

[y

N

it

sl
A

L 4

i e

_',??3 ? /1
et

R

3
i

5
i

%

¥

=

b)

IRy
vméé’a
L
5
e
B S Ly
CUES AT
s
Z

NS aY:
A

i

SSTAAY
Sl

7

TR
Kh
5

i,
A

.
s
T

H

raspa!

%
T

rlz? (except for the points on the hull and somme others). This insures a certain level of smoothing

The triangulation is computed again for these new positions. Having done this, we proceed to compute the normals at the points. In order to do so,
each triangle is considered, two of its edges are used to calculate the unit normal to the triangle (by mean of the cross product) that is given (added)

to each point forming the triangle. Finally, the normals are (re)-normalised (figure c).
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create_surfaces.f90 (3)

# surface type=1 : flat surface

®  spoiisthe z level

surface%rand=.false. surface%rand=.true.
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create_surfaces.fo0 (4)

#® surface type=2 : rectangular emboss

spO1 is the z level
sp02 and 03 are x1,x2

sp04 and 05 are y1,y2

oo bbb

sp06 is the thickness (positive or negative)

surface%rand=.false. surface%rand=.true.
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create_surfaces.f90 (5)

ical emboss

convex spher

=3

ype

spO1 is the z level

® surface t

o
9
9

sp02 and 03 are x0,y0

sp04 is the radius

true.

surface%rand

false.

surface%rand
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create_surfaces.fo0 (7)

# surface type=5 : double rectangular emboss

spO1 is the z level

sp02 and 03 are x1,x2
sp04 and 05 are x3,x4
sp06 and 07 are y1,y2
sp08 and 09 are y3,y4

oo b0

spl0 is the thickness

surface%rand=.false.
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create_surfaces.f90 (8)

a SInus

#® surface_ type=6

spO1 is the z level

sp02 is the wavelength

sp03 is the amplitude

true.

surface%rand

false.

surface%rand
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create_surfaces.f90 (9)

# surface type=7 : a noisy surface

®  spoiisthe z level

» sp02 is the noise amplitude

surface%rand=.false. surface%rand=.true.

it
w"" i
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create_surfaces.f90 (10)

surface_type=8 : a double si
spO1 is the z level

sp02 is the x-wavelength

sp03 is the x-amplitude

sp04 is the y-wavelength

ool

sp05 is the y-amplitude

surface%rand=.true.

surface%rand=.false.
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create_surfaces.f90 (11)

® surface type=9 : a cosinus

® spoiisthe z level
®  5po2is the wavelength
®  spo3is the amplitude

surface%rand=.false. surface%rand=.true.
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create_surfaces.f90 (12)

# surface type=10 : slope

spOlis z( (base level)
sp02is yq (position where the slope starts)

sp03 is v (angle of the slope)

ool

sp04 is § (maximum thickness of layer)

surface%rand=.false. surface%rand=.true.
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define_bc

subrouti ne define_bc (infile, kfix,u,v,w X,Yy,z, nnode, kfixt,tenp, vo)

-. arguments

infile is the a string containing the input.txt
kfix

u,v,w are the nodal velocities

X,y,z are the positions of nodes

nnode is the number of nodes
kfixt
temp is the nodal temperature

ool

Vo is the structure that contains the void information

.. This subroutine is to be modified by the user to implement the boundary conditions. Here the user should define if the dof is fixed by setting
kfix((inode-1)*3+idof) to 1 (node inode and dof idof) and setting the corresponding value of u, v, or w to the set fixed value. Same operation for
kfixt and temp but for a single dof. If no input file has been passed as argument to douar, the boundary conditions are those defined in the
subroutine. If input.xxxx has been passed as argument to douar, then the user should modify accordingly the select case and write its own
define_bc_xxxx.f90.
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define_cloud

(cl,irestart,restartfile)

subrouti ne define_cl oud

© arguments
® clis the cloud

O  restart
B (estartfile is the name of the restartfile if needed

.. If irestart=0 this routine allocates and creates the cloud of points present in the system. Otherwise it reads from a user supplied file name the
surfaces as they were at the end of a previous run. In this case, since the run output files contain all the octree+lsf+icloud+surface

informations, the routine first reads dummy parameters until it gets to the real interesting cloud information.
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define_ov

subrouti ne define_ov (ov, noctreenax, | evel uni formoct,irestart,restartfil e, ztenp)

-. arguments

ov is the object holding the octree

noctreemax is the maximum allowed octree size
leveluniform_oct is the minimum/uniform octree level
irestart is a flag to decide if this is a restart job or not

restartfile is the name of the restart file if it is needed

ool

ztemp

.. This routine creates a uniform octree that will be used to store the velocity for the next time step or reads it from a restart file.
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define_surface

subrouti ne define_surface (surface,ns,irestart,restartfile,total, step,inc,current tine, debug)

.. arguments

surface

ns

irestart
restartfile
total, step, inc

ool

debug

.. if irestart=0, this routine allocates and creates the ns surfaces present in the system. Otherwise, it reads form a user supplied file name the
surfaces as they were at the end of a previous run. In this case, since the run output files contain all the octree+lIsf+cloud+surface
informations, the routine first reads dummy parameters until it gets to the real interesting surface information .
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do_leaf_-measurements.f90

subrouti ne conmpute_e2dcrit (osol ve, ov, npe, refinecriterion, debug, conput e.gpgram

-. arguments

osolve:

ov:

mpe:
refine_criterion:

debug:

ool

compute_gpgram

.. This subroutine computes the following elemental quantities:

e2d = J5(€)
e3d = L)
1 _,( 3v3 Ji
lode = 0; = — sin —
3 2 (J5)3/2
q 2nefry/ I3 (€)
crit =
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embed_surface_in_octree.f90

subrouti ne enmbed_surface.i n.octree (osol ve, noct reenax, | evel uni f or moct, | evel max_oct, criterion,

angl emax, surface, i snooth, i s, ns, debug,istep,iter)

.. arguments

osolve

olsf
noctreemax
leveluniform_oct
levelmax_oct
criterion
anglemax
surface

integer ismooth
is

ns

debug

A A AN A NN NN NN

istep,iter
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.
erosion.fo0

subroutine erosion (surface, ol sf,is, zerosion)

-. input

& s is the number of the surface (0 playing a special role)

B zerosion is the level of erosion (between 0 and 1)
-. input/output
B  surface are the surface/sheet object

B oisfis a octreelsf object containing the geometry of the current velocity octree/object

-. output

-. function: it is used to erode the surface 'surface’ according to a user supplied algorithm. At the moment it simply 'shaves’ the top of the model
at a given height.



find_connectivity_dimension.f90

subroutine find.connectivity.di nension (nleaves, nface, nnode, vo, icon,iface, ndof, npe, nz, tpl)

-. arguments

nleaves: number of leaves

nface: number of bad faces

nnode: number of nodes

vO: object containing the void information

icon(mpe,nleaves): connectivity matrix between nodes and leaves
iface(9,nface): bad face matrix

ndof: number of dofs per node

mpe: number of nodes per element

nz: computed total number of nonzero numbers in the global FE matrix

ool

tpl(vo%nnode*ndof): topology array that is build in this routine; it has the dimension of the total number of dof and contains, per dof, the
list of other dofs connected to the dof
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find_connectivity.f90

subroutine find.connectivity (nleaves, nnode, vo,icon, ndof, npe,nz,irn,jcn,idg,tpl)

-. arguments

nleaves is the number of leaves/fe

nnode is the number of nodes

Vo is the object containing the void information

icon is the connectivity matrix

ndof is the number of dofs per node

mpe is the number of nodes per element/leaf

nz is the total number of nonzero numbers in the global matrix

irn and jcn are built in this routine and are needed by MUMPS to locate the nonzero numbers of the global stiffness matrix

idg is simply the list of the diagonal elements in the global stiffness matrix once it is unrolled as a single dimension matrix/vector

ool

tpl is the topology array that is build in find_connectivity _dimension.fo0

.. Having the topology dimension, we build three arrays irn, jcn, idg that ! are needed by MUMPS. This is a relatively easy operation once we
know tpl.
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find_connectivity_local.f90

subroutine find-connectivity.local (iproccol,n,idg,idgloc,tpl,irn,jcn,nz,irndoc,jcnloc,nzloc)

-. arguments

iproc_col is a flag that determines which column of the matrix is dealt with by which processor

n is the total ndof

idg is simply the list of the diagonal elements in the global stiffness matrix once it is unrolled as a single dimension matrix/vector
idg_loc is the local equivalent

tpl is the topology array that is build in find_connectivity _dimension

nz is the total number of nonzero numbers in the global matrix

ool

irn_loc, jen_loc and nz_loc are the local equivalent to irn, jcn, nz

-. This routine is used to find the local (ie for each processor) irn and jcn arrays that are needed by MUMPS to locate the nonzero numbers of
the global stiffness matrix once it has been split up between the processors. It also computes the total number of nonzero numbers in each of
the sub-matrices (parts of the global matrix distributed to each processor).
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find_processors.f90

subroutine find_processors (iproc-col,n,tpl,nzloc)

-. arguments
» iproc_col is a flag that determines which column of the matrix is dealt with by which processor; it is built in this routine.

® nis the total ndof
» tpl is the topology array that is build in find_connectivity_dimension
» nz_loc is the total number of nonzero numbers in the local part of the global matrix; it is also built in this routine.

-. I This is where the division of the dofs between the processors is performed. ! Here we have decided to divide the dofs equally across the
processors in an arbitrary way that is decided by the numbering of the nodes. Note that this numbering can be modifed and/or optimized by a
call to SLOAN's routines now built in the Octree library, but it is not done in the current version as it did not lead to better results.
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find_void_nodes.f90

subroutine find.voi d-nodes (nl eaves, nnode, nface, i con, i face, npe, vo, | sf, nl sf, materi al n)

’ arguments

nleaves is the number of leaves/fe

nface is the number of bad faces

nnode is the number of nodes

icon is the element-node connectivity matrix

iface is the bad face connectivity matrix

mpe is the number of nodes per elements

Vo is the structure containing the information on where the void is. It is constructed in this routine.

Isf contains the nodal values of the nlsf level set functions

ool

materialn contains the material number associated to each Isf

.. This routine finds all nodes that are completely in the void, i.e. they are not connected by any element to a node that is not in the void. Those
nodes are given a vo%node=1 flag; all others have vo%node=0. There are vo%nnode nodes that are not in the void.
It calculates the nodes that are in the fluid vo%influid=.true.

It also caculates the number of elements (vo%nleaves) and bad faces (vo%nface) that are not in the void and corresponding flag arrays
vo%leaf and vo%flace.
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The void derived type:

-. it is to store information on node, leaves and faces that are in the void

e bbb

type void

i nt eger, di nension(:), pointer
| ogi cal , di nension(:), pointer
i nt eger nnode, nl eaves, nf ace
end type void

node=1 for nodes that are conpletely in the void (they are taken out of the equation set)
leaf=1 for leaves that are completely in the void
face=1 for faces that are completely in the void
nnode is the number of nodes to be solved for (number of nodes not in the void)

nleaves is the number of active leaves
nface is the number of active faces

rtf (restricted to full) is an array that provides the connectivity between the restricted and full node numbers
(j=rtf(i) where i is restricted node number (1 to vo%nnode) and j is full node number (1 to nnode))

ftr (full to restricted) is the complement

influid is true for nodes that are in the fluid

::node, | eaf,face, ftr,rtf
cinfluid



In

_VOI

_nodaes.

L1

free surface

vo% nfl ui d(i)=F
vodmode(i) =1
vo% nfl uid(j)=F
vo%node(j) =0
vo% nfl ui d(k) =T
vo%node( k) =0
vo% nfl uid(m =T
vo%mode(n =0

vo% eaf (L1) =1
vo% eaf (L2) =0
vo% eaf (L3) =0
vo% eaf (L4) =0




Improve_osolve.f90

subrouti ne i nprove_osol ve (osolve,ov,refinecriterion,istep,iter,total, step,

inc,refineratio,refinedlevel, debug,

nboxes, boxes, i snoot h, cube_f aces, r ef _on_f aces)

.. arguments
® ovisthe velocity octree containing the velocity solution
®  osolve is the octree to be improved
» refine_ratio is a parameter read in input.txt. When multiplied by the maximum of the criterion previously computed, one obtains the
threshold used to determine whether a leaf is to be refined or not.
y refine_level is the level at which the osolve octree is to be refined.

.. This routine calculates the second invariant of the strain rate, and a value for the criterion used by the improve_octree subroutine, inside each
element by using the velocity information at the nodes. Then, the routine improves the osolve on which the solution is calculated.
Also, it refines the octree if the user has defined a box (or several boxes) in which the octree is artificially refined to a desired level. boxes and
nboxes are read from the input file.
The routine then refines user supplied rectangular areas of each of the six faces of the cubic simulation domain. The information are stored in
cube_faces read from the input file.
Finally, the octree is smoothed and super-smoothed if the user has set ismooth to 1.
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Initialize_temperature.fo0

subroutine initializetenperature (ov, zt enp)

-. arguments
® ovisthe velocity octree containing the velocity/temperature solution

® ztemp

.. This routine initializes the temperature field to some basic conductive equilibrium, The temperature should be normalized between 0 and 1.
This routine needs to be improved...

CT. Eeb. 2007 — p. 120/190



Interpolate_leaf_quantities_on_nodes.f90

subroutine bl abl a (osol ve, ov)

-. arguments
® osolve is the solution octree
® ovis the velocity octree

-. This routine interpolates various quantities between the values known in the leaves of the osolve octree and the nodes of the ov octree. This
leads to some level of smoothing.
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f(L): elemental field in leaf L

o S(L) V(L) +f(Lo)V(Lo)+f(L3)V(L3)+f(Ly)V(Ly)

(%)
V (L): volume of leaf L V(L1)+V(L2)+V(L3)+V(La)
La L3
f(Lg) f(L3)
i
.
f(Ly)
Ly
f(Ly)
Ly




Interpolate_ov_on_osolve.f90

subroutine bl abl a (osol ve, ov)

-. arguments
® osolve is the solution octree
® ovis the velocity octree

-. This routine transfers the velocity solution from the velocity octree onto the osolve octree. It also performs a transfer of the pressure from the

nodes of the ov octree to the leaves of the solution octree.
At the end, the velocity octree is redimensioned to fit the dimension of the solve octree and is thus ready for the next solution step.
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make_cut.f90

recursive subroutine make_cut (level, | evel max, | evel appr ox, npe, ndof, ael , bel ,icon, x, vy, z, penal ty, t enpscal e,

kfix, mat, nmat, material n,dt, u,v,w, tenp, pressure, strain, nnode,

f,lsf,nlsf, r0,s0,t0,rst,icut,ileaves, eviscosity,forces)

9 arguments
® aaa

-. This subroutine is an intermediary routine between build_system and make_matrix to take into account the complex geometry of cut cells. If
we are in a non cut cell, make_matrix is called. If we are in a cut cell but at a level that it smaller than levelmax, the cell is further cut and
make_cut is recursively called. If we are in a cut cell and level is equal to levelmax, we call make_matrix with material properties that have
been interpolated from the various materail properties contribnuting to the cut cell.
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make_matrix.fo0

subrouti ne nmake_nmatri x (npe, ndof, ael , bel , i con, xg, yg, zg, penal tyg, t enpscal e, kfi x, vi scosity0, density,
penal ty, expon, acti vati onener gy, expansi on, di ffusi vity, heat, pl asticitytype,

pl asticity.lst_param pl asticity2nd_param dt, unode, vhode, wnode, t enp, pressure,
strain,nnode, f,r0,s0,t0,rst,il eaves, eviscosity, forces)

9 arguments
® aaa

-. This routine is called to create the FE matrix and rhs vector for both the Stokes (ndof=3) and Energy equations (ndof=1).
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The implemented numerical integration technique is the Gauss-Legendre, or Gauss Quadrature (see [?] p137, [?] p274, [?] p200):

+1 r+1 r+41
/ / / F(r,s,t)drdsdt = Zaiajosz(ri,si.ti)
-1 J—-1 /-1 ijk

where the « ;s are all equal to 1 and the 8 integration points (r;, s, .t;) are given by

1 — (=173, —y/1/3, —/1/3)
2 —  (J1/3,—\/1/3,—/1/3)
3 —  (/1/3,\/1/3,—\/1/3)

4 = (=y1/3,4/1/3,—/1/3)
5 —  (—/1/3,—\/1/3,,/1/3)
6 — (J1/3,—\/1/3,,/1/3)

T = (J1/3,\/1/3,4/1/3)

8  —  (—y/1/3,\/1/3,,/1/3)

This translates as follows in the code

rr(1)=—.577350269189626d0 ; ss(1)=—.577350269189626d0 ; tt(1)=—.577350269189626d0 ; ww(1)=1.d0
rr(2)=.577350269189626d0 : ss(2)=—.577350269189626d0 ; tt(2)=—.577350269189626d0 ; ww(2)=1.d0
[...]

rr(7)=.577350269189626d0 ; ss(7)=.577350269189626d0 ; tt(7)=.577350269189626d0 ; ww(7)=1.d0
rr(8)=—.577350269189626d0 ; ss(8)=.577350269189626d0 ; tt(8)=.577350269189626d0 ; ww(8)=1.d0



This means that one has to construct (BT CB|J|) at every integration point, hence the following loop

do iint=1,nint

For a given value of iint between 1 and 8, we compute (7, s; .t;):

r=rO+rstx(rr(iint)+1.d0)/2.d0\\
s=s0+rst=x(ss(iint)+1.d0)/2.d0\\
t=tO+rstx(tt(iint)+1.d0)/2.d0\\
w=ww(iint)




do—r) (1.
do+r) = (1.
do—r) (1.
do+r) (1.
do—r) (1.
do+r) (1.
do—r) (1.
do+r) (1.

do—s) (1.
do—s) (1.
do+s) = (1.
do+s) (1.
do—s) (1.
do—s) (1.
do+s) = (1.
do+s) (1.

We then compute the shape functions at the integration point:

hi(rs, sq,t;)
ho(rs, sq,t;)
h3(ri, sq,t;)
hy(ri, sqs t;)
hg (i, 84, t;)
he(ris sqst;)
hy(rg, sqst;)
hg(ri, si, t;)

d0—t)/8.do
do—t)/8.do
do—t)/8.do
d0—t)/8.do
do+t)/8.do0
do+t)/8.do0
do+t)/8.do
do+t)/8.do0

(1 —mry) * (1 —s5)x (1 —1t;)/8
(L4 7g)*x (1 —s;)*(1—1;)/8
(1 —=mr;) = (1 +s;)*(1—1t;)/8
(+ry)*x (T4 s;) (1 —1t;)/8
(1 —r;) (1 —s;5) (1 +1;)/8
(L4 r;) * (1 —s;) (1 +1t;)/8
(1 —mry) *x (1 +s;) (1 +1t;)/8
(L4 7)) *x (T4 s;) (1 +1;)/8




and their derivatives

Oh
Ll o —a-sp=qQ
or |;
Oh
2 =(1—-s;)*(1
or |;
Oh
31 = —(1+s;)*(1
or |;
oh
4 = (14 s;)*(1
or |;

dhdr(1)= — (1.d0—s) % (1.d0—t )/8.d0
dhdr(2)=(1.d0—s)*(1.d0—t)/8.dO
dhdr(3)= — (1.d0+s) % (1.d0—t )/8.d0
dhdr (4)=(1.d0+s)* (1.d0—t)/8.dO
dhdr(5)= — (1.d0—s) % (1.d0+t )/8. d0
dhdr (6)=(1.d0—s)* (1.d0+t)/8.d0
dhdr(7)= — (1.d0+s) % (1.d0+t )/8.d0
dhdr (8)=(1.d0+s)* (1.d0+t)/8.dO

t;)/8

t;)/8

t;)/8

t;)/8

—(1—s;)*(1+1t;)/8

(1 — S’i) * (1—|—ti)/8

—(1+s;)*(1+1t;)/8

(T1+s;)*=(1+1t;)/8




dh1

Os
Oho
Os

Ohg
Os
Ohy
Os

= —(1—r;)*(1
= —(14+7m;) (1

=)=

=t

T

dhds(1)= — (1.d0—r )% (1.d0—t )/8.dO
dhds(2)= — (1.d0+r )% (1.d0—t)/8.dO
dhds (3)=(1.d0—r) = (1.d0—t)/8.d0
dhds (4)=(1.d0+r)(1.d0—t)/8.d0
dhds(5)= — (1.d0—r )% (1.d0+t )/8.dO
dhds(6)= — (1.d0+r )% (1.d0+t)/8.dO
dhds (7)=(1.d0—r )+ (1.d0+t)/8.d0
dhds (8)=(1.d0+r) = (1.d0+t)/8.d0

t;)/8

t;)/8

t;)/8

t;)/8

Ohgy
Os
Ohg
Os
Ohr
Os
Ohg
Os

—(1—=r;) *x (1 +1t;)/8

—(A+7ry)x(1+1t;)/8

—(1—=mr;) *x (1 +1t;)/8

(T+r))*(1+1;)/8




dhy
ot |;
dho
ot
dhsg
ot
dhy
ot

dhdt(1)= — (1.d0—r) % (1.d0—s /8.
dhdt(2)= — (1.d0+r) % (1.d0—s)/8.
dhdt(3)= — (1.d0—r) % (1.d0+s)/8.
dhdt(4)= — (1.d0+r) % (1.d0+s)/8.

—(1—=7;) *x (1 —s;)/8

—(1+ 7)) (1 —54)/8

—(1—=7;)*x(1+s;)/8

—(1 4+ 7)) *x(1+s;)/8

dhdt (5)=(1.d0—r)*(1.d0—s)/8.dO
dhdt (6)=(1.d0+r)*(1.d0—s)/8.dO
dhdt(7)=(1.d0—r)*(1.d0+s)/8.dO
dhdt(8)=(1.d0+r)*(1.d0+s)/8.d0

dhsy
ot
dhg
ot
oh~
ot
dhg
ot

.:(1—7‘1:)*(1—3,,-’)/8
': 1+7r;)*x(1—5;)/8
':(1—7‘1:)*(14—3,,-’)/8

= (L+7r;)*(1+s;)/8




We then need the Jacobian of the transformation (xz, v, z) — (r, s, t).

9
or

o

S

8 8

Sincex = >, hpxrp,y= > hpypandz =
k=1 k=1

the 3 x 3 Jacobian matrix jcb writes:

jcb=0.

do k=1,mpe
jcb(1,1)=jcb(1,1)+dhdr(k)*x(k)
jcb (1,2)=jcb(1,2)+dhdr(k)*xy (k)
jcb(1,3)=jcb(1,3)+dhdr(k)*z (k)
jcb(2,1)=jcb(2,1)+dhds(k)*x (k)
jicb(2,2)=jcb(2,2)+dhds(k)*y(k)
jcb(2,3)=jcb(2,3)+dhds(k)*xz (k)
jcb(3,1)=jcb (3,1)+dhdt(k)*x (k)
jcb(3,2)=jcb (3,2)+dhdt(k)*y (k)
jcb (3,3)=jcb(3,3)+dhdt(k)*xz (k)

enddo

oz Oy oz o

or or or ox

oz Oy 9z o

Os Os Os Jdy

ox oy oz 0

ot ot ot Oz
J

8
i 9
3> hy zp, we have forinstance F%

k=1

8
>
k=1

Ohy
or

x . SO that the computation of




One then computes J- 1l Jisa3z x 3 matrix, so we simply resort to a simple matrix inversion algorithm. We first compute
volume = Det[J] = J1 1J2 273 3+J1,2J2,3J3,1+J2,1J3,271,3—J1,372,2J3,1—J1,272,1J3,3—J2,373,271,1

volume=jcb(1,1)*jcb(2,2)*jcb(3,3)+jcb(1,2)*jcb(2,3)*jcb(3,1) &
+jcb(2,1)*jcb(3,2)*jcb(1,3) &
—jcb (1,3)*xjcb(2,2)*jcb(3,1)—jcb(1,2)*jcb(2,1)*jcb(3,3) &
—jcb(2,3)*jcb(3,2)*jcb(1,1)

andthen I~ 1 is given by:

jebi(1,1)=(jcb(2,2)*jcb(3,3)—jcb(2,3)*jcb (3,2))/volume
jebi(2,1)=(jcb(2,3)*jcb(3,1)—jcb(2,1)*jcb (3,3))/volume
jebi(3,1)=(jcb(2,1)*jcb(3,2)—jcb(2,2)*jcb (3,1))/volume
jebi(1,2)=(jcb(1,3)*jch(3,2)—jcb(1,2)*jcb (3,3))/volume
jcbi(2,2)=(jcb(1,1)*jcb(3,3)—jcb(1,3)*jcb(3,1))/volume
jebi(3,2)=(jcb(1,2)*jcb(3,1)—jcb(1,1)*jcb (3,2))/volume
jebi(1,3)=(jcb(1,2)*jch(2,3)—jcbh(1,3)*jcb(2,2))/volume
jebi(2,3)=(jcb(1,3)*jcb(2,1)—jcb(1,1)*jcb (2,3))/volume
jebi(3,3)=(jcb(1,1)*jcb(2,2)—jcb(1,2)*jcb(2,1))/volume




Finally,

Oh Oh
Ox or
oy Os
Oh Oh
Oz ot

is implemented as follows:

do k=1,mpe
dhdx(k)=jcbi(1,1)*xdhdr(k)+jcbi(1,2)*dhds(k)+jcbi(1,3)*dhdt(k)
dhdy(k)=jcbi(2,1)*dhdr(k)+jcbi(2,2)*dhds(k)+jcbi(2,3)=*dhdt(k)
dhdz (k)=jcbi(3,1)*xdhdr(k)+jcbi(3,2)*dhds(k)+jcbi(3,3)*dhdt(k)
enddo




The strain rate tensor is givenby e = (Vv + (Vv)T)/2:

ou 1 ou ov
Gxx = — exy = — _— JE—
ox 2 \ Oy ox
owv 1 (8’0 N 8w>
€ = — Eyz = — —_ -
vy dy Y 2 \ Oz oy
ow 1 ou ow
€zz = €Exz = — | — + —
Oz 2 Oz oz
Since u = 2221 hpup, v = 2221 hpvp and z = 2221 h . wp , we have for instance 8—“; = 2221 %&uk and it
translates as follows in the code:
exx=0.d0
eyy=0.d0
ezz=0.d0
exy=0.d0
eyz=0.d0
ezx=0.d0
do k=1,mpe
ic=icon (k)

exx=exx+dhdx (k)=unode(ic)

eyy=eyy+dhdy (k)=xvnode(ic)

ezz=ezz+dhdz (k)*wnode(ic)

exy=exy+(dhdx (k)=vnode (ic)+dhdy(k)*xunode(ic))/2.d0

eyz=eyz+(dhdy (k)=*wnode(ic)+dhdz(k)=vnode(ic))/2.d0

ezx=ezx+(dhdz (k)=*unode (ic)+dhdx(k)*wnode(ic))/2.d0
enddo



We now need to write the B matrix. We start from

S

Il (oo

QJ‘QJ
8
QJ‘Q)
8l

Q

:

S

N

[Ngle
V
S
S

R

@PJ
w e

It is common to work with the following strain-rate vector (mainly in order to remove the 1 /2 terms that would appear in the B matrix)

€xx

2egxy

2€p 2

2€fyz

Q
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Q

S

Q
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2egxy

2€mz

2€yz

oS

QJ‘Q)
N

Q)|QJ
S

Q
S

Q
N

Let us assume that we evaluate J at a Gauss-Legendre integration point :
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ox
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This can be written as e; = B; &1 where B is a 6 X mpe*dof matrix and 1 is a vector of dimensions mpe*dof:

Oh1q
oz 0
Ohq
Ohq
0 0 o2
B, =
Oh1 Oh1 0
oy ox
Oh1 0 Oh1
Oz ox
0 Oh1 Ohq
Oz dy
do k=1,mpe
kl=(k—1)*3+1 ; k2=(k—1)%3+2
b(kl,1)=dhdx(k) ; b(k2,1)=0.d0
b(k1,2)=0.d0 ; b(k2,2)=dhdy (k)
b(k1,3)=0.d0 ; b(k2,3)=0.d0
b(k1,4)=0.d0 ; b(k2,4)=dhdz (k)
b(kl,5)=dhdz(k) ; b(k2,5)=0.d0

b(kl1l,6)=dhdy(k) ;
enddo

b(k2,6)=dhdx (k)

. k3=(k—1)%3+3
. b(k3,1)=0.d0
. b(k3,2)=0.d0
. b(k3,3)=dhdz (k)
. b(k3,4)=dhdy (k)
. b(k3,5)=dhdx (k)
. b(k3,6)=0.d0

Ohg 0 0
ox
Yy
Ohg Ohg 0
dy ox
Ohg 0 Ohg
Oz ox
0 Ohg Ohg
0z dy

ul
v1
w1
u2
v2
w2

ug
v8
ws




In the case of a more involved (plastic) rheology, the rheological law, or consitutive equation writes

o™ = QMOGQ/RTé
or,
Theterm ¢1/7—1 s simply 'transformed’ into a scalar parameter by means of the second invariant of the deviatoric strain-rate tensor:
2 2 2
_ ! _ Czax Ty T e 2 2 2
J2 = J€jicij = 5 Tery Terz T ey

e2d=(exxx=x2teyys*x2+ezz x x2)/2.d0+exyxx2+eyzxx2+ezxX**2
if (e2d.ne.0.d0) e2d=sqrt(e2d)

e2dref=1.d0
viscosity=viscosity0
if (e2d.ne.0.d0 .and. expon.ne.1.d0) viscosity=viscosityx(e2d/e2dref)x**(1.d0/expon—1.d0)

We then define Nef f as being

Nefp = (2M0)1/neQ/nRT€.1/n—1

and the matrix c is imply given by C = Qneff 1.




In the case of a purely viscous material, the following relationship between the stress tensor and the strain-rate tensor holds:

o = 2né

where 7) is a constant viscosity. The matrix C, defined as o = C¢ writes C = 27 1. But since we are working wit hthe strain-rate vector defined
hereabove, we must use the following C' matrix instead:

2n 0 0 0O 0 o0

0 2n O 0O 0 o0

0 0O 2n 0 0 O
C =

0 0 0O =» 0 O

0 0 0 0 =n O

0 0 0 0 0 7

d=0.d0
d(1l,1)=viscosity x2.d0
d(2,2)=viscosity «2.d0
d(3,3)=viscosity x2.d0
d(4,4)=viscosity
d(5,5)=viscosity
d(6,6)=viscosity



Here one builds the left-hand side element matrix ael of size mpe*ndof X mpe*ndof

do j=1,mpexndof

do i=1,6
bd(j,i)=0.d0
do k=1,6
bd(j,i)=bd(j,i)+b(j,k)=d(k,i)
enddo
enddo
enddo

do j=1,mpexndof
do i=1,mpexndof
do k=1,6
ael(i,j)=ael(i,j)+b(i,k)xbd(j,k)xvolumesxw
enddo
enddo

enddo




The equilibrium equations of the element assemblage corresponding to the nodal point displacement are

K-U=R

where R = Rp + Rg — R + R. The load vector R g includes the effect of the element body forces, R g the effect of element surface
forces, R the effect of element initial stress and R~ the concentrated loads.
Only R g is of interest in our case and we have

Rp =/ ulsBav
1%

where £5 are the body forces, i.e. £B — (0,0, pg). The matrix H is givenby u = H - 4. From

8 8 8
u = Z hpupg v = Z hpvg w = Z hpwp




it follows that H is a (dof,mpe*dof) array:

h1
w
v = 0
w

0

ul
v1
w1
u2
v2
w2

us
v
ws




0O hy O
0 0 hy
he O 0
0 hg O
0 0 ho

Hl B —
hg O 0
0 hg O
0 0 hg

One then builds the right-hand side element vector bel of length mpe*ndof

do j=1,mpe
ji=(j —=)*ndof+ndof
bel(jj)=bel(jj)+h(j)*volumexwxdensity
enddo

End of the loop on the Gauss-Legendre integration points

end do

Pg

Pg




One adds a compressibility term (1 point integration)

viscomean=viscomean/nint

dl=0.d0
dl(1,1)=compressibilityxviscomean
dl(1,2)=compressibilityxviscomean
dl(1,3)=compressibilityxviscomean
dl(2,1)=compressibilityxviscomean
dl(2,2)=compressibility xviscomean
dl(2,3)=compressibilityxviscomean
dl(3,1)=compressibilityxviscomean
dl(3,2)=compressibility xviscomean
dl(3,3)=compressibilityxviscomean

x
x
x
0
0
0

o O O 8 8 8

© O O 8 8 8

o © O © O o

o © O © O O

o O O O o o




This unique point of integration is situated in the middle of the cube, and its weight is 1:

r=0.d0
s=0.d0
t=0.d0
w=8.d0

One then computes the derivatives of the shape function:

dhdr(1)= — (1.d0—s) % (1.d0—t )/8.d0
dhds(1)= — (1.d0—r )% (1.d0—t )/8.dO

dhdt(1)= — (1.d0—r) % (1.d0—s)/8.d0

dhdt(8)=(1.d0+r)*(1.d0+s)/8.d0




Then, the jacobian and its inverse:

jcb=0.

do k=1,mpe

jeb (1,
jeb (1,
jeb (1,
jeb (2,
jeb (2,
jeb (2,
jeb (3,
jeb (3,
jeb (3,
enddo

volume=jcb (1,1)*jcb(2,2)*jcb(3,3)+jcb(1,2)*jcb(2,3)*jcb(3,1) +jcb(2,1)*jcb(3,2)*jcb(1,3) &
—jcb(1,3)*jcb(2,2)*jcb(3,1)—jcb(1,2)*jcb(2,1)*jcb(3,3) —jcb(2,3)*jcb(3,2)*jcb(1,1)

1)=jcb(1
2)=jcbh (1
3)=jcb(1
1)=jcb (2
2)=jcb (2
3)=jcb (2
1)=jcb (3
2)=jch (3
3)=jcb (3

jebi(1,
jcbi(2,
jcbi (3,

1)=(jcb(2,
1)=(icb(2,
1)=(jcb(2,

jecbi(1,
jebi(2,
jcbi(3,
jecbi(1,
jebi(2,
jcbi(3,

2)=(jcb (1,
2)=(jcb (1,
2)=(jcb (1,
3)=(jcb (1,
3)=(jch (1,
3)=(jecb (1,

,1)+dhdr (K)*x (k)
,2)+dhdr (k) *y (k)
,3)+dhdr (K)*z (k)
,1)+dhds (k) *x (k)
,2)+dhds (k) *y (k)
,3)+dhds (k) xz (k)
,1)+dhdt (k) *x (k)
,2)+dhdt(K)*y (k)
,3)+dhdt(k)*z (k)

2)xjch(3,3)—jcb(2,
3)=xjcb(3,1)—jcb(2,
1)*xjcb(3,2)—jcb (2,
3)=xjch(3,2)—jcb(1,
1)*xjcb(3,3)—jcb (1,
2)=xjcb(3,1)—jcb(1,
2)=xjch(2,3)—jcb(1,
3)*xjchb(2,1)—jcb(1,
1)*xjcb(2,2)—jcb (1,

3)xjcb (3
1) jcb (3
2) % jcb (3
2) % jcb (3
3)xjcb (3
1)*jcb (3
3)xjchb (2
1) jcb (2
2) % jcb (2

,2))/volume
,3))/volume
,1))/volume
,3))/volume
,1))/volume
,2))/volume
,2))/volume
,3))/volume
,1))/volume



Then, Oh /Ox, Oh /Oy, Oh /O z:

do k=1,mpe
dhdx(k)=jcbi(1,1)xdhdr(k)+jcbi(1,2)*dhds(k)+jcbi(1,3)*dhdt(k)
dhdy(k)=jcbi(2,1)xdhdr(k)+jcbi(2,2)«dhds(k)+jcbi(2,3)*dhdt(k)
dhdz(k)=jcbi(3,1)xdhdr(k)+jcbi(3,2)«dhds(k)+jcbi(3,3)*dhdt(k)
enddo

Then, B;:

do k=1,mpe
kl=(k—1)*3+1
k2=(k—1)*3+2
k3=(k—1)*3+3
b(k1,1)=dhdx(k)
b(k2,1)=0.d0

b(k3,6)=0.d0
enddo




Finally one computes an additional term to the ael matrix:

do j=1,mpexndof

do i=1,6
bd(j,i)=0.d0
do k=1,6
bd(j,i)=bd(j,i)+b(j,k)=dl(k,i)
enddo
enddo
enddo

do j=1,mpexndof
do i=1,mpexndof
do k=1,6
ael(i,j)=ael(i,j)+bd(i,k)xb(j,k)*xvolumesxw
enddo
enddo

enddo




Add fixed velocity boundary conditions:

do ii=1,mpe
do k=1,ndof
ij=(icon(ii)—1)xndof+k
if (kfix(ij).eq.1l) then

if (k.eq.l) fixt=unode(icon(ii))
if (k.eq.2) fixt=vnode(icon(ii))
if (k.eq.3) fixt=wnode(icon(ii))
i=(ii —1)xndof+k
do j=1,mpexndof
bel(j)=bel(j)—ael(j,i)=fixt
ael(i,j)=0.d0
ael(j,i)=0.d0
enddo
ael(i,i)=1.d0Oxpenaltyg
bel(i)=fixtxpenaltyg

endif

enddo
enddo




make_pressure.fo0

subrouti ne nmake_pressure (npe, ndof, i con, xg, yg, zg, vi scosi ty0, penal ty, expon,

unode, vnode, wnode, t enp, pressure, strai n, nnode,
ro,s0,t0, rst)

.. arguments
mpe

ndof

icon
Xg,y9,29
viscosityO
penalty
expon
unode,vnode,wnode
temp
pressure
strain
nnode
r0,s0,t0
rst

eviscosity

q

AL A AN B AN NN NENN

-. This routine is a stripped down version of make_matrix but is used in the calculation of the pressure. It computes the trace of the strain-rate
tensor and multiplies it by the penalty factor to obtain the pressure.

CT. Eeb. 2007 — p. 153/190



module_colormaps.fo0

redjet, greenjet, bluejet (ic,nc)

© arguments
® ic
9

.. These functions compute the jet-rgb values for a given index comprised between 1 and nc.

red_hot, green_hot, bl ue_hot (ic,nc)

© arguments
® i
® c

.. These functions compute the hot-rgb values for a given index comprised between 1 and nc.

CT. Eeb. 2007 — p. 154/190



It contains the definition of the following constants :

9
o
9
o

pi:mw

Rgas: Perfect Gas Constant R = 8.31447215J. K ~ 1 .mor—1
sqrt2: V2
sqrt3: /3




moaule_aetinitions.

It contains the definition of the derived types used in the code:

type edge: it is used to store edges in a trianglulation.

type sheet: it is used to store surfaces tracked by particles.

type octreev: it is used to store velocity/temperature octree.

type octreelsf: it is used to store level set function.

type octreesolve: it is used to store velocity,temperature,lsf,strain,...

type material: it is used to define different materials.

type void: it is used to store information on node, leaves and faces that are in the void.

type cloud: it is used to store volumetric cloud of points.

type topology: it is used to store the matrix topology for the solver.

type box: it is is used to store the geometrical information about a general box that is used to refine an octree.

type face: it is used to store the refinement informations on a given face of the cube

ool

type cross.section: it is used to store all the informations related to the output of cross sections



module_distributions.f90

subroutine cunul ativedistribution (array-size, array, nb_of .i nterval s, namefil e)

’ arguments

®  array size

® aray

® b of intervals
®  namefile

-. This subroutine computes the distribution of values contained in the array of size array_size passed as argument. The values in the array can
be negative and positive. The distribution, computed on nb_of_intervals points is written in file namefile.

subroutine distribution (array.size, array, nb_of .i nterval s, nanefil e)

’ arguments

®  aray size

® aray

® b of intervals
®  namefile

.. This subroutine computes the distribution of values contained in the array of size array_size passed as argument. The values in the array can
be negative and positive. The distribution, computed on nb_of_intervals points is written in file namefile.
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’ DoRuRe = Douar Run Report

-. module_DoRuRe.f90:
io_DoRuRe
write_dt_stats
write_cloud_stats
write_diag_stats
write_leaf_stats
write_forces_stats
write_nelem_stats
write_octree_stats
write_gpgram
write_skyline_stats
write_solver_stats
write_conv_stats
write_maxdeltauvw_stats
write_div_stats
write_nonlin_stats
write_velocity_stats
write_gnuplot_surfstats
produce_texfiles

write_ss

eooboboooobooooooooool

timestring

’ To produce report.pdf:
> ./ DORURE/ generate_report



This module contains the definition of the ww, rr, ss, tt arrays:

Tr

(1,1,1,1,1,1,1,1)
( V3 V3 V3 V3 V3 V3 V3 x/§)

(

(_

which are the coordinates and associated weights of the Gauss-Legendre integration points:

I 0.57735...

0.57735... 1

0.57735...

0.57735...

3 3 3 3 3 3 3 3
V3 V3 V3 V3 V3 V3 V3 V3
_3’_3’3’3’_3’_3’3’3)
V3 V3 V3 V3 V3 V3 V3 V3
3’_3’_3’_3’3’3’3’3)




module_invariants.f90

function trace (exx, eyy, ezz, exy, eyz, ezx)

.. arguments
» exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

-. this function returns the trace of the tensor:

trace = Gmm + ny + GZZ

subrouti ne deviatoric (exx, eyy, ezz, exy, eyz, ezx)

.. arguments

N exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

.. this routine returns the deviatoric part of the strain-rate tensor.

1
€xax = €xx — —(€gx + €yy + €22)
. . 1 . . .
Cyy = Cyy — g(ea:ac + €yy + €22)
. . 1 . . .
€zz = €zz — —(égx + €yy + €22)
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module_invariants.f90 (2)

function second.i nvari ant (exx, eyy, ezz, exy, eyz, ezx)

.. arguments

» exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor

-. This function returns the second invariant of the symmetric tensor passed as argument:

1 1
. . . . .2 .2 .2 .2 .2 .2
second_invariant = 5 Z €;j€i5 = E(wa + €yy +é2,)+ €ry + €yz + €%
1]
function thirddnvariant (exx, eyy, ezz, exy, eyz, ezx)
-. arguments
o exx,eyy,ezz,exy,eyz,ezx: the six components of the symmeric strain-rate tenesor
-. This function returns the third invariant of the symmetric tensor passed as argument:
N 1 . 1, .2 .2 .2
third invariant = — Z €ij€jk€ki = —€xx (€L, —|—3€my + 3€é2.)
3 ik 3
J
1

. .2 .2 .2
+ geyy(Sexy —I—eyy +3€yz)

1
. .2 .2 .2
-+ geZZ(362x+3€yz+€zz)

+ 2¢xy€yzéza
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module_invariants.f90 (3)

function | ode_angl e (J2d, J3d)

.. arguments

®  J2d,33d: the second and third ivariant of a given tensor

-. This function returns the Lode angle associated to the invariants passed as argument. This angle is comprised between — 7 /6 and 4 /6.

1 1 3v3  J4
lode_angle = — sin — 1\3/2
3 2 (J2)
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module_kernel.f90

9o

9o

functi on kernel

function kernel p

function kernel pp

arguments

(r, kappah)

(r, kappah)

(r, kappah)

® 1 distance between two particles

® Kappah: cutoff radius

these functions return respectively W (r/kh), w'! (r/rkh), w'!’ (r/rh), where W is the so-called kernel of the interpolation:

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

0 010203040.5060.70.809 1

15

| | | \ [

lﬂ/l"

0 0102030405060.70809 1
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It contains the definition of the ran function, from Numerical Recipes
This implements the random number generator of Park and Miller combined with a Marsaglia shift sequence. It returns a uniform random deviate
between 0.0 and 1.0 (exclusive of the endpoint vlaues).




move_cloud.f90

subrouti ne novecl oud (cl,octree, noctree, unode, vnode, wnode, nnode,

i con_octree, nl eaves, dt, ni ter _nove)

.. arguments

cl is the cloud of points to be moved

octree is the velocity octree

noctree is its size

unode,vnode and wnode are the components of the velocity
icon_octree is the connectivity matrix on the octree

nleaves is the number of leaves in the octree

dt is the time step

levelmax_oct is the maximum level of refinement for the solve octree

AR AN N ANN.

niter_move is the number of iterations used to move the particles (read in input.txt)

.. This subroutine moves a set of particles from a velocity field known at the nodes of an octree. Here we use a simple method that performs a
given (niter_move) number of iterations in a mid-point algorithm.
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move_surface.fo0

subrouti ne novesurface (surface, surfaceO, fl ag0, octree, noctree, unode, vnode, wnode, nnode, i con_octr ee, nl eaves, dt, ni

-. arguments

surface is the surface on which the particles need to be moved
surfaceO is the surface in its initial geometry

flagO is 1 if in midpoint configuration and O if at the end of the timestep
octree is the velocity octree

noctree is its size

unode,vnode and wnode are the components of the velocity
nnode is the number of nodes on the octree

icon_octree is the connectivity matrix on the octree

nleaves is the number of leaves in the octree

dt is the time step

niter_move is the number of iterations used to move the particles. It is read in input.txt

ool

normaladvect

-. This subroutine moves a set of particles on a surface from a velocity field known at the nodes of an octree. Here we use a simple method that
performs a given (niter_move) number of iterations in a mid_point algorithm. We also advect the normals by using the velocity gradient
computed from the finite element shape function derivatives.
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pressure_cut.fo0

recursive subroutine pressure_cut (level, | evel max, | evel appr ox, npe, ndof , i con, x,y, z, mat, nmat, mat eri al n, u, v, w,

t enp, pressure, strain, nnode, | sf,nlsf,r0,s0,t0,rst,icut,il eaves)

.. arguments

level is current level in cut cell algorithm. It varies between 0 and levelmax.
levelapprox is used to improve the postitive volume calculation by further division
mpe is number of nodes per element (8)

ndof is the number of degrees of freedom per node (3)

icon is connectivity array for the current element

X,y,z are the global coordinate arrays of length nnode

mat is the material matrix for the nmat materials

materialn contains the material number associated to each Isf

u,v,w is the velocity array (obtained from previous time step or at least containing the proper velocity at the fixed dofs)
temp, pressure and strain are temperature, pressure and strain

nnode is number of nodes

Isf is global array of level set functions defining the surfaces

nisf is number of Isfs
r0,s0,t0 are the bottom left back corner of the part of the element. We are now integrating (in local r,s,t coordinates)

rst is the size of the part of the element we are integrating

A A AR AR N AR NN NN NN

icut is returned (0 if homogeneous element - 1 if cut element)

.. This is an intermediary routine between compute_pressure and make_pressure in the same way as make_cut is between build_system and
make_matrix.
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read_controlling_parameters.fo0

subroutine read_controllingparaneters (infile,irestart,restartfile, ns, nmat, nboxes, nsecti ons, doDoRuRe)

-. arguments
ns is the number of surfaces in the system
isrestart

restartfile
nmat is the number of different material property arrays

nboxes is the number of user supplied refinement boxes
nsections is the number of cross-sections
doDoRuRe

ool

.. This subroutine reads the main controlling parameters.
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read_input_file.f90

subroutine read.input file

(infile,nstep,ns,dt, nnat, nateri al 0, nat,

| evel uni f ormoct, | evel max_oct,

| evel cut, | evel appr ox, noct r eemax,

penal ty, tenpscal e, refineratio,refinecriterion,
octree_refinecratio, courant, stretch,

surface, npm n, nprmex, griditer,tol,

criterion, angl emax, niter_nove,irestart,
restartfile,isnooth, boxes, nboxes, secti ons, nsecti ons,
i erosi on, zerosi on, ref .on_f aces, cube_f aces,

nonlinear_iterations,initial_efine.level,

conput e_reacti on_f or ces, conput e.gpgr am debug,

nor mal advect, zt enp, vi sual i se_mat ri x, snoot hi ngt ype,

r enunber _nodes)

-. This routine uses scanfile to read in the supplied infile (input.xxxxx) all the parameters of the run. Values are read on the master node and then

broadcast to the others if necessary.
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refine_surface.f90 (1)

subroutine refinesurface (surface, ed, nedge, nedgen, r ef i ne, nadd, naddp, nedgeper node,

nodenodenunber, nodeedgenunber, nnmax)

.. arguments

surface is the sheet/surface to be refined
ed is the computed edge aray

nedge is the number of edges

nedgen

refine

nadd

naddp

nedgepernode

nodenodenumber

coboooobb

nnmax

-. This routine refines a surface of particles based on the value of an integer refine array of length nedge, number of edges in the triangulation
connecting the particles.
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edge to be refined

nadd=1
naddp 0

surface%nsurface=4 nnodemax=surface%nsurface+nadd=4+1=5
surface%nt=2 nelemmax=surface%nt+(nadd-naddp)*2+naddp=2+(1-0)*2+0=4
nedge=5 nedgemax=nnodemax+nelemmax-1=5+4-1=8



scanfile.f90

subroutine iscanfile (fnme,text,res,ires)

-. It reads the value of an integer parameter whose name is stored in text from file fnme. The result is stored in res and the flag ires is set to 1 if
all went well.

subroutine dscanfile (fnme,text, res,ires)

.. It reads the value of an double precision parameter whose name is stored in text from file fnme. The result is stored in res and the flag ires is
set to 1 if all went well.

subroutine cscanfile (fnme,text, res,ires)

.. It reads the value of a character string parameter whose name is stored in text from file fnrme. The result is stored in res and the flag ires is set
to 1 if all went well.
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slices.f90

subroutine slices (osol ve, sections, nsections,istep,iter,inner)

9 arguments
® osolve
®  sections
® nsections
® istep,iter,inner

-. this subroutine outputs cross sections. all parameters have been read in input.xxxx and stored in the derived type cross_section.

Ny
N
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slices.f90 (2)

subroutine wite_square (iunit,al pha, al pha-of fset, beta, bet a_of fset, dxyz, col our)

subroutine witefilledsquare (iunit,al pha, al pha-of f set, bet a, bet a_of f set,

dxyz, rati o, fl ag-col our, col our, col or map, ncol ours)

-. arguments

iunit:

alpha, beta
alpha_offset, beta_offset
dxyz

ratio

flag_colour

colour
colormap

A A MR NN NN

ncolours

.. These routine write in the file associated with unit iunit a filled rectangle line at point «, 3, offset by (O‘offset , /Boffset) whose size is
dxyz, aspect ratio isr at i 0. It can be black and white or in colour, depending on the flag f | ag_col our . Its colour is given by col our,
comprised between 1 and ncolours, and taken in col or map. The wri t e_squar e routine only draws an empty square.
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slices.f90 (3)

subroutine wite_col ormap (iunit,al pha, al pha-offset, beta, beta_of fset,

dxyz, rati o, fl ag-col our, col or map, ncol our s)

.. arguments

iunit:

alpha, beta
alpha_offset, beta_offset
dxyz

ratio

flag_colour

colormap

o0l

ncolours

.. These routine write in the file associated with unit iunit the colormap rectangle at point «, 3, offset by (O‘offset , Boffset) whose size
is dxyz, aspect ratio is r at i 0. It can be black and white or in colour, depending on the flag f | ag-col our.

Jet:
I |

hot: :
I
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slices.f90 (4)

subroutine wite.line (iunit,al pha, al pha-of f set, bet a, bet a_of f set,

val pha, vbet a, col our, fl ag-col our, col or map)

.. arguments

iunit:

alpha, beta
alpha_offset, beta_offset
valpha,vbeta

colour

flag_colour

bbb

colormap

.. This routine writes in the file associated to iunit a line starting at point «, 3, offset by (O‘offset , 5offset) whose direction and length
is given by the vector (v, v3 ).
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smooth_pressures.f90 (1)

subrouti ne snoot h_pressures (osol ve, snoot hi ng-t ype)

.. arguments
® osolve
» smoothing_type:
0 : no smoothing

: center — nodes — center
: center — nodes — center, weighted by neighbouring leaves volumes

: regular grid + SPH
: SPH

Pl

.. This routine performs the smoothing of the elemental pressure field.
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On the figure hereunder is represented a part of a 2D octree. One wants to smooth the pressure inside the i leaf.

1 4
2 3
A B
10
i 5
9
D C
6
8
7




’ smoothing_type=1

1 1
PAIZ(P1+P2+P10+PU PBIZ(P3+P4+P5+P7;)

1 1
PC:Z(P5+P6+P7+PZ') PD:Z(P7+P8+P9+P7L)

1
= Z(PA-l-PB-I-Pc-l-PD)

1 1
= Z(Pz'-l-Z(Pl—|—P2—|—P3—|—P4—|—2P5—|—P6—|—2P7—|—P8—|—P9-|-P10)

)




’ smoothing_type=2

PV + PoVo + P1gVipo + P;V;

_ P3V3 + PyVy + P5Vg + PV,

Py = Pp =
Vi+ Vo +V70+V; Vg + V4 + Vs +V;
P Ps Vs + PgVg + PV + P, V5 P P7 Ve + PgVg + PgVg + P;V;
c = D =
Vs + Vg + V7 +V; V3 +Vy + Vs +V;
1
= PV = Z(PA—I—PB—i—PC—i—PD)

Pb: this lead to different weights for leaves 2 and 3, for instance which is not really logical




’ smoothing_type=3

1
2 3
A B
100 ---6----- °---
: C
I
o ! [¢]
0| ---0----- o---
8




’ smoothing_type=4

i

N;
2 Wi Fj
j=t
PZFJ.GW —
A N’i
> Wiy

2

Pb: this method works rather fine, but since it has not been parallelised yet, the neighbour algorithm is in nleaves“ so it takes a lot of time to

complete...



toolbox.f90

subrouti ne showtine (total,step,inc,flag, nessage)

.. This routine is used to time the main process and track progress of the run by simple output to the maain screen.

subrouti ne stop-run (messsage)

.. This subroutine stops an mpi run properly to ensure that no process remains and outputs a message to the screen.

subroutine wite_error.vtk (leaf,volune,icon,x,y, z)

-. This subroutine prints out the 8 nodes numbers and their coordinates of the leaf that has caused a problem. It also outputs error.vtk that
simply contains the 8 nodes coordinates, which can be visualised in Mayavi with the Glyph module.
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toolbox.f90 (2)

subrouti ne out put _octree.l sf (ol sf,surface,is,istep,iter)

processed with "./DEBUG/OLSF/post’ to obtain the corresponding vtk file.

subrouti ne out put surf (surface,is,string,istep,ref_count)

.. When using the debugging command in DOUAR, this produces vtk files of the surface passed as argument in "./DEBUG/SURFACES/surf_....

subrouti ne out put _osol ve_forces (osol ve, nnode, force, i step,iter)

-. When reaction forces computations are turned on, this routine outputs in './DEBUG/FORCES/osolve_forces xxxx_xx.txt' the necessary
octree and forces data so that ./DEBUG/FORCES/post’ can process it and create the corresponding vtk file.

subrouti ne out put _bc (nnode, kfix, kfixt,x,y,z,u,v,wtenp)

.. This subroutine writes in *./DEBUG/BC/bc.vtk’ the coordinates of the points on which mechanical boundary conditions are imposed and their
assigned velocities, and in "./DEBUG/BC/bct.vtk’ the coordinates of the points on which thermal boundary conditions are imposed.
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update_cloud_fields.f90

subrouti ne updat ecl oudfields (cl,ov, osol ve, dt)

9 arguments
® clis the cloud object
® ovis the velocity octree
®  osolve is the octree
® dtis time step

.. This routine is used to update the total strain value stored on the particles of the 3D cloud from the strainrate obtained by interpolation and
differentiation of the velocity field from the octreev structure.
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update_cloud_structure.f90

subrouti ne updat e_cl oud_structure (cl, os, npm n, npnax, ni nj ect, nrenove, | evel max_oct)

-. arguments

cl is the cloud

os is the octree solve

npmin is the minimum number of particles in any leaf of the octree solve

npmax is the maximum number of particles in the smallest leaves of the octree solve
ninject is number of new particles injected in the cloud

nremove is number of particles removed from the cloud

ool

levelmax_oct is maximum level of octree solve

-. This file contains the operations done on a 3D cloud of particles to check the density of particles, accordingly add or remove particles and
transfer the fields carried by the cloud (here the original position of the particles). First it initializes the fields to the current (thus original)

position, then we also interpolate the fields (original position) onto the corresponding fields of the octree solve in order for the information to
be available during matrix building operation.
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visualise_matrix.f90

(nz,irn,jcn,n,istep,iter)

subroutine visualise.mmtrix

’ arguments

® nz
® in
® cn
®  step,iter

-. This subroutine outputs a visual representation of the FEM matrix in ./DEBUG/MATRIX/ for each time step and each generated grid.

istep= 1iter= 10
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vim.f90

subroutine vrm (J2d, J3d, viscosity, pressure, plasticityparaneters, plasticity_type,is_plastic)

-. arguments

J2d: gL (¢)

J33d: J4(¢)
viscosity

pressure

plasticity _parameters

plasticity type

oo b0

is_plastic

.. This routine computes the rescaled viscosity in the element in the case the failure criterion is positive
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with

Mohr-Coulomb

Tresca

von Mises

Drucker-Prager

1 ccos ¢ — psin ¢

IJ, =
, 1 c
wo= /
2 E2 cos Ol
’ 1
r = n c
2 E2

1
C(07-¢) = cos O] — E sin 0 sin ¢




vrm.f90 (3)

(plasticity_paranmeters, plasticitytype)

subrouti ne conput e_pl asti c_parans

N arguments
® plasticity_parameters
® plasticity_type

.. This routine computes derived plasticity parameters that wil be used a lot and stores them in vacant spaces in plasticity_parameters(8,9):

plasticity parameters 1 2 3 4 5 6 7 8 9
vM oy

DPI, |1 & c

DP 111 « k

MC (0] C

Tr oy
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write_global_output.f90

subrouti ne write_gl obal _out put (istep,iter,current_time, osol ve, ov, vo, surface, ns, cl, out puttype)

-. arguments

istep

iter
current_time
osolve

VO

surface

ns

cl

oo b

outputtype

.. Thsi subroutine writes out all the necessary data relative to the run at given istep (and iter if outputtype is set to 'debug’ instead of final), for

restart and plotting purposes. The files are stored in ./OUT/ . In case of a restart, the data file under consideration is accessed by
define_surface, define_ov and define_cloud.
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Douar Run Reports




DoRURe

1

unit file name produced in associated gnuplot script postscript file

99 screen.txt

199 debug.txt

60x work _0x_stats.dat compute_vol_work gnuplot_script_surfstats work_xx_stats.ps

65x vol_Ox_stats.dat compute_vol_work gnuplot_script_surfstats vol_xx_stats.ps

70x surface_0x_stats.dat write_ss gnuplot_script_surfstats surface_xx_stats_nt.ps
surface_xx_stats_nsurface.ps
surface_xx_stats_nedge.ps
surface_xx_stats_nadd.ps

804 p_stats.dat write_leaf stats.dat gnuplot_script_e2d _p_q p_stats.ps

805 g_stats.dat write_leaf stats.dat gnuplot_script_e2d_p_q g_stats.ps

806 solver_stats.dat write_solver_stats gnuplot_script_solver solver_stats n.ps
solver_stats_nz.ps
solver_stats_rinfog3.ps
solver_stats_infog3.ps
solver_stats_fact_time.ps
solver_stats bcksub_time.ps
solver_stats factvsn
solver_stats_factvsnleaves

807 octree_stats.dat write_octree_stats gnuplot_script_octree octree_stats_nleaves.ps

octree_stats_nnode.ps
octree_stats_nface.ps

octree_stats_nnodevsnleaves.ps
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DoRuRe (2)

unit file name produced in associated gnuplot script postscript file

808 level stats.dat write_octree_stats gnuplot_script_levels level_stats_04.ps
level_stats_05.ps
level_stats 06.ps
level_stats 07.ps
level_stats 08.ps
level_stats_09.ps
level_stats_10.ps

809 frontpage.dat

810 conv_stats.dat write_conv_stats gnuplot_script_conv conv_stats.ps

811 level_stats_volumes.dat write_octree_stats gnuplot_script_levels level_stats_voltot.ps

812 cloud_stats.dat write_cloud_stats gnuplot_script_cloud cloud_stats_npoints.ps
cloud_stats_nremove.ps
cloud_stats ninject.ps
cloud_stats_strain.ps
cloud_stats_temp.ps
cloud_stats_press.ps

813 maxdeltauvw.dat write_maxdeltauvw_stats gnuplot_script_max maxdeltauvw.ps

815 divergence_stats.dat write_div_stats gnuplot_script_div div_stats.ps

816 e2d_stats.dat write_leaf stats.dat gnuplot_script_e2d p ¢ e2d_stats.ps
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DoRuRe (3)

unit file name produced in associated gnuplot script postscript file

817 forces_stats.dat write_forces_stats.dat gnuplot_script_forces forces_x_stats.ps
forces_y_stats.ps
forces_z_stats.ps

818 gnuplot_script_gpgram write_qpgram

819 gpgram_list.tex write_qgpgram

820 diagl_stats.dat write_diag_stats gnuplot_script_diag diagl_stats.ps

821 diag3_stats.dat write_diag_stats gnuplot_script_diag diag3_stats.ps

822 neleml_stats.dat write_nelem_stats gnuplot_script_nelem neleml_stats.ps

823 nelem3_stats.dat write_nelem_stats gnuplot_script_nelem nelem3_stats.ps

824 skylinel stats.dat write_skyline_stats gnuplot_script_skyline skylinel_stats.ps

825 skyline3_stats.dat write_skyline_stats gnuplot_script_skyline skyline3_stats.ps

826 nonlin_stats write_nonlin_stats gnuplot_script_nonlin nonlin_stats.ps

827 velocity _stats write_velocity_stats gnuplot_script_vel u_stats.ps
v_stats.ps
w_stats.ps

828 temp_stats.dat write_temp_stats gnuplot_script_temp temp_stats.ps

829 e3d_stats.dat write_leaf stats gnuplot_e2d p g e3d_stats.ps

830 dt_stats.dat write_dt_stats gnuplot_script_dt dt_stats.ps
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Input.txt




INPUT.XXXX

© oo o

o o 0

debug: debug is a parameter that switches on/off various prints and outputs (the level of printing for error, warning and messages of the
solver cntl(4) is set to the debug value) if O : no debugging ; if 1 : same + display of conv,nleaves,nnode,nsurface ; if 2 : same + intermediate
write_global_output.

DoRuRe:

conput e_qpgr am this is a flag. If set to 0, it switches off the qp-gram calculations

conput e_reacti on_f or ces: this aflag. If set to 0, it switches off the reaction forces calculations

| restart : thisis aflag. If set to 0, this is a new run.

restartfil e:ifirestart # 0, then it indicates the run should start at step irestart, and restart from a previously obtained output file.
dt : this is the time step length (if dt is negative, courant condition is used and automatic time stepping is turned on)

NSt ep: this is the number of time steps

cour ant : courant is only used when dt is negative; it determines the size of the time step from the maximum value of the velocity field
amplitude. The time step is the product of courant by the ratio of the smallest leaf size by the maximum velocity.

nor mal advect : thisis a flag used to determine which algorithm is to be used to calculate the new geometry of the normals to the
surfaces at the nodes on the surfaces. if normaladvect=1, the normals are advected using the velocity gradient, if normaladvect=0, the
normals are re-computed from the geometry of the surface.

ar i diter: griditer is a flag that allows for nonlinear iterations; when positive, a fixed number (griditer) of iterations is permitted; when
negative, the number of nonlinear iterations is determined by a convergence criterion.

octree_refine_rati o: octree_refine_ratio is the threshold value used to determine whether the octree has converged or not. the
larger the value, the less stringent the test.

nonl i near_.iterations :nonlinear_iterations is the maximum number of nonlinear iterations (i.e. the iterations on a given
constant grid). If nonlinear_iterations is positive, it simply is the number of nonlinear iterations performed for each grid. When negative it
indicates an upper bound of nonlinear iterations, but the actual number of nonlinear iterations is determined by a convergence criterion (see
the 'tol’ parameter).
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INPUt.XXXX (2)

oo o0

© o0

°

o

t Ol : tol is the relative tolerance used to estimate convergence on the computed velocity field

| evel uni f or moct : leveluniform_oct is the level of uniform discretization of space; note that a level is a power of two used to divide
the unit cube.

| evel max_oct : levelmax_oct is maximum level of octree discretization.

| Soot h: thisis a flag to impose an additional level of smoothing after refinement for the surfaces and strain rate. It ensures that no leaf
is flanked by other leaves differing by more than 1 level of refinement. If ismooth is 0, no smoothing is performed; if ismooth is set to 1,
smoothing is performed (default is 1).

NOCt r eenBaxX: noctreemax is the maximum size of any octree used in all computations.

refine_ratio: refine_ratio is used to determine octree refinement based on a given criterion. All leaves where the criterion is larger
than refine_ratio times the maximum of this criterion are refined.

refine_criterion: Several criteria exist for the refinement of the osolve octree. 1 is the second invariant of the strain-rate tensor; 2
is the second invariant of the deviatoric strain-rate tensor; 3 is sqrt((du/dx)**2+(dv/dy)**2+(dw/dz)**2); 4 is
sgrt((du/dx)**2+(dv/dy)**2+(dw/dz)**2)*leaf_size; any other value sets the criterion to zero and leads to no refinement.

i nitial _refine_l evel :initial_refine_level is the initial level at which the refinement of the octree will be performed. it has to be
smaller than levelmax_oct.

renunber _nodes:
snoot hi ng_t ype:
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npm n, npmax
| evel cut
| evel appr ox

penal ty

9
9
9
9
O ztenp




D nmat
P materialo

’ For each material i
densityi

viscosityi

penaltyi

exponi

diffusivityi

heati
activation_energyi
plasticity_typei
plasticity_1st_parami
plasticity_2nd_parami
plasticity_3rd_parami
plasticity_4th_parami
plasticity_5th_parami
plasticity_6th_parami
plasticity_7th_parami
plasticity_8th_parami

A B A A A AN NN BA NN NN N

plasticity_9th_parami




o

’ for each surface j
leveltj

itypej
surface_type_j

A A A A A A E NN NN NN N

randj

surface_param_01_j
surface_param_02_j
surface_param_03_j
surface_param_04_j
surface_param_05 _j
surface_param_06_j
surface_param_07_j
surface_param_08_j
surface_param_09_j
surface_param_10 _j

materialj

activation_time_j




o
o
9
o

niter_move
stretch

criterion

anglemax




o
o

ool

nboxes

for each box k
boxkx0
boxkx1
boxky0
boxky1
boxkz0
boxkz1

ool

boxklevel
ref_on_faces
level_facel, b1,t1,11,r1
level face2, b2,t2,12,r2
level face3, b3,t3,13,r3
level_face4, b4 t4,14,r4

level_faceb5, b5,15,I5,r5

level face6, b6,t6,16,r6




P icrosion=0

’ zerosion=.81d0
® visualisemtrix:




-. NnSect i ONS: number of cross-sections to be output in ./XSC/

.. For each cross-section i:

xyz_i: 1,2, or 3. If equal to one it correspondsto a x = constant plane, etc ...
slice_i : between 0 and 1. Coordinate of the cross-section plane.
flag_press_i: yes or no.

flag_e2d_i: yes or no.

flag_e3d_i: yes or no

flag_lode_i: yes or no

flag_crit_i: yes or no

flag_grid_i: yes or no

flag_mu_i: yes or no

flag_u_i: yes or no

flag_v_i: yes or no

flag_w_i: yes or no

flag_qg_i: yes or no

flag_uvw_i: yes or no

flag_lIsf_i: yes or no

flag_vfield_i: yes or no

flag_colour_i: yes or no

flag_plastic_i: yes or no

scale_i: size of the output image of the cross-section.

colormap_i: jet, hot. Type of colormap.

A A A MR RN NN ENN R NNNNNN

ncolours_i: 64,128,256, ... number of colours that compose the colormap.
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